1
|
Liu J, Wang L, Zhang X, Wang S, Qin Q. Nervous necrosis virus induced vacuolization is a Rab5- and actin-dependent process. Virulence 2024; 15:2301244. [PMID: 38230744 PMCID: PMC10795790 DOI: 10.1080/21505594.2023.2301244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
Cytoplasmic vacuolization is commonly induced by bacteria and viruses, reflecting the complex interactions between pathogens and the host. However, their characteristics and formation remain unclear. Nervous necrosis virus (NNV) infects more than 100 global fish species, causing enormous economic losses. Vacuolization is a hallmark of NNV infection in host cells, but remains a mystery. In this study, we developed a simple aptamer labelling technique to identify red-spotted grouper NNV (RGNNV) particles in fixed and live cells to explore RGNNV-induced vacuolization. We observed that RGNNV-induced vacuolization was positively associated with the infection time and virus uptake. During infection, most RGNNV particles, as well as viral genes, colocalized with vacuoles, but not giant vacuoles > 3 μm in diameter. Although the capsid protein (CP) is the only structural protein of RGNNV, its overexpression did not induce vacuolization, suggesting that vacuole formation probably requires virus entry and replication. Given that small Rab proteins and the cytoskeleton are key factors in regulating cellular vesicles, we further investigated their roles in RGNNV-induced vacuolization. Using live cell imaging, Rab5, a marker of early endosomes, was continuously located in vacuoles bearing RGNNV during giant vacuole formation. Rab5 is required for vacuole formation and interacts with CP according to siRNA interference and Co-IP analysis. Furthermore, actin formed distinct rings around small vacuoles, while vacuoles were located near microtubules. Actin, but not microtubules, plays an important role in vacuole formation using chemical inhibitors. These results provide valuable insights into the pathogenesis and control of RGNNV infections.
Collapse
Affiliation(s)
- Jiaxin Liu
- Biosafety Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Liqun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xinyue Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Zhang BY, Nie QJ, Xu JM, Cai GH, Ye JD, Jin T, Yang HL, Sun YZ. Preventive and reparative potentials of heat-inactivated and viable commensal Bacillus pumilus SE5 in ameliorating the adverse impacts of high soybean meal in grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109846. [PMID: 39168291 DOI: 10.1016/j.fsi.2024.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/06/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Probiotic Bacillus pumilus SE5, heat-inactivated (HSE5) or active (ASE5), were supplemented to high soybean meal (HSM) (36 %) diet at whole term (0-56 days) and middle term (29-56 days) to investigate the preventing and repairing effects of B. pumilus SE5 in ameliorating the adverse effects of HSM in Epinephelus coioides. The results suggested that the HSM significantly decreased the weight gain rate (WGR), specific growth rate (SGR), and increased the feed conversion rate (FCR) at day 56 (P < 0.05), while HSE5 and ASE5 promoted the growth performance. The HSE5 and ASE5 showed preventive and reparative functions on the antioxidant capacity and serum immunity, with significantly increased the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-PX) activities, and reduced malondialdehyde (MDA) level, and increased acid phosphatase (ACP), alkaline phosphatase (AKP), immunoglobulin M (IgM) and complement 3 (C3). The HSM impaired the intestinal health (destroyed the intestinal structure, significantly increased the contents of serum D-lactic acid and diamine oxidase, and reduced the expressions of claudin-3 and occludin), while HSE5 and ASE5 improved them at whole term and middle term. The HSM impaired the intestinal microbiota and reduced its diversity, and the HSE5 or ASE5 improved the intestinal microbiota (especially at whole term). HSE5 and ASE5 improved the intestinal mRNA expressions of anti-inflammatory genes (il-10 and tgf-β1) and reduced the expressions of pro-inflammatory genes (il-1β, il-8, il-12), and promoted the expressions of humoral immune factor-related genes (cd4, igm, mhcII-α) and antimicrobial peptide genes (β-defensin, epinecidin-1 and hepcidin-1), and decreased the expressions of NF-κB/MAPK signaling pathway-related genes (ikk-α, nf-κb, erk-1), and improved the expressions of MAPK signaling pathway-related gene p38-α (P < 0.05). In conclusion, the heat-inactivated and active B. pumilus SE5 effectively prevented and repaired the suppressive effects of soybean meal in E. coioides, which underscored the potential of B. pumilus SE5 as a nutritional intervention agent in HSM diet in aquaculture.
Collapse
Affiliation(s)
- Bi-Yun Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Qing-Jie Nie
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Jian-Ming Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Guo-He Cai
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China; The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ji-Dan Ye
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ting Jin
- Xiamen Canco Bioengineering Co., LTD, China
| | - Hong-Ling Yang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Yun-Zhang Sun
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China; The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
3
|
Liu QX, Liu X, Yang B, Liu TQ, Yu Q, Ling F, Wang GX. Evaluation of the antiviral activity of oleanolic acid against nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109847. [PMID: 39168292 DOI: 10.1016/j.fsi.2024.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Viral nervous necrosis (VNN) presents a significant challenge to aquaculture due to its potential for causing mass fish mortality and resulting in substantial economic losses. Therefore, the urgent need to find antiviral drugs is paramount. This study found that oleanolic acid (OA) exhibited anti-nervous necrosis virus (NNV) activity both in vivo and in vitro. The RT-qPCR results demonstrated that OA at 10.95 μM had an inhibition rate of 99.97 %. The prevention experiments also showed that OA pretreatment effectively inhibited the replication of NNV. Furthermore, the results of indirect immunofluorescence and flow cytometry suggest that OA's anti-NNV effect may be due to its ability to inhibit NNV-induced apoptosis. The in vivo study revealed a 30 % survival rate in the OA treatment group, compared to only 10 % in the control group. Additionally, RT-qPCR results demonstrated that OA treatment upregulated immune gene expression in grouper and effectively suppressed NNV replication in the host. This study demonstrates the potential of OA as an antiviral therapeutic agent for NNV. It exerts its antiviral effect by upregulating immune gene expression. These findings provide valuable insights into the development of novel antiviral treatment strategies.
