1
|
Pedreira JGB, Silva RR, Noël FG, Barreiro EJ. Effect of S-Se Bioisosteric Exchange on Affinity and Intrinsic Efficacy of Novel N-acylhydrazone Derivatives at the Adenosine A 2A Receptor. Molecules 2021; 26:7364. [PMID: 34885946 PMCID: PMC8659164 DOI: 10.3390/molecules26237364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
In this work, we evaluated the conformational effect promoted by the isosteric exchange of sulfur by selenium in the heteroaromatic ring of new N-acylhydrazone (NAH) derivatives (3-8, 13, 14), analogues of the cardioactive compounds LASSBio-294 (1) and LASSBio-785 (2). NMR spectra analysis demonstrated a chemical shift variation of the iminic Csp2 of NAH S/Se-isosters, suggesting a stronger intramolecular chalcogen interaction for Se-derivatives. To investigate the pharmacological profile of these compounds at the adenosine A2A receptor (A2AR), we performed a previously validated functional binding assay. As expected for bioisosteres, the isosteric-S/Se replacement affected neither the affinity nor the intrinsic efficacy of our NAH derivatives (1-8). However, the N-methylated compounds (2, 6-8) presented a weak partial agonist profile at A2AR, contrary to the non-methylated counterparts (1, 3-5), which appeared as weak inverse agonists. Additionally, retroisosterism between aromatic rings of NAH on S/Se-isosters mimicked the effect of the N-methylation on intrinsic efficacy at A2AR, while meta-substitution in the phenyl ring of the acyl moiety did not. This study showed that the conformational effect of NAH-N-methylation and aromatic rings retroisosterism changed the intrinsic efficacy on A2AR, indicating the S/Se-chalcogen effect to drive the conformational behavior of this series of NAH.
Collapse
Affiliation(s)
- Júlia Galvez Bulhões Pedreira
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil;
- Graduate Program of Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Rafaela Ribeiro Silva
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil; (R.R.S.); (F.G.N.)
| | - François G. Noël
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil; (R.R.S.); (F.G.N.)
- Nacional Institute of Science & Technology in Drugs and Medicines (INCT-INOFAR), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil
| | - Eliezer J. Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil;
- Graduate Program of Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Nacional Institute of Science & Technology in Drugs and Medicines (INCT-INOFAR), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil
| |
Collapse
|
2
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
3
|
Issy AC, Pedrazzi JFC, van Oosten ABS, Checheto T, Silva RR, Noël F, Del-Bel E. Effects of Doxycycline in Swiss Mice Predictive Models of Schizophrenia. Neurotox Res 2020; 38:1049-1060. [PMID: 32929685 DOI: 10.1007/s12640-020-00268-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/14/2023]
Abstract
Schizophrenia patients show very complex symptoms in several psychopathological domains. Some of these symptoms remain poorly treated. Therefore, continued effort is needed to find novel pharmacological strategies for improving schizophrenia symptoms. Recently, minocycline, a second-generation tetracycline, has been suggested as an adjunctive treatment for schizophrenia. The antipsychotic-like effect of doxycycline, a minocycline analog, was investigated here. We found that both minocycline and doxycycline prevented amphetamine-induced prepulse inhibition (PPI) disruption. However, neither of them blocked MK801-induced effects, albeit doxycycline had a modest impact against ketamine-induced effects. Neither c-Fos nor nNOS expression, which was evaluated in limbic regions, were modified after acute or sub-chronic treatment with doxycycline. Therefore, apomorphine inducing either PPI disruption and climbing behavior was not prevented by doxycycline. This result discards a direct blockade of D2-like receptors, also suggested by the lack of doxycycline cataleptic-induced effect. Contrasting, doxycycline prevented SKF 38393-induced effects, suggesting a preferential doxycycline action at D1-like rather than D2-like receptors. However, doxycycline did not bind to the orthosteric sites of D1, D2, D3, D4, 5-HT2A, 5-HT1A, and A2A receptors suggesting no direct modulation of these receptors. Our data corroborate the antipsychotic-like effect of doxycycline. However, these effects are probably not mediated by doxycycline direct interaction with classical receptors enrolled in the antipsychotic effect.
