1
|
Tafalla C, Leal E, Yamaguchi T, Fischer U. T cell immunity in the teleost digestive tract. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:167-177. [PMID: 26905634 DOI: 10.1016/j.dci.2016.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
Fish (along with cyclostomes) constitute the most ancient animal group in which an acquired immune system is present. As in higher vertebrates, both B and T lymphocytes cooperate in implementing an adequate response. Although there is still a debate on whether fish possess a true gut associated lymphoid tissue (GALT), the presence of diffuse B and T lymphocytes throughout all mucosal surfaces has been demonstrated in a wide variety of fish species. The lack of antibodies against T lymphocyte markers has hampered the performance of functional assays in both systemic and mucosal compartments. However, most components associated with T lymphocyte function have been identified in fish through extensive genomic research, suggesting similar functionalities for fish and mammalian T lymphocytes. Thus, the aim of this review is to briefly summarize what is known in teleost concerning the characteristics and functionalities of the different T cell subsets, to then focus on what is known to date regarding their presence and role in the gastrointestinal tract, through either direct functional assays or indirectly by conclusions drawn from transcriptomic analysis.
Collapse
Affiliation(s)
- Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain.
| | - Esther Leal
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Takuya Yamaguchi
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
2
|
Guo Z, Wang GL, Fu JP, Nie P. Characterization and expression of Cd8 molecules in mandarin fish Siniperca chuatsi. JOURNAL OF FISH BIOLOGY 2013; 82:189-205. [PMID: 23331145 DOI: 10.1111/j.1095-8649.2012.03475.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The full-length complementary DNA (cDNA) sequences encoding cd8α and cd8β molecules were sequenced and characterized from mandarin fish Siniperca chuatsi. Conserved motifs and residues were found to be present in derived peptides of the Cd8 molecules. For example, WXR motif, DXGXYXC motif, and four cysteine residues were present in the extracellular region of the Cd8 protein. Threonine, serine and proline residues involved in multiple O-linked glycosylation events were located in the membrane proximal hinge region. The common CPH motif in the cytoplasmic tail was detected similar to other teleost Cd8 molecules. Different from those in mammals, S. chuatsi Cd8 sequences have many extra cysteine residues (C149 in Cd8α sequence and C46, C51 and C158 in Cd8β sequence), which also exist in other teleost Cd8 molecules. Real-time polymerase chain reaction (RT-PCR) and Western blot analyses revealed that the thymus had the highest expression of cd8 messenger (m)RNA and protein. After stimulated with phytohaemagglutinin, polyriboinsine-polyribocyaidylic acid and concanavalin A (ConA), the expression level of cd8 mRNA increased significantly in head-kidney lymphocytes at 4 and 8 h, but decreased to normal level at 12 h. Similarly, stimulation with ConA in vivo also led to an increase in the cd8 mRNA level in the spleen. Immunohistochemistry analysis demonstrated that Cd8α-positive cells can be detected in the thymus, spleen and intestine by using polyclonal anti-Cd8α antibody.
Collapse
Affiliation(s)
- Z Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
3
|
Maisey K, Toro-Ascuy D, Montero R, Reyes-López FE, Imarai M. Identification of CD3ε, CD4, CD8β splice variants of Atlantic salmon. FISH & SHELLFISH IMMUNOLOGY 2011; 31:815-822. [PMID: 21821134 DOI: 10.1016/j.fsi.2011.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/12/2011] [Accepted: 07/20/2011] [Indexed: 05/31/2023]
Abstract
In vertebrates, CD3 complex and CD4 and CD8 co-receptors are essential for signal transduction during T cell activation. In the present study, we report the mRNA spliced variants of the Atlantic salmon CD3ε, CD4 and CD8β and the effect of pathogen encounter on the expression of these variants. CD3ε is alternatively spliced in thymus, head kidney, spleen and gills to give rise to the complete mRNA sequence and to an alternative product that lacks the transmembrane exon. CD4 is also alternatively spliced in the thymus, head kidney, spleen and gills to form two variants, although the alternative product is barely detectable. The alternative product lacks the exon 1B encoding the D1 domain, which is essential for binding to MHC class II proteins. Two amplicons were also found for the CD8β gene; sequencing analysis revealed that the main PCR product corresponds to the previously reported CD8β sequence, whereas the variant sequence encodes a potential protein that lacks the Ig-like domain. The expression of CD3, CD4, CD8β genes also analyzed in head kidney of LPS-treated and IPNV infected salmon and different patterns of expression were observed. The presence and balance of the different variants of T cell co-receptors could be related to the ability of fish to induce a particular type of immune response, as well as, the ability of the pathogen to modify the fish immune response.