Collapse
Affiliation(s)
- Qin-Xue Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiang Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Bin Yang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Tian-Qiang Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Huang S, Yang L, Zheng R, Weng S, He J, Xie J. Nervous necrosis virus capsid protein and Protein A dynamically modulate the fish cGAS-mediated IFN signal pathway to facilitate viral evasion. J Virol 2024; 98:e0068624. [PMID: 38888343 PMCID: PMC11264591 DOI: 10.1128/jvi.00686-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Nervous necrosis virus (NNV), an aquatic RNA virus belonging to Betanodavirus, infects a variety of marine and freshwater fishes, leading to massive mortality of cultured larvae and juveniles and substantial economic losses. The enzyme cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is widely recognized as a central component in the innate immune response to cytosolic DNA derived from different pathogens. However, little is known about the response of cGAS to aquatic RNA viruses. This study found that Epinephelus coioides cGAS (EccGAS) overexpression inhibited NNV replication, whereas EccGAS silencing promoted NNV replication. The anti-NNV activity of EccGAS was involved in interferon (IFN) signaling activation including tumor necrosis factor receptor-associated factor family member-associated NF-kappa-B activator-binding kinase 1 (TBK1) phosphorylation, interferon regulatory factor 3 (IRF3) nuclear translocation, and the subsequent induction of IFNc and ISGs. Interestingly, NNV employed its capsid protein (CP) or Protein A (ProA) to negatively or positively modulate EccGAS-mediated IFN signaling by simultaneously targeting EccGAS. CP interacted with EccGAS via the arm-P, S-P, and SD structural domains and promoted its polyubiquitination with K48 and K63 linkages in an EcUBE3C (the ubiquitin ligase)-dependent manner, ultimately leading to EccGAS degradation. Conversely, ProA bound to EccGAS and inhibited its ubiquitination and degradation. In regulating EccGAS protein content, CP's inhibitory action was more pronounced than ProA's protective effect, allowing successful NNV replication. These novel findings suggest that NNV CP and ProA dynamically modulate the EccGAS-mediated IFN signaling pathway to facilitate the immune escape of NNV. Our findings shed light on a novel mechanism of virus-host interaction and provide a theoretical basis for the prevention and control of NNV.IMPORTANCEAs a well-known DNA sensor, cGAS is a pivotal component in innate anti-viral immunity to anti-DNA viruses. Although there is growing evidence regarding the function of cGAS in the resistance to RNA viruses, the mechanisms by which cGAS participates in RNA virus-induced immune responses in fish and how aquatic viruses evade cGAS-mediated immune surveillance remain elusive. Here, we investigated the detailed mechanism by which EccGAS positively regulates the anti-NNV response. Furthermore, NNV CP and ProA interacted with EccGAS, regulating its protein levels through ubiquitin-proteasome pathways, to dynamically modulate the EccGAS-mediated IFN signaling pathway and facilitate viral evasion. Notably, NNV CP was identified to promote the ubiquitination of EccGAS via ubiquitin ligase EcUBE3C. These findings unveil a novel strategy for aquatic RNA viruses to evade cGAS-mediated innate immunity, enhancing our understanding of virus-host interactions.
Collapse
Affiliation(s)
- Siyou Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linwei Yang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Zheng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Ahmadivand S, Krpetic Z, Martínez MM, Garcia-Ordoñez M, Roher N, Palić D. Self-assembling ferritin nanoplatform for the development of infectious hematopoietic necrosis virus vaccine. Front Immunol 2024; 15:1346512. [PMID: 38352881 PMCID: PMC10863052 DOI: 10.3389/fimmu.2024.1346512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Self-assembling protein nanoparticles are used as a novel vaccine design platform to improve the stability and immunogenicity of safe subunit vaccines, while providing broader protection against viral infections. Infectious Hematopoietic Necrosis virus (IHNV) is the causative agent of the WOAH-listed IHN diseases for which there are currently no therapeutic treatments and no globally available commercial vaccine. In this study, by genetically fusing the virus glycoprotein to the H. pylori ferritin as a scaffold, we constructed a self-assembling IHNV nanovaccine (FerritVac). Despite the introduction of an exogenous fragment, the FerritVac NPs show excellent stability same as Ferritin NPs under different storage, pH, and temperature conditions, mimicking the harsh gastrointestinal condition of the virus main host (trout). MTT viability assays showed no cytotoxicity of FerritVac or Ferritin NPs in zebrafish cell culture (ZFL cells) incubated with different doses of up to 100 µg/mL for 14 hours. FerritVac NPs also upregulated expression of innate antiviral immunity, IHNV, and other fish rhabdovirus infection gene markers (mx, vig1, ifit5, and isg-15) in the macrophage cells of the host. In this study, we demonstrate the development of a soluble recombinant glycoprotein of IHNV in the E. coli system using the ferritin self-assembling nanoplatform, as a biocompatible, stable, and effective foundation to rescue and produce soluble protein and enable oral administration and antiviral induction for development of a complete IHNV vaccine. This self-assembling protein nanocages as novel vaccine approach offers significant commercial potential for non-mammalian and enveloped viruses.
Collapse
Affiliation(s)
- Sohrab Ahmadivand
- Faculty of Veterinary Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Zeljka Krpetic
- Biomedical Research Centre, School of Science Engineering and Environment, University of Salford, Salford, United Kingdom
| | - Merce Márquez Martínez
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Marlid Garcia-Ordoñez
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Dušan Palić
- Faculty of Veterinary Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
6
|
Huang S, Huang Y, Su T, Huang R, Su L, Wu Y, Weng S, He J, Xie J. Orange-spotted grouper nervous necrosis virus-encoded protein A induces interferon expression via RIG-I/MDA5-MAVS-TBK1-IRF3 signaling in fish cells. Microbiol Spectr 2024; 12:e0453222. [PMID: 38095472 PMCID: PMC10783131 DOI: 10.1128/spectrum.04532-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE As a major pathogen, nervous necrosis virus (NNV) infects more than 120 fish species worldwide and is virulent to larvae and juvenile fish, hampering the development of the fish fry industry. Understanding virus-host interaction and underlying mechanisms is an important but largely unknown issue in fish virus studies. Here, using channel catfish ovary and fathead minnow cells as models for the study of innate immunity signaling, we found that NNV-encoded ProA activated interferon signaling via the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) pathway which was still suppressed by the infection of wild-type NNV. This finding has important implications for the comprehension of NNV protein function and the immune response from different cells. First, RIG-I is the key node for anti-NNV innate immunity. Second, the response intensity of RLR signaling determines the degree of NNV proliferation. This study expands our knowledge regarding the overview of signal pathways affected by NNV-encoded protein and also highlights potential directions for the control of aquatic viruses.
