1
|
Sekiguchi K, Koba R, Oka T, Tohya Y. Caliciviruses induce mRNA of tumor necrosis factor α via their protease activity. Virus Res 2021; 306:198595. [PMID: 34637812 DOI: 10.1016/j.virusres.2021.198595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 11/18/2022]
Abstract
Calicivirus infection in patients and animals is associated with the production of multiple inflammatory cytokines, including tumor necrosis factor α (TNF-α). Here we studied the feline calicivirus (FCV) non-structural proteins and found that the FCV protease was a key factor for TNF-α gene expression in cultured cells. The expression of the TNF-α gene in cells expressing FCV, human norovirus, and rabbit hemorrhagic disease virus protease was compared, revealing that the induction of TNF-α could be a common phenomenon during the infection by the viruses in the Caliciviridae. The level of TNF-α mRNA in the cells expressing mutant proteases that lacked the active site was measured. These data indicate that the protease activity is crucial for TNF-α expression. These findings provide new insight into the induction of inflammation during calicivirus infection.
Collapse
Affiliation(s)
- Kei Sekiguchi
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan; Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ryota Koba
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Yukinobu Tohya
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
2
|
Wei Y, Zeng S, Zou C, Zhang H, Peng O, Xue C, Cao Y. Porcine TRIM21 RING-finger E3 ubiquitin ligase is essential for anti-PRRSV activity. Vet Microbiol 2021; 256:109043. [PMID: 33780804 DOI: 10.1016/j.vetmic.2021.109043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes substantial economic losses to the global pig industry. Members of the tripartite motif (TRIM) family are the important effectors of the innate immune response against viral infections. We have previously characterized the entire porcine TRIM (pTRIM) family, and predicted pTRIM5, 14, 21, 25 and 38 as host restriction factors against PRRSV infection. However, little is known about whether and how pTRIMs restrict the infection of PRRSV. In this study, we firstly performed the amino acid alignments of the RING domain of pTRIM5, 21, 25 and 38, and found that pTRIM proteins contained the characteristic consensus C3HC4 type zinc-binding motif which is important for the ubiquitination function. Then we detected the mRNA changes of pTRIMs in porcine alveolar macrophages (PAMs) by transcriptome sequencing after PRRSV infection in piglets. Transcriptional profiles showed that the expression of pTRIM5, 21 and 26 was significantly (P < 0.05) up-regulated, consistent with their expression in vitro. Finally, as the most up-regulated gene after PRRSV infection both in vivo and in vitro, pTRIM21 was investigated for its anti-PRRSV activity in immortalized PAMs (iPAMs) in two aspects: knockdown and overexpression of pTRIM21. Knockdown of endogenic pTRIM21 could significantly promote PRRSV replication at 12 and 24 h post infection in iPAMs. Meanwhile, overexpression of pTRIM21 could significantly suppress PRRSV replication but not affect its attachment and endocytosis. Moreover, pTRIM21 RING-finger E3 ubiquitin ligase was essential for anti-PRRSV activity. Our data enhance our understanding of the pTRIMs against PRRSV infection, which may help us develop novel therapeutic tools to control PRRSV.
Collapse
Affiliation(s)
- Ying Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Siying Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuangchao Zou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ouyang Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Koba R, Shoji S, Yoshimura S, Tohya Y. Molecular characterization and immune responsive expression of feline MDA5 gene. J Vet Med Sci 2018; 80:1266-1270. [PMID: 29973480 PMCID: PMC6115252 DOI: 10.1292/jvms.17-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retinoic acid-inducible gene-I-like receptor (RLR) family is a group of cytosolic RNA
helicase proteins that play an important role in sensing viral RNAs. Melanoma
differentiation-associated gene 5 (MDA5), an RLR protein, recognizes viral double-stranded
RNA and 5’-triphosphate single-stranded RNA in the cytoplasm for the expression of type I
interferon (IFN). The expression of MDA5 is also induced by type I IFN. In the present
study, we determined the complete coding sequence of the feline MDA5 gene, and analyzed
its structure. In addition, we examined tissue expression patterns, inducibilities of the
feline MDA5 by polyinosinic-polycytidylic acid and type I IFN, and a functional role of
feline MDA5 on type I IFN expression.