Collapse
Affiliation(s)
- Kevin Maisey
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola (CBA), Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile
| | | | | | | | | |
Collapse
|
4
|
Laing KJ, Hansen JD. Fish T cells: recent advances through genomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1282-1295. [PMID: 21414347 DOI: 10.1016/j.dci.2011.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/14/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.
Collapse
Affiliation(s)
- Kerry J Laing
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer, Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
5
|
Maisey K, Imarai M. Diversity of teleost leukocyte molecules: role of alternative splicing. FISH & SHELLFISH IMMUNOLOGY 2011; 31:663-672. [PMID: 20723604 DOI: 10.1016/j.fsi.2010.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/05/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
Alternative splicing is an important mechanism of gene expression control that also produces a large proteome from a limited number of genes. In the immune system of mammals, numerous relevant genes have been found to undergo alternative splicing that contributes to the complexity of immune response. An increasing number of reports have recently indicated that alternative splicing also occurs in other vertebrates, such as fish. In this review we summarize the general features of such molecular events in cytokines and leukocyte co-receptors and their contribution to diversity and regulation of fish leukocytes.
Collapse
Affiliation(s)
- Kevin Maisey
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola (CBA), Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile.
| | | |
Collapse
|
6
|
Chang YT, Kai YH, Chi SC, Song YL. Cytotoxic CD8α+ leucocytes have heterogeneous features in antigen recognition and class I MHC restriction in grouper. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1283-1293. [PMID: 21463694 DOI: 10.1016/j.fsi.2011.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/24/2011] [Accepted: 03/27/2011] [Indexed: 05/30/2023]
Abstract
CD8 is a membrane glycoprotein found primarily on the surface of T lymphocytes such as cytotoxic T lymphocytes (CTL), natural killer cells (NK) and γδ T lymphocytes. It helps T lymphocytes to kill the infected cells that presents microbial antigen on the cell surface. However, analysis of fish cellular immunity has been limited because of the lack of CD8 antibodies in grouper. In this present study, we cloned full-length CD8α cDNAs from orange-spotted grouper (Epinephelus coioides), an important fish species economically. The deduced protein of CD8α contained 227 amino acid residues in length and included one signal peptide, Ig superfamily V domain, hinge region, transmembrane domain, cytoplasmic tail and conserved binding motif associated with tyrosine kinase p56(lck). The molecular weight of the mature protein was estimated at 22.5 kDa and pI at 9.55. Phylogenetically, the predicted grouper CD8α protein was similar to CD8α from other marine fish species in which the identity was 50-60%. Real-time PCR revealed that CD8α transcript was constitutively expressed in thymus, head kidney, gill, spleen, gut and peripheral blood leucocyte (PBL); and the highest expression in thymus. CD8α transcript in the spleen of fish injected with nervous necrosis virus (NNV) was significantly up-regulated at 4 days post-injection compared to the untreated fish. Rabbit antiserum prepared against recombinant CD8α protein was able to recognize specifically the subset lymphocytes which have a diameter of 7 μm, a high nucleus/cytoplasm ratio and a ring-shaped cytoplasm. The cytotoxicity of CD8α(+) lymphocytes at one-week post-NNV infection was enhanced significantly against NNV-infected autologous fin cells in comparison with NNV-infected allogeneic or RSIV-infected autologous fin cells. Flow cytometry analysis revealed that both the number and mean fluorescence intensity (MFI) of CD8α(+) PBL were significantly increased at 7 days post-NNV infection. The specific cytotoxicity and MHC class I restriction of the lymphocytes sorted by rCD8α antibody are properties that can be attributed to CTL. In addition, low level of cytotoxicity was found in PBL against allogeneic targets as well as CD8α(+) effectors killed autologous targets nonspecifically, implicated presence of cytotoxic T subsets, possibly nonspecific cytotoxic cells (NCC) and γδ T lymphocytes, without MHC class I restriction. In conclusion, grouper cytotoxic CD8α(+) PBL have heterogeneous features in specific antigen recognition and class I MHC restriction.