Collapse
Affiliation(s)
- Siyou Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Yi Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Taowen Su
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Runqing Huang
- School of Life Science, Huizhou University, Huizhou, China
| | - Lianpan Su
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Yujia Wu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Yu D, Yang G, Xia H, Gan Z, Wang Z, Xia L, Kwok KW, Cai J, Lu Y. Dextran Sulfate Sodium Salt (DSS) induced enteritis in Orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108742. [PMID: 37100309 DOI: 10.1016/j.fsi.2023.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/02/2023] [Accepted: 04/10/2023] [Indexed: 05/22/2023]
Abstract
The enteritis is a common disease in fish farming, but the pathogenesis is still not fully understood. The aim of the present study was to investigate the inducement of Dextran Sulfate Sodium Salt (DSS) intestinal inflammation on Orange-spotted grouper (Epinephelus coioides). The fish were challenged with 200 μl 3% DSS via oral irrigation and feeding, an appropriate dose based on the disease activity index of inflammation. The results indicated that the inflammatory responses induced by DSS were closely associated with the expression of pro-inflammatory cytokines including interleukin 1β (IL-1β), IL-8, IL16, IL-10 and tumor necrosis factor α (TNF-α), as well as NF-κB and myeloperoxidase (MPO) activity. At day5 after DSS treatment, the highest levels of all parameters were observed. Also, the severe intestinal lesions (intestinal villus fusion and shedding), strong inflammatory cell infiltration and microvillus effacement were seen through histological examination and SEM (scanning electronic microscopy) analysis. During the subsequent 18 days of the experimental period, the injured intestinal villi were gradually recovery. These data is beneficial to further investigate the pathogenesis of enteritis in farmed fish, which is helpful for the control of enteritis in aquaculture.
Collapse
Affiliation(s)
- Dapeng Yu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Guanjian Yang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Hongli Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zhiwen Wang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Kevin Wh Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jia Cai
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
8
|
Su H, van Eerde A, Rimstad E, Bock R, Branza-Nichita N, Yakovlev IA, Clarke JL. Plant-made vaccines against viral diseases in humans and farm animals. FRONTIERS IN PLANT SCIENCE 2023; 14:1170815. [PMID: 37056490 PMCID: PMC10086147 DOI: 10.3389/fpls.2023.1170815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Plants provide not only food and feed, but also herbal medicines and various raw materials for industry. Moreover, plants can be green factories producing high value bioproducts such as biopharmaceuticals and vaccines. Advantages of plant-based production platforms include easy scale-up, cost effectiveness, and high safety as plants are not hosts for human and animal pathogens. Plant cells perform many post-translational modifications that are present in humans and animals and can be essential for biological activity of produced recombinant proteins. Stimulated by progress in plant transformation technologies, substantial efforts have been made in both the public and the private sectors to develop plant-based vaccine production platforms. Recent promising examples include plant-made vaccines against COVID-19 and Ebola. The COVIFENZ® COVID-19 vaccine produced in Nicotiana benthamiana has been approved in Canada, and several plant-made influenza vaccines have undergone clinical trials. In this review, we discuss the status of vaccine production in plants and the state of the art in downstream processing according to good manufacturing practice (GMP). We discuss different production approaches, including stable transgenic plants and transient expression technologies, and review selected applications in the area of human and veterinary vaccines. We also highlight specific challenges associated with viral vaccine production for different target organisms, including lower vertebrates (e.g., farmed fish), and discuss future perspectives for the field.
Collapse
Affiliation(s)
- Hang Su
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - André van Eerde
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ralph Bock
- Department III, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Norica Branza-Nichita
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Igor A. Yakovlev
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jihong Liu Clarke
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
9
|
Valsamidis MA, White DM, Kokkoris GD, Bakopoulos V. Immune response of European sea bass (Dicentrarchus labrax L.) against combination of antigens from three different pathogens. Vet Immunol Immunopathol 2023; 256:110535. [PMID: 36621058 DOI: 10.1016/j.vetimm.2022.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Three of the most important diseases of Mediterranean intensive European sea bass farming are, viral nervous necrosis (VNN) caused by the red grouper nervous necrosis virus (RGNNV) genotype of b-nodavirus, photobacteriosis caused by Photobacterium damselae subsp. piscicida (Phdp) and vibriosis caused mainly by the O1 serotype of Vibrio anguillarum (VaO1). Prevention against these diseases is performed through vaccination with a monovalent vaccine against the viral disease and, usually, with bivalent vaccines against the bacterial diseases. However, it is very difficult to program two vaccinations during the same season for the same fish stock and producers are forced to either vaccinate for the viral or the bacterial diseases or to perform double vaccination with both vaccines, without any prior knowledge on any interactions that may occur due to the plethora of antigens (Ag) injected. Ideally, therefore, a trivalent vaccine should be developed against all three diseases. The objective of this work was to analyse the immune response of sea bass against combinations of Ags from all three pathogens, namely viral particles, Phdp whole cells (WC), lipopolysaccharide (LPS), capsular polysaccharide (CPS) and extracellular products (ECPs) and VaO1 WC and ECPs in respect to the identification of any phenomena of immunodominance/immunosuppression between Ags with a view to select candidate Ags for inclusion in a trivalent vaccine formulation. Eight triplicate groups of fish were immunized with different combinations of the aforementioned Ags and another triplicate group served as negative control. Blood serum was isolated at various time-points post-immunization for the measurement of specific antibodies against each Ag and, in addition, leucocytes were isolated at day 29 post-immunization for analysis of various cellular activities. Results indicated that best levels of specific a-NNV virus antibodies (Abs) were produced when VaO1 ECPs were not included in the Ag combinations, in contrast to the leucocytes proliferation assay where best stimulation against NNV Ags was measured when VaO1 ECPs were present in Ag combinations. VaO1 ECPs apparently is a strong immunogen for both humoral and cellular responses but suppresses immunological reactions against the other Ags.VaO1 WC, Phdp LPS and ECPs raised good humoral immune responses in the groups with best responses against VNN Ags, but only VaO1 WC and Phdp ECPs provided good stimulation of leucocytes, with Phdp WC and CPS effecting either similar stimulation with untrained leucocytes (control groups) or down-stimulation. Results are discussed with a view to select Ags from all three pathogens for inclusion in trivalent vaccine against all three pathogens.