Collapse
Affiliation(s)
- Ana Carolina Issy
- Dental School of Ribeirão Preto, Department of Basic and Oral Biology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, São Paulo, Brazil.,Medical School of Ribeirão Preto, Department of Neuroscience and Behavior Sciences, USP, Ribeirão Preto, SP, Brazil
| | - João Francisco C Pedrazzi
- Dental School of Ribeirão Preto, Department of Basic and Oral Biology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, São Paulo, Brazil.,Medical School of Ribeirão Preto, Department of Neuroscience and Behavior Sciences, USP, Ribeirão Preto, SP, Brazil
| | - Anna Beatriz Saito van Oosten
- Dental School of Ribeirão Preto, Department of Basic and Oral Biology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thiago Checheto
- Dental School of Ribeirão Preto, Department of Basic and Oral Biology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Rafaela R Silva
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - François Noël
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine Del-Bel
- Dental School of Ribeirão Preto, Department of Basic and Oral Biology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, São Paulo, Brazil. .,Medical School of Ribeirão Preto, Department of Neuroscience and Behavior Sciences, USP, Ribeirão Preto, SP, Brazil. .,Medical School of Ribeirão Preto, Department of Physiology, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Mizumura T, Kondo K, Kurita M, Kofuku Y, Natsume M, Imai S, Shiraishi Y, Ueda T, Shimada I. Activation of adenosine A 2A receptor by lipids from docosahexaenoic acid revealed by NMR. SCIENCE ADVANCES 2020; 6:eaay8544. [PMID: 32206717 PMCID: PMC7080496 DOI: 10.1126/sciadv.aay8544] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/18/2019] [Indexed: 05/05/2023]
Abstract
The lipid composition of the plasma membrane is a key parameter in controlling signal transduction through G protein-coupled receptors (GPCRs). Adenosine A2A receptor (A2AAR) is located in the lipid bilayers of cells, containing acyl chains derived from docosahexaenoic acid (DHA). For the NMR studies, we prepared A2AAR in lipid bilayers of nanodiscs, containing DHA chains and other acyl chains. The DHA chains in nanodiscs enhanced the activation of G proteins by A2AAR. Our NMR studies revealed that the DHA chains redistribute the multiple conformations of A2AAR toward those preferable for G protein binding. In these conformations, the rotational angle of transmembrane helix 6 is similar to that in the A2AAR-G protein complex, suggesting that the population shift of the equilibrium causes the enhanced activation of G protein by A2AAR. These findings provide insights into the control of neurotransmissions by A2AAR and the effects of lipids on various GPCR functions.
Collapse
Affiliation(s)
- Takuya Mizumura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Keita Kondo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masatoshi Kurita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaka Kofuku
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mei Natsume
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Yutaro Shiraishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takumi Ueda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Corresponding author.