Collapse
Affiliation(s)
- Yun-Tsan Chang
- Institute of Zoology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | | | | | | |
Collapse
|
7
|
Quiniou SMA, Sahoo M, Edholm ES, Bengten E, Wilson M. Channel catfish CD8α and CD8β co-receptors: characterization, expression and polymorphism. FISH & SHELLFISH IMMUNOLOGY 2011; 30:894-901. [PMID: 21272650 DOI: 10.1016/j.fsi.2011.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/12/2011] [Accepted: 01/16/2011] [Indexed: 05/30/2023]
Abstract
In this study we report the identification and characterization of channel catfish, Ictalurus punctatus CD8α and CD8β genes. Both genes encode predicted proteins containing a leader, a immunoglobulin superfamily V domain, a stalk/hinge region, a transmembrane region and a positively charged cytoplasmic tail (CYT) containing the conserved teleost C-X-H motif. Catfish CD8α and CD8β are encoded as single copy genes and as in other vertebrates exhibit a conserved head to tail synteny; the CD8β gene is found 14.1kb upstream of the CD8α gene. Both CD8α and CD8β transcripts showed a low degree of polymorphism. Finally, as determined by q-PCR both CD8α and CD8β are expressed in various catfish lymphoid tissues with the highest expression observed in thymus from 2 month old catfish-fry. In the future these results will provide the basis for evaluating the role of CD8(+) CTL and other CD8-bearing cells in response to immunization or infection in the catfish.
Collapse
|
8
|
Xu SW, Wu JY, Hu KS, Ping HL, Duan ZG, Zhang HF. Molecular cloning and expression of orange-spotted grouper (Epinephelus coioides) CD8α and CD8β genes. FISH & SHELLFISH IMMUNOLOGY 2011; 30:600-608. [PMID: 21193050 DOI: 10.1016/j.fsi.2010.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 10/24/2010] [Accepted: 12/12/2010] [Indexed: 05/30/2023]
Abstract
T-cell surface glycoprotein CD8 consists of two distinguished chains, termed α and β chains, and functions as a co-receptor for the T-cell receptor by binding to MHC class I proteins. In this study we report the cloning and identification of both CD8α and CD8β genes from orange-spotted grouper (Epinephelus coioides). The predicted grouper CD8α and CD8β proteins were structurally similar to other fish especially to those of Pleuronectiformes. Real-time RT-PCR revealed that the CD8 mRNA was much higher in the thymus than in other immune organs, and the expression level were very low in stomach, liver, and brain. During embryonic development of the grouper, the highest CD8 transcripts were detected in the multi-cell stage, followed by muscle burl stage, which suggested that the multi-cell stage may be critical in CD8 transcript synthesis. Moreover, CD8 mRNA levels were examined in lymphocytes at different time treated with lipopolysaccharide (LPS), polyriboinosinic polyribocytidylic acid (PolyI:C), phytohemagglutinin (PHA), and concanavalin A (ConA). The result showed that the CD8 mRNA levels were significantly affected in time-dependent manner by PolyI:C, PHA, and ConA, but not by LPS.