Collapse
Affiliation(s)
- Michail-Aggelos Valsamidis
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece.
| | - Daniella-Mari White
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| | - Giorgos D Kokkoris
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| | - Vasileios Bakopoulos
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| |
Collapse
|
10
|
Kembou-Ringert JE, Steinhagen D, Readman J, Daly JM, Adamek M. Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances. Vaccines (Basel) 2023; 11:vaccines11020251. [PMID: 36851129 PMCID: PMC9961428 DOI: 10.3390/vaccines11020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Tilapia tilapinevirus (or tilapia lake virus, TiLV) is a recently emerging virus associated with a novel disease affecting and decimating tilapia populations around the world. Since its initial identification, TiLV has been reported in 17 countries, often causing mortalities as high as 90% in the affected populations. To date, no therapeutics or commercial vaccines exist for TiLV disease control. Tilapia exposed to TiLV can develop protective immunity, suggesting that vaccination is achievable. Given the important role of vaccination in fish farming, several vaccine strategies are currently being explored and put forward against TiLV but, a comprehensive overview on the efficacy of these platforms is lacking. We here present these approaches in relation with previously developed fish vaccines and discuss their efficacy, vaccine administration routes, and the various factors that can impact vaccine efficacy. The overall recent advances in TiLV vaccine development show different but promising levels of protection. The field is however hampered by the lack of knowledge of the biology of TiLV, notably the function of its genes. Further research and the incorporation of several approaches including prime-boost vaccine regimens, codon optimization, or reverse vaccinology would be beneficial to increase the effectiveness of vaccines targeting TiLV and are further discussed in this review.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Correspondence: (J.E.K.-R.); (M.A.)
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - John Readman
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Correspondence: (J.E.K.-R.); (M.A.)
| |
Collapse
|
11
|
VNN disease and status of breeding for resistance to NNV in aquaculture. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Zhu S, Miao B, Zhang YZ, Wang DS, Wang GX. Amantadine, a promising therapeutic agent against viral encephalopathy and retinopathy. JOURNAL OF FISH DISEASES 2022; 45:451-459. [PMID: 34962648 DOI: 10.1111/jfd.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Outbreaks of viral encephalopathy and retinopathy (VER) in marine and freshwater species severely devastate the aquaculture worldwide. The causative agent of VER is nervous necrosis virus (NNV), which mainly infects the early developmental stages of fish, limiting the effectiveness of vaccines. To counter this case, the anti-NNV potentials of nine drugs with broad-spectrum antiviral activity were explored using ribavirin as a positive drug. Toxicity of the selected drugs to SSN-1 cells and grouper was firstly evaluated to determine the safety concentrations. For screening in vitro, amantadine and oseltamivir phosphate can relieve the cytopathic effects and inhibit NNV replication with the 90% inhibitory concentrations (IC90 ) of 38.74 and 106.75 mg/L, respectively. Amantadine has a stronger anti-NNV activity than ribavirin at the with- and post-NNV infection stages, indicating that it is a potential therapeutic agent against VER by acting directly on NNV. Similarly, amantadine also has a strong anti-NNV activity in vivo with the IC90 of 27.91 mg/L at the 7 days post-infection, while that was 73.25 mg/L for ribavirin. Following exposure to amantadine (40 mg/L) and ribavirin (100 mg/L) for 7 days, the survival rates of NNV-infected grouper were increased to 44% and 39%, respectively. The maximum amantadine content (11.88 mg/Kg) in grouper brain was reached following exposure for 24 hr, and amantadine can be quickly excreted from fish, reducing the risk of drug residue. Results so far indicated that amantadine is a promising therapeutic agent against NNV in aquaculture, providing an effective strategy for VER control at the early developmental stages of fish.
Collapse
Affiliation(s)
- Song Zhu
- College of Fisheries, Southwest University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Bo Miao
- College of Fisheries, Southwest University, Chongqing, China
| | - Yu-Zhou Zhang
- College of Fisheries, Southwest University, Chongqing, China
| | - De-Shou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Nervous Necrosis Virus-like Particle (VLP) Vaccine Stimulates European Sea Bass Innate and Adaptive Immune Responses and Induces Long-Term Protection against Disease. Pathogens 2021; 10:pathogens10111477. [PMID: 34832632 PMCID: PMC8623669 DOI: 10.3390/pathogens10111477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
The rapidly increasing Mediterranean aquaculture production of European sea bass is compromised by outbreaks of viral nervous necrosis, which can be recurrent and detrimental. In this study, we evaluated the duration of protection and immune response in sea bass given a single dose of a virus-like particle (VLP)-based vaccine. Examinations included experimental challenge with nervous necrosis virus (NNV), serological assays for NNV-specific antibody reactivity, and immune gene expression analysis. VLP-vaccinated fish showed high and superior survival in challenge both 3 and 7.5 months (1800 and 4500 dd) post-vaccination (RPS 87 and 88, OR (surviving) = 16.5 and 31.5, respectively, p < 0.01). Although not providing sterile immunity, VLP vaccination seemed to control the viral infection, as indicated by low prevalence of virus in the VLP-vaccinated survivors. High titers of neutralizing and specific antibodies were produced in VLP-vaccinated fish and persisted for at least ~9 months post-vaccination as well as after challenge. However, failure of immune sera to protect recipient fish in a passive immunization trial suggested that other immune mechanisms were important for protection. Accordingly, gene expression analysis revealed that VLP-vaccination induced a mechanistically broad immune response including upregulation of both innate and adaptive humoral and cellular components (mx, isg12, mhc I, mhc II, igm, and igt). No clinical side effects of the VLP vaccination at either tissue or performance levels were observed. The results altogether suggested the VLP-based vaccine to be suitable for clinical testing under farming conditions.
Collapse
|
14
|
Su H, Yakovlev IA, van Eerde A, Su J, Clarke JL. Plant-Produced Vaccines: Future Applications in Aquaculture. FRONTIERS IN PLANT SCIENCE 2021; 12:718775. [PMID: 34456958 PMCID: PMC8397579 DOI: 10.3389/fpls.2021.718775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 05/19/2023]
Abstract
Aquaculture has undergone rapid development in the past decades. It provides a large part of high-quality protein food for humans, and thus, a sustainable aquaculture industry is of great importance for the worldwide food supply and economy. Along with the quick expansion of aquaculture, the high fish densities employed in fish farming increase the risks of outbreaks of a variety of aquatic diseases. Such diseases not only cause huge economic losses, but also lead to ecological hazards in terms of pathogen spread to marine ecosystems causing infection of wild fish and polluting the environment. Thus, fish health is essential for the aquaculture industry to be environmentally sustainable and a prerequisite for intensive aquaculture production globally. The wide use of antibiotics and drug residues has caused intensive pollution along with risks for food safety and increasing antimicrobial resistance. Vaccination is the most effective and environmentally friendly approach to battle infectious diseases in aquaculture with minimal ecological impact and is applicable to most species of farmed fish. However, there are only 34 fish vaccines commercially available globally to date, showing the urgent need for further development of fish vaccines to manage fish health and ensure food safety. Plant genetic engineering has been utilized to produce genetically modified crops with desirable characteristics and has also been used for vaccine production, with several advantages including cost-effectiveness, safety when compared with live virus vaccines, and plants being capable of carrying out posttranslational modifications that are similar to naturally occurring systems. So far, plant-derived vaccines, antibodies, and therapeutic proteins have been produced for human and animal health. However, the development of plant-made vaccines for animals, especially fish, is still lagging behind the development of human vaccines. The present review summarizes the development of fish vaccines currently utilized and the suitability of the plant-production platform for fish vaccine and then addresses considerations regarding fish vaccine production in plants. Developing fish vaccines by way of plant biotechnology are significant for the aquaculture industry, fish health management, food safety, and human health.