Collapse
Affiliation(s)
- Ryota Koba
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Sakurako Shoji
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Sawami Yoshimura
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Yukinobu Tohya
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
4
|
Parry TL, Willis MS. Cardiac ubiquitin ligases: Their role in cardiac metabolism, autophagy, cardioprotection and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:2259-2269. [PMID: 27421947 PMCID: PMC5159290 DOI: 10.1016/j.bbadis.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Both the ubiquitin-proteasome system (UPS) and the lysosomal autophagy system have emerged as complementary key players responsible for the turnover of cellular proteins. The regulation of protein turnover is critical to cardiomyocytes as post-mitotic cells with very limited regenerative capacity. In this focused review, we describe the emerging interface between the UPS and autophagy, with E3's regulating autophagy at two critical points through multiple mechanisms. Moreover, we discuss recent insights in how both the UPS and autophagy can alter metabolism at various levels, to present new ways to think about therapeutically regulating autophagy in a focused manner to optimize disease-specific cardioprotection, without harming the overall homeostasis of protein quality control. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
TRIM25 Identification in the Chinese Goose: Gene Structure, Tissue Expression Profiles, and Antiviral Immune Responses In Vivo and In Vitro. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1403984. [PMID: 27995135 PMCID: PMC5138445 DOI: 10.1155/2016/1403984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/21/2016] [Accepted: 10/09/2016] [Indexed: 12/24/2022]
Abstract
The retinoic acid-inducible gene I (RIG-I) and the RIG-I-like receptor (RLR) protein play a critical role in the interferon (IFN) response during RNA virus infection. The tripartite motif containing 25 proteins (TRIM25) was reported to modify caspase activation and RIG-I recruitment domains (CARDs) via ubiquitin. These modifications allow TRIM25 to interact with mitochondrial antiviral signaling molecules (MAVs) and form CARD-CARD tetramers. Goose TRIM25 was cloned from gosling lungs, which possess a 1662 bp open reading flame (ORF). This ORF encodes a predicted 554 amino acid protein consisting of a B-box domain, a coiled-coil domain, and a PRY/SPRY domain. The protein sequence has 89.25% sequence identity with Anas platyrhynchos TRIM25, 78.57% with Gallus gallus TRIM25, and 46.92% with Homo sapiens TRIM25. TRIM25 is expressed in all gosling and adult goose tissues examined. QRT-PCR revealed that goose TRIM25 transcription could be induced by goose IFN-α, goose IFN-γ, and goose IFN-λ, as well as a35 s polyinosinic-polycytidylic acid (poly(I:C)), oligodeoxynucleotides 2006 (ODN 2006), and resiquimod (R848) in vitro; however, it is inhibited in H9N2 infected goslings for unknown reasons. These data suggest that goose TRIM25 might play a positive role in the regulation of the antiviral immune response.
Collapse
|
6
|
Fan W, Zhang D, Qian P, Qian S, Wu M, Chen H, Li X. Swine TRIM21 restricts FMDV infection via an intracellular neutralization mechanism. Antiviral Res 2016; 127:32-40. [PMID: 26777733 DOI: 10.1016/j.antiviral.2016.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 12/24/2022]
Abstract
The tripartite motif protein 21 (TRIM21) is a ubiquitously expressed E3 ubiquitin ligase and an intracellular antibody receptor. TRIM21 mediates antibody-dependent intracellular neutralization (ADIN) in cytosol and provides an intracellular immune response to protect host defense against pathogen infection. In this study, swine TRIM21 (sTRIM21) was cloned and its role in ADIN was investigated. The expression of sTRIM21 is induced by type I interferon in PK-15 cells. sTRIM21 restricts FMDV infection in the presence of FMDV specific antibodies. Furthermore, sTRIM21 interacts with Fc fragment of swine immunoglobulin G (sFc) fused VP1 of FMDV and thereby causing its degradation. Both the RING and SPRY domains are essential for sTRIM21 to degrade sFc-fused VP1. These results suggest that the intracellular neutralization features of FMDV contribute to the antiviral activity of sTRIM21. sTRIM21 provide another intracellular mechanism to inhibit FMDV infection in infected cells.
Collapse
Affiliation(s)
- Wenchun Fan
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dong Zhang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ping Qian
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Suhong Qian
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mengge Wu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huanchun Chen
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiangmin Li
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
7
|
Koba R, Oguma K, Sentsui H. Overexpression of feline tripartite motif-containing 25 interferes with the late stage of feline leukemia virus replication. Virus Res 2015; 204:88-94. [DOI: 10.1016/j.virusres.2015.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/27/2015] [Accepted: 04/19/2015] [Indexed: 12/21/2022]
|