Collapse
Affiliation(s)
- Sheng-wei Xu
- Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China
| | | | | | | | | | | |
Collapse
|
9
|
Randelli E, Buonocore F, Casani D, Fausto AM, Scapigliati G. An “immunome” gene panel for transcriptomic analysis of immune defence activities in the teleost sea bass (Dicentrarchus labraxL.): a review. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/11250000802572531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Dios S, Novoa B, Buonocore F, Scapigliati G, Figueras A. Genomic Resources for Immunology and Disease of Salmonid and Non-Salmonid Fish. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802325484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Randelli E, Buonocore F, Scapigliati G. Cell markers and determinants in fish immunology. FISH & SHELLFISH IMMUNOLOGY 2008; 25:326-340. [PMID: 18722788 DOI: 10.1016/j.fsi.2008.03.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 03/28/2008] [Indexed: 05/26/2023]
Abstract
Despite the impressive increase in the cloning and expression of genes encoding fish immunoregulatory molecules, the knowledge on "in vivo" and "in vitro" functional immunology of the corresponding peptide products is still at an initial stage. This is partly due to the lacking of specific markers for immunoregulatory peptides, that represent an indispensible tool to dissect immune reactions and to trace the fate of cellular events downstream of the activation. In this review we summarise the available information on functional immune activities of some teleost species and discuss the obtained data in an evolutionary and applied context.
Collapse
Affiliation(s)
- Elisa Randelli
- Dipartimento di Scienze Ambientali, Università della Tuscia, 01100 Viterbo, Italy
| | | | | |
Collapse
|
12
|
Araki K, Akatsu K, Suetake H, Kikuchi K, Suzuki Y. Characterization of CD8+ leukocytes in fugu (Takifugu rubripes) with antiserum against fugu CD8alpha. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:850-858. [PMID: 18262266 DOI: 10.1016/j.dci.2007.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/06/2007] [Accepted: 12/17/2007] [Indexed: 05/25/2023]
Abstract
We have investigated the characteristics of CD8+ leukocytes by using an anti-CD8alpha antiserum raised in mouse by DNA-immunization. The magnetically sorted CD8alpha+ peripheral blood leukocyte (PBL) population comprised lymphocytes/thrombocytes and monocytes, whereas CD8alpha- PBLs consisted of lymphocytes/thrombocytes, monocytes, and neutrophils. Expression analysis demonstrated that both groups of cells expressed the CD3epsilon and TCRalpha genes. The CD8alpha and CD8beta genes were detected only in CD8alpha+ cells, whereas expression of CD4 and immunoglobulin light chain (IgL) was observed only in CD8alpha- cells. These results suggest that fugu CD8alpha+ leukocytes contain CD8+ T cells, but not CD4+ T cells or B cells. Furthermore, mitogenesis of the CD8+ lymphocyte/thrombocyte population was induced by phytohemaglutinin stimulation, suggesting that fish CD8+ lymphocytes/thrombocytes (probably CD8+ T cells) have characteristics similar to mammalian CD8+ T cells. Neutrophils and monocytes/macrophages infiltrating a subcutaneous inflammatory site expressed only CD8alpha, but not CD8beta, CD4, TCRalpha, or IgL. This result suggests that similar to mammalian dendritic cells, fugu monocytes/macrophages express CD8alpha.
Collapse
Affiliation(s)
- Kyosuke Araki
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Maisaka, Shizuoka 431-0214, Japan
| | | | | | | | | |
Collapse
|
13
|
Picchietti S, Guerra L, Selleri L, Buonocore F, Abelli L, Scapigliati G, Mazzini M, Fausto AM. Compartmentalisation of T cells expressing CD8alpha and TCRbeta in developing thymus of sea bass Dicentrarchus labrax (L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:92-9. [PMID: 17532466 DOI: 10.1016/j.dci.2007.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 04/05/2007] [Accepted: 04/08/2007] [Indexed: 05/15/2023]
Abstract
Eggs, larvae, post-larvae and sexually immature juveniles of the teleost Dicentrarchus labrax (L.) were assayed for the expression of genes encoding the T cell receptor beta and CD8alpha. RT-PCR of RNA extracted from larvae revealed TCRbeta transcripts from day 25 post-hatching (ph) and CD8alpha transcripts from 26 days later. At day 51 ph, CD8alpha and TCRbeta mRNAs were localised by in situ hybridisation in thymocytes of the outer and lateral zones of the thymic paired glands. From day 75 ph onwards the signal was mainly detected in the outer region, drawing a cortex-medulla demarcation. In 1-year-old fish, CD8alpha+ and TCRbeta+ thymocytes almost filled the cortex and extended in large cords in the medulla. A CD8alpha(-)TCRbeta+ subcapsular lymphoid zone was evident near the septa coming from the inner connective capsule that delimited the thymus. The localisation of CD8alpha and TCRbeta transcripts demonstrated a compartmentalisation of the juvenile thymus due to distinct localisation of thymocytes at different developmental stages.