Collapse
Affiliation(s)
- Hang Su
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Igor A. Yakovlev
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - André van Eerde
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jihong Liu Clarke
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
15
|
Sites responsible for infectivity and antigenicity on nervous necrosis virus (NNV) appear to be distinct. Sci Rep 2021; 11:3608. [PMID: 33574489 PMCID: PMC7878751 DOI: 10.1038/s41598-021-83078-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/28/2021] [Indexed: 11/18/2022] Open
Abstract
Nervous necrosis virus (NNV) is a pathogenic fish-virus belonging to the genus Betanodavirus (Nodaviridae). Surface protrusions on NNV particles play a crucial role in both antigenicity and infectivity. We exposed purified NNV particles to different physicochemical conditions to investigate the effects on antigenicity and infectivity, in order to reveal information regarding the conformational stability and spatial relationships of NNV neutralizing-antibody binding sites and cell receptor binding sites. Treatment with PBS at 37 °C, drastically reduced NNV antigenicity by 66–79% on day one, whereas its infectivity declined gradually from 107.6 to 105.8 TCID50/ml over 10 days. When NNV was treated with carbonate/bicarbonate buffers at different pHs, both antigenicity and infectivity of NNV declined due to higher pH. However, the rate of decline with respect to antigenicity was more moderate than for infectivity. NNV antigenicity declined 75–84% after treatment with 2.0 M urea, however, there was no reduction observed in infectivity. The antibodies used in antigenicity experiments have high NNV-neutralizing titers and recognize conformational epitopes on surface protrusions. The maintenance of NNV infectivity means that receptor binding sites are functionally preserved. Therefore, it seems highly likely that NNV neutralizing-antibody binding sites and receptor binding sites are independently located on surface protrusions.
Collapse
|
16
|
Miccoli A, Manni M, Picchietti S, Scapigliati G. State-of-the-Art Vaccine Research for Aquaculture Use: The Case of Three Economically Relevant Fish Species. Vaccines (Basel) 2021; 9:140. [PMID: 33578766 PMCID: PMC7916455 DOI: 10.3390/vaccines9020140] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022] Open
Abstract
In the last three decades, the aquaculture sector has experienced a 527% growth, producing 82 million tons for a first sale value estimated at 250 billion USD. Infectious diseases caused by bacteria, viruses, or parasites are the major causes of mortality and economic losses in commercial aquaculture. Some pathologies, especially those of bacterial origin, can be treated with commercially available drugs, while others are poorly managed. In fact, despite having been recognized as a useful preventive measure, no effective vaccination against many economically relevant diseases exist yet, such as for viral and parasitic infections. The objective of the present review is to provide the reader with an updated perspective on the most significant and innovative vaccine research on three key aquaculture commodities. European sea bass (Dicentrarchus labrax), Nile tilapia (Oreochromis niloticus), and Atlantic salmon (Salmo salar) were chosen because of their economic relevance, geographical distinctiveness, and representativeness of different culture systems. Scientific papers about vaccines against bacterial, viral, and parasitic diseases will be objectively presented; their results critically discussed and compared; and suggestions for future directions given.
Collapse
|
17
|
Nakahira Y, Mizuno K, Yamashita H, Tsuchikura M, Takeuchi K, Shiina T, Kawakami H. Mass Production of Virus-Like Particles Using Chloroplast Genetic Engineering for Highly Immunogenic Oral Vaccine Against Fish Disease. FRONTIERS IN PLANT SCIENCE 2021; 12:717952. [PMID: 34497627 PMCID: PMC8419230 DOI: 10.3389/fpls.2021.717952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 05/13/2023]
Abstract
Nervous necrosis virus (NNV) is the causative agent of viral nervous necrosis (VNN), which is one of the most serious fish diseases leading to mass mortality in a wide range of fish species worldwide. Although a few injectable inactivated vaccines are commercially available, there is a need for more labor-saving, cost-effective, and fish-friendly immunization methods. The use of transgenic plants expressing pathogen-derived recombinant antigens as edible vaccines is an ideal way to meet these requirements. In this study, chloroplast genetic engineering was successfully utilized to overexpress the red-spotted grouper NNV capsid protein (RGNNV-CP). The RGNNV-CP accumulated at high levels in all young, mature, and old senescent leaves of transplastomic tobacco plants (averaging approximately 3 mg/g leaf fresh weight). The RGNNV-CP efficiently self-assembled into virus-like particles (RGNNV-VLPs) in the chloroplast stroma of the transgenic lines, which could be readily observed by in situ transmission electron microscopy. Furthermore, intraperitoneal injection and oral administration of the crudely purified protein extract containing chloroplast-derived RGNNV-VLPs provided the sevenband grouper fish with sufficient protection against RGNNV challenge, and its immunogenicity was comparable to that of a commercial injectable vaccine. These findings indicate that chloroplast-derived VLP vaccines may play a promising role in the prevention of various diseases, not only in fish but also in other animals, including humans.