| |
Collapse
|
5
|
Carvalho VF, Ferreira TPT, de Arantes ACS, Noël F, Tesch R, Sant'Anna CMR, Barreiro EJL, Fraga CAM, Rodrigues E Silva PM, Martins MA. LASSBio-897 Reduces Lung Injury Induced by Silica Particles in Mice: Potential Interaction with the A 2A Receptor. Front Pharmacol 2017; 8:778. [PMID: 29163164 PMCID: PMC5671655 DOI: 10.3389/fphar.2017.00778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022] Open
Abstract
Silicosis is a lethal fibro-granulomatous pulmonary disease highly prevalent in developing countries, for which no proper therapy is available. Among a small series of N-acylhydrazones, the safrole-derived compound LASSBio-897 (3-thienylidene-3, 4-methylenedioxybenzoylhydrazide) raised interest due to its ability to bind to the adenosine A2A receptor. Here, we evaluated the anti-inflammatory and anti-fibrotic potential of LASSBio-897, exploring translation to a mouse model of silicosis and the A2A receptor as a site of action. Pulmonary mechanics, inflammatory, and fibrotic changes were assessed 28 days after intranasal instillation of silica particles in Swiss–Webster mice. Glosensor cAMP HEK293G cells, CHO cells stably expressing human adenosine receptors and ligand binding assay were used to evaluate the pharmacological properties of LASSBio-897 in vitro. Molecular docking studies of LASSBio-897 were performed using the genetic algorithm software GOLD 5.2. We found that the interventional treatment with the A2A receptor agonist CGS 21680 reversed silica particle-induced airway hyper-reactivity as revealed by increased responses of airway resistance and lung elastance following aerosolized methacholine. LASSBio-897 (2 and 5 mg/kg, oral) similarly reversed pivotal lung pathological features of silicosis in this model, reducing levels of airway resistance and lung elastance, granuloma formation and collagen deposition. In competition assays, LASSBio-897 decreased the binding of the selective A2A receptor agonist [3H]-CGS21680 (IC50 = 9.3 μM). LASSBio-897 (50 μM) induced modest cAMP production in HEK293G cells, but it clearly synergized the cAMP production by adenosine in a mechanism sensitive to the A2A antagonist SCH 58261. This synergism was also seen in CHO cells expressing the A2A, but not those expressing A2B, A1 or A3 receptors. Based on the evidence that LASSBio-897 binds to A2A receptor, molecular docking studies were performed using the A2A receptor crystal structure and revealed possible binding modes of LASSBio-897 at the orthosteric and allosteric sites. These findings highlight LASSBio-897 as a lead compound in drug development for silicosis, emphasizing the role of the A2A receptor as its putative site of action.
Collapse
Affiliation(s)
- Vinicius F Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tatiana P T Ferreira
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana C S de Arantes
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - François Noël
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta Tesch
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos M R Sant'Anna
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliezer J L Barreiro
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A M Fraga
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia M Rodrigues E Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco A Martins
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Lowe PT, Dall'Angelo S, Mulder-Krieger T, IJzerman AP, Zanda M, O'Hagan D. A New Class of Fluorinated A 2A Adenosine Receptor Agonist with Application to Last-Step Enzymatic [ 18 F]Fluorination for PET Imaging. Chembiochem 2017; 18:2156-2164. [PMID: 28851015 DOI: 10.1002/cbic.201700382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 11/10/2022]
Abstract
The A2A adenosine receptor belongs to a family of G-coupled protein receptors that have been subjected to extensive investigation over the last few decades. Due to their prominent role in the biological functions of the heart, lungs, CNS and brain, they have become a target for the treatment of illnesses ranging from cancer immunotherapy to Parkinson's disease. The imaging of such receptors by using positron emission tomography (PET) has also been of interest, potentially providing a valuable tool for analysing and diagnosing various myocardial and neurodegenerative disorders, as well as offering support to drug discovery trials. Reported herein are the design, synthesis and evaluation of two new 5'-fluorodeoxy-adenosine (FDA)-based receptor agonists (FDA-PP1 and FDA-PP2), each substituted at the C-2 position with a terminally functionalised ethynyl unit. The structures enable a synthesis of 18 F-labelled analogues by direct, last-step radiosynthesis from chlorinated precursors using the fluorinase enzyme (5'-fluoro-5'-deoxyadenosine synthase), which catalyses a transhalogenation reaction. This delivers a new class of A2A adenosine receptor agonist that can be directly radiolabelled for exploration in PET studies.
Collapse
Affiliation(s)
- Phillip T Lowe
- School of Chemistry and Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK
| | - Sergio Dall'Angelo
- John Mallard Scottish PET Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Thea Mulder-Krieger
- Leiden University, Leiden Academic Centre for Drug Research, Medicinal Chemistry, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Leiden University, Leiden Academic Centre for Drug Research, Medicinal Chemistry, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Matteo Zanda
- John Mallard Scottish PET Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - David O'Hagan
- School of Chemistry and Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK
| |
Collapse
|