Collapse
Affiliation(s)
- Simona Picchietti
- Dipartimento Scienze Ambientali, Università della Tuscia, 01100 Viterbo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sun XF, Shang N, Hu W, Wang YP, Guo QL. Molecular cloning and characterization of carp (Cyprinus carpio L.) CD8beta and CD4-like genes. FISH & SHELLFISH IMMUNOLOGY 2007; 23:1242-1255. [PMID: 17977746 DOI: 10.1016/j.fsi.2007.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 05/23/2007] [Accepted: 06/01/2007] [Indexed: 05/25/2023]
Abstract
Partial cDNA sequences of both CD8beta and CD4-like (CD4L) genes of common carp (Cyprinus carpio L.) were isolated from thymus cDNA library by the method of suppression subtractive hybridization (SSH). Subsequently the full length cDNAs of carp CD8beta and CD4L were obtained by means of 3' RACE and 5' RACE, respectively. The full length cDNA of carp CD8beta is 1164 bp and encodes 207 amino acids including a signal peptide region of 24 amino acids, a transmembrane region of 23 amino acids from aa 167 to aa189 and an immunoglobulin V-set from aa 19 to aa 141. Similar to other species CD8betas, carp CD8beta also lacks p56(lck) domain in the cytoplasmic region. The full length cDNA of carp CD4L is 2001 bp and encodes 458 amino acids including four immunoglobulin (Ig)-like domains in the extracellular region, a transmembrane region of 23 amino acids at the C-terminal region from aa 402 to aa 424 and a cytoplasmic tail. Similar to mammalian, avian CD4s and fugu CD4L, carp CD4L also has the conserved p56(lck) tyrosine kinase motif (C-X-C) in the cytoplasmic region. RT-PCR analysis demonstrated that carp CD8beta and CD4L genes were both expressed predominantly in thymus. The results from this study can be used to understand the evolution of both the CD8beta and CD4 molecules which can be used as markers for cytotoxic and helper T cells in carp.
Collapse
Affiliation(s)
- Xiao-Feng Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
15
|
Suetake H, Araki K, Akatsu K, Somamoto T, Dijkstra JM, Yoshiura Y, Kikuchi K, Suzuki Y. Genomic organization and expression of CD8alpha and CD8beta genes in fugu Takifugu rubripes. FISH & SHELLFISH IMMUNOLOGY 2007; 23:1107-18. [PMID: 17629710 DOI: 10.1016/j.fsi.2007.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 05/19/2007] [Accepted: 05/21/2007] [Indexed: 05/16/2023]
Abstract
We have cloned cDNAs encoding the alpha and beta chains of CD8 from the tiger pufferfish (fugu), Takifugu rubripes. The cDNA sequences encode a putative leader peptide, extracellular immunoglobulin variable region-like domain, stalk region, transmembrane region, and cytoplasmic tail. A protein tyrosine kinase p56lck binding motif was not found in the putative fugu CD8alpha cytoplasmic tail. O-linked glycosylation sites were found in the stalk of both CD8 chains, suggesting possible stalk formation. Phylogenetic analysis showed that fugu CD8alpha and CD8beta chains cluster with other vertebrate CD8alpha and CD8beta chains, respectively. The fugu CD8 genes comprise six exons separated by five introns. The genes are tandemly aligned 3.6 kb apart and are in the same transcription orientation. Quantitative RT-PCR analysis demonstrated that fugu CD8 is expressed predominantly in lymphoid tissues. In situ hybridization showed that fugu CD8 genes are expressed in thymocytes and lymphocytes within lymphoid organs. Molecular characterization of CD8 in fish provides the basis for development of specific antibodies to identify T-cell subsets, as well as potentially important insights into the evolution of CD8 and the adaptive immunity.
Collapse
Affiliation(s)
- Hiroaki Suetake
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka 431-0214, Japan.
| | | | | | | | | | | | | | | |
Collapse
|