Collapse
Affiliation(s)
- Yoichi Nakahira
- College of Agriculture, Ibaraki University, Ami, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- *Correspondence: Yoichi Nakahira,
| | | | | | | | - Kaoru Takeuchi
- Laboratory of Environmental Microbiology, Division of Basic Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| | | |
Collapse
|
18
|
Kim SW, Kim SJ, Oh MJ. Efficacy of live NNV immersion vaccine immunized at low temperature in sevenband grouper, Epinephelus septemfasciatus. Virus Res 2020; 292:198227. [PMID: 33186642 DOI: 10.1016/j.virusres.2020.198227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022]
Abstract
The objective of this study was to investigate safety and efficacy using a low-temperature immunization protocol with NNV in sevenband grouper, Epinephelus septemfasciatus. Further, NNV specific antibody post immunization and intramuscularly challenge was also evaluated. Immunization at low temperature resulted in a low titer virus infection in brain tissues without any clinical symptoms of infection such as sluggish behavior and/or spinning, rotating swimming being observed, and no mortality was observed. Post challenge, NNV titer NNV giving an RPS of 100 %, increased in brain tissues of naïve (non-immunized) sevenband grouper NNV giving an RPS of 100 %, with a cumulative mortality of 100 % at 25 days post-infection. No mortality or disease symptoms NNV giving an RPS of 100 %, as NNV giving and of 100 %, observed in the groups immunized at low temperature with live NNV giving an RPS of 100 %. NNV giving an RPS of 100 %. NNV specific antibody was not detected in live NNV vaccinated sevenband grouper. This is the first study that confirms that field-scale NNV immersion vaccine can protect sevenband grouper against lethal infection with NNV at natural seawater temperature under the gradually increased from 14.3-24.8 °C.
Collapse
Affiliation(s)
- Si-Woo Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea; Gyengsangbuk-do Fishery Technology Center, Pohang, Republic of Korea
| | - Soo-Jin Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea; Aquatic Disease Control Division, National Institute of Fisheries Science (NIFS), Busan, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
19
|
Jeong KH, Kim HJ, Kim HJ. Current status and future directions of fish vaccines employing virus-like particles. FISH & SHELLFISH IMMUNOLOGY 2020; 100:49-57. [PMID: 32130976 DOI: 10.1016/j.fsi.2020.02.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 05/15/2023]
Abstract
In most breeding schemes, fish are cultured in enclosed spaces, which greatly increases the risk of outbreaks where the onset of infectious diseases can cause massive mortality and enormous economic losses. Vaccination is the most effective and long-term measure for improving the basic make-up of a fish farm. As the relationship between antibody and antigen is similar to that between screw and nut, similarity in the shape or nature of the vaccine antigen to the original pathogen is important for achieving a satisfactory/good/excellent antibody response with a vaccine. Virus-like particles (VLPs) best fulfil this requirement as their tertiary structure mimics that of the native virus. For this reason, VLPs have been attracting attention as next-generation vaccines for humans and animals, and the effects of various types of VLP vaccines on humans and livestock have been examined. Recent studies of VLP-based fish vaccines indicate that these vaccines are promising, and raise hopes of extending their use in the near future. In this review, the structural properties and immunogenicity of VLP-based vaccines against fish viruses such as infectious pancreatic necrosis virus (IPNV), salmonid alphavirus (SAV), nervous necrosis virus (NNV) and iridovirus are introduced/summarized. The NNV VLP vaccine is the most-studied VLP-based vaccine against fish viruses. Therefore, the current status of NNV VLP research is highlighted in this review, which deals with the advantages of using VLPs as vaccines, and the expression systems for producing them. Moreover, the need for lyophilized VLPs and oral VLP delivery is discussed. Finally, future directions for the development of VLP vaccines in the fish vaccine field are considered.
Collapse
Affiliation(s)
- Ki-Ho Jeong
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea.
| |
Collapse
|
20
|
León R, Ruiz M, Valero Y, Cárdenas C, Guzman F, Vila M, Cuesta A. Exploring small cationic peptides of different origin as potential antimicrobial agents in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2020; 98:720-727. [PMID: 31730928 DOI: 10.1016/j.fsi.2019.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Antimicrobial peptides (AMPs) form part of the innate immune response, which is of vital importance in fish, especially in eggs and early larval stages. Compared to antibiotics, AMPs show action against a wider spectrum of pathogens, including viruses, fungi and parasites, are more friendly to the environment, and do not seem to generate resistance in bacteria. Thus, we have tested in vitro the potential use of several synthetic peptides as antimicrobial agents in aquaculture: frog Caerin1.1, European sea bass Dicentracin (Dic) and NK-lysin peptides (NKLPs) and sole NKLP27. Our results demonstrate that the highest bactericidal activity against both human and fish pathogens was obtained with Caerin1.1 followed by sea bass Dic and NKLPs, having the sea bass NKLP20.2 none to negligible activity. Interestingly, Aeromonas salmonicida was refractory to all the fish peptides tested. Regarding the antiviral activity, synthetic peptides were able to inhibit the viral infection of nodavirus (NNV), viral septicaemia haemorrhagic virus (VHSV), infectious pancreatic necrosis virus (IPNV) and spring viremia carp virus (SVCV), which are some of the most devastating virus for aquaculture. However, their effectiveness was highly dependent on the type of virus. Strikingly, IPNV resulted the most resistant virus since Caeerin1.1 and sea bass NKLP20.2 were unable to reduce its titre and the other peptides tested only reduced it to values in the 43-78% range. These data demonstrate that synthetic peptides have great antibacterial and antiviral in vitro activity against important fish pathogens and point to their use as potential therapeutic agents in aquaculture.
Collapse
Affiliation(s)
- Rosa León
- Laboratorio de Bioquímica, Facultad de Ciencias Experimentales, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Huelva, 2110, Huelva, Spain
| | - María Ruiz
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Yulema Valero
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Constanza Cárdenas
- Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Fanny Guzman
- Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marta Vila
- Laboratorio de Bioquímica, Facultad de Ciencias Experimentales, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Huelva, 2110, Huelva, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
21
|
Betanodavirus and VER Disease: A 30-year Research Review. Pathogens 2020; 9:pathogens9020106. [PMID: 32050492 PMCID: PMC7168202 DOI: 10.3390/pathogens9020106] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The outbreaks of viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), represent one of the main infectious threats for marine aquaculture worldwide. Since the first description of the disease at the end of the 1980s, a considerable amount of research has gone into understanding the mechanisms involved in fish infection, developing reliable diagnostic methods, and control measures, and several comprehensive reviews have been published to date. This review focuses on host–virus interaction and epidemiological aspects, comprising viral distribution and transmission as well as the continuously increasing host range (177 susceptible marine species and epizootic outbreaks reported in 62 of them), with special emphasis on genotypes and the effect of global warming on NNV infection, but also including the latest findings in the NNV life cycle and virulence as well as diagnostic methods and VER disease control.
Collapse
|
22
|
Ma J, Bruce TJ, Jones EM, Cain KD. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 2019; 7:E569. [PMID: 31744151 PMCID: PMC6920890 DOI: 10.3390/microorganisms7110569] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023] Open
Abstract
Fish immunization has been carried out for over 50 years and is generally accepted as an effective method for preventing a wide range of bacterial and viral diseases. Vaccination efforts contribute to environmental, social, and economic sustainability in global aquaculture. Most licensed fish vaccines have traditionally been inactivated microorganisms that were formulated with adjuvants and delivered through immersion or injection routes. Live vaccines are more efficacious, as they mimic natural pathogen infection and generate a strong antibody response, thus having a greater potential to be administered via oral or immersion routes. Modern vaccine technology has targeted specific pathogen components, and vaccines developed using such approaches may include subunit, or recombinant, DNA/RNA particle vaccines. These advanced technologies have been developed globally and appear to induce greater levels of immunity than traditional fish vaccines. Advanced technologies have shown great promise for the future of aquaculture vaccines and will provide health benefits and enhanced economic potential for producers. This review describes the use of conventional aquaculture vaccines and provides an overview of current molecular approaches and strategies that are promising for new aquaculture vaccine development.
Collapse
Affiliation(s)
- Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| | - Timothy J. Bruce
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| | - Evan M. Jones
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| | - Kenneth D. Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
23
|
Wang L, Tian Y, Cheng M, Li Z, Li S, Wu Y, Zhang J, Ma W, Li W, Pang Z, Zhai J. Transcriptome comparative analysis of immune tissues from asymptomatic and diseased Epinephelus moara naturally infected with nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:99-107. [PMID: 31323328 DOI: 10.1016/j.fsi.2019.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Epinephelus moara is an economically important fish in Southeast Asian countries but is suffering from nervous necrosis virus (NNV) infection. A deeper understanding of the host-NNV interaction mechanisms makes sense for disease control, however, at present, the pathogenesis of natural NNV infection and the resistance mechanism in host remains poorly understood. In this study, asymptomatic and diseased E. moara with clinical symptoms of viral nervous necrosis (VNN) from a grouper farm were both detected with a positive RT-PCR signal of NNV, then transcriptome sequencing of their immune tissues (liver, spleen and kidney) were performed for comparation analysis. The de novo assemblies yielded 53,789 unigenes which had a length varied from 201 to 19,675 bp and a N50 length of 2115 bp, and 29,451 unigenes were functionally annotated, with 83, 250 and 5632 unigenes being differentially expressed in liver, spleen and kidney respectively. KEGG pathway enrichment analysis of the DEGs showed many DEGs were enriched in immune related pathways. Although the expression of class I major histocompatibility complex (MHC) was significantly higher in three immune tissues of the diseased grouper, many immune related genes, including humoral immune molecules (such as antibodies), the cellular mediated cytotoxic molecules (such as perforin) and some adhesion related genes were down regulated in the diseased grouper. Our results provided many unigenes that might play important roles in NNV resistance for further research. Furthermore, a total of 8666 unigenes containing 11,623 simple sequence repeats (SSRs) were identified, which provided useful information for screening molecular markers associated with NNV resistance in E. moara.
Collapse
Affiliation(s)
- Linna Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Yongsheng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.
| | - Meiling Cheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, l16023, China
| | - Zhentong Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shangyong Li
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yuping Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, l16023, China
| | - Jingjing Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhui Ma
- Mingbo Aquatic Co. Ltd, Laizhou, 261400, China
| | - Wensheng Li
- Mingbo Aquatic Co. Ltd, Laizhou, 261400, China
| | | | | |
Collapse
|
24
|
Marsian J, Hurdiss DL, Ranson NA, Ritala A, Paley R, Cano I, Lomonossoff GP. Plant-Made Nervous Necrosis Virus-Like Particles Protect Fish Against Disease. FRONTIERS IN PLANT SCIENCE 2019; 10:880. [PMID: 31354759 PMCID: PMC6629939 DOI: 10.3389/fpls.2019.00880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/20/2019] [Indexed: 05/27/2023]
Abstract
Virus-like particles (VLPs) of the fish virus, Atlantic Cod Nervous necrosis virus (ACNNV), were successfully produced by transient expression of the coat protein in Nicotiana benthamiana plants. VLPs could also be produced in transgenic tobacco BY-2 cells. The protein extracted from plants self-assembled into T = 3 particles, that appeared to be morphologically similar to previously analyzed NNV VLPs when analyzed by high resolution cryo-electron microscopy. Administration of the plant-produced VLPs to sea bass (Dicentrarchus labrax) showed that they could protect the fish against subsequent virus challenge, indicating that plant-produced vaccines may have a substantial future role in aquaculture.
Collapse
Affiliation(s)
- Johanna Marsian
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Daniel L. Hurdiss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Anneli Ritala
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Richard Paley
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, United Kingdom
| | - Irene Cano
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, United Kingdom
| | | |
Collapse
|
25
|
Altered conformational structures of nervous necrosis virus surface protrusions and free coat proteins after incubation at moderate-low temperatures. Sci Rep 2019; 9:8647. [PMID: 31201359 PMCID: PMC6573060 DOI: 10.1038/s41598-019-45094-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
Nervous necrosis virus (NNV) is a pathogenic fish virus belonging to family Nodaviridae. The objective of this study was to analyze stabilities of NNV surface protrusion and free coat protein (CP) conformational structures by analyzing changes of NNV infectivity and antigenicity after incubation at moderate-low temperatures. When cultured NNV suspension was incubated at 45 °C, its infectivity declined gradually but its antigenicity maintained. In contrast, both infectivity and antigenicity of purified NNV declined after incubation at 45 °C. After heat-treatment, surface protrusions of NNV particles disappeared completely, although viral particle structures maintained. Therefore, the reduction in NNV infectivity appeared to specifically occur as a result of heat-denaturation of virus surface protrusions. The loss of NNV infectivity in the presence of fetal bovine serum (FBS) was delayed compared to virus heated in the absence of FBS, demonstrating that FBS could function as a stabilizer for conformational structures of NNV surface protrusions. Moreover, the stabilizing function of FBS changed depending on salt concentration. Continued maintenance of antigenicity for heated cultured NNV suspension containing free-CPs may suggest that conformational structures corresponding to protrusion-domain of free-CP are more heat-stable than those of surface protrusions on NNV particles.
Collapse
|
26
|
Gonzalez-Silvera D, Guardiola FA, Espinosa C, Chaves-Pozo E, Esteban MÁ, Cuesta A. Recombinant nodavirus vaccine produced in bacteria and administered without purification elicits humoral immunity and protects European sea bass against infection. FISH & SHELLFISH IMMUNOLOGY 2019; 88:458-463. [PMID: 30877059 DOI: 10.1016/j.fsi.2019.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 05/22/2023]
Abstract
Viral necrosis virus (NNV) or nodavirus causes fish viral encephalopathy and retinopathy worldwide. In some cases, mortalities in aquaculture industry can reach up to 100%, some species being especially sensitive as is the case of European sea bass (Dicentrarchus labrax), one of the main cultured species in the Mediterranean, with the consequent economical loses. Development of new vaccines against NNV is in the spotlight though few researches have focused in European sea bass. In this study we have generated a recombinant NNV (rNNV) vaccine produced in Escherichia coli expressing the capsid protein and administered it to European sea bass juveniles by two different routes (intraperitoneal and oral). The last being considered non-stressful and desired for fish farming of small fish, which in fact are the most affected by NNV. Oral vaccine was composed of feed pellets containing the recombinant whole bacteria, and injected vaccine was composed of recombinant bacteria previously lysed. Our results revealed production of specific anti-NNV IgM following the two vaccination procedures, levels that were further increased in orally-vaccinated group after challenge with NNV. Genes related to interferon (IFN), T-cell and immunoglobulin markers were scarcely regulated in head-kidney (HK), gut or brain. Vaccination by either route elicited a relative survival response of 100% after NNV challenge. To our knowledge, this is the first report of a recombinant vaccine followed by no purification steps which resulted in a complete protection in European sea bass when challenged with NNV.
Collapse
Affiliation(s)
- Daniel Gonzalez-Silvera
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Cristóbal Espinosa
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
27
|
Zhou Q, Zhang J, Huang R, Huang S, Wu Y, Huang L, He J, Xie J. An affinity peptide exerts antiviral activity by strongly binding nervous necrosis virus to block viral entry. FISH & SHELLFISH IMMUNOLOGY 2019; 86:465-473. [PMID: 30521966 DOI: 10.1016/j.fsi.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/25/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Nervous necrosis virus (NNV) causes viral nervous necrosis (VNN), a disease that leads to almost 100% mortality among larvae and juvenile fish, severely affecting the aquaculture industry. VNN vaccines based on inactivated viruses or virus-like particles (VLPs) are unsuitable for fish fry with immature adaptive immune systems. Here, we applied an anti-NNV strategy based on affinity peptides (AFPs). Three phage display peptide libraries were screened against RBS, the VLP of orange-spotted grouper nervous necrosis virus (OGNNV). From the positive clones, a dodecapeptide with the highest binding capacity (BC) to RBS was selected. This AFP agglutinated or disrupted virion particles, inhibiting RBS entry into sea bass (SB) cells. To enhance BC and solubility, we amended the AFP sequence as "LHWDFQSWVPLL" and named as 12C. One to three copies of 12C in tandem were prokaryotically expressed with a maltose binding protein (MBP) linked by a flexible peptide. Of the recombinant proteins expressed, MBP-triple-12C (MBP-T12C) exhibited the highest BC, efficiently blocked RBS entry, and strongly inhibited OGNNV infection at viral entry. Moreover, MBP-T12C bound the VLPs of all NNV serotypes, displaying broad-spectrum anti-NNV ability, and recognized only OGNNV and mud crab virus, demonstrating binding specificity. Therefore, these anti-NNV AFPs specifically bound NNV, aggregating or disrupting the viral particles, to reduce the contact probability between the virus and cell surface, subsequently inhibiting viral infection. Our results not only provided a candidate of anti-NNV AFP, but a framework for the development of antiviral AFP.
Collapse
Affiliation(s)
- Qiong Zhou
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Runqing Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Siyou Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yujia Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lijie Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
28
|
Huang R, Zhou Q, Shi Y, Zhang J, He J, Xie J. Protein A from orange-spotted grouper nervous necrosis virus triggers type I interferon production in fish cell. FISH & SHELLFISH IMMUNOLOGY 2018; 79:234-243. [PMID: 29733958 DOI: 10.1016/j.fsi.2018.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Family Nodaviridae consists of two genera: Alphanodavirus and Betanodavirus, and the latter is classified into four genotypes, including red-spotted grouper nervous necrosis virus, tiger puffer nervous necrosis virus, striped jack nervous necrosis virus, and barfin flounder nervous necrosis virus. Type I interferons (IFNs) play a central role in the innate immune system and antiviral responses, and the interactions between IFN and NNV have been investigated in this study. We have found that the RNA-dependent RNA polymerase (RdRp) from orange-spotted nervous necrosis virus (OGNNV), named protein A, was capable of activating IFN promoter in fathead minnow (FHM) cells. Transient expression of protein A was found to induce IFN expression and secretion, endowing FHM cells with anti-tiger frog virus ability. Protein A from SJNNV can also induce IFN expression in FHM cells but that from Flock House virus (FHV), a well-studied representative species of genus Alphanodavirus, cannot. RdRp activity and mitochondrial localization were shown to be required for protein A to induce IFN expression by means of activating IRF3 but not NFκB. Furthermore, DsRNA synthesized in vitro transcription and poly I:C activated IFN promoter activity when transfected into FHM cells, and dsRNA were also detected in NNV-infected cells. We postulated that dsRNA, a PAMP, was produced by protein A, leading to activation of innate immune response. These results suggest that protein As from NNV are the agonists of innate immune response. This is the first work to demonstrate the interaction between NNV protein A and innate immune system, and may help to understand pathogenesis of NNV.
Collapse
Affiliation(s)
- Runqing Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiong Zhou
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan Shi
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
29
|
Gye HJ, Oh MJ, Nishizawa T. Lack of nervous necrosis virus (NNV) neutralizing antibodies in convalescent sevenband grouper Hyporthodus septemfasciatus after NNV infection. Vaccine 2018; 36:1863-1870. [PMID: 29503111 DOI: 10.1016/j.vaccine.2018.02.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 10/17/2022]
Abstract
Viral nervous necrosis (VNN) is caused by nervous necrosis viruses (NNVs) belonging to genus Betanodavirus (Nodaviridae). It is one of the most serious diseases in aquaculture industry worldwide. In the present study, the kinetics of NNV-infectivity and NNV-specific antibodies in convalescent sevenband grouper Hyporthodus septemfasciatus after NNV infection was determined. When fish were infected with NNV at 17.5 °C, and reared for 84 days at natural seawater temperature (increasing rate: approximately 0.1 °C/day), NNV infectivity peaked on day 14 with 107.80 TCID50/g at the highest, and declined to below the detection limit. When convalescent fish were reared at 27 °C, and re-infected with NNV at 104.3 or 106.3 TCID50/fish, no mortality was observed although NNV multiplied up to 108.80 and 107.80 TCID50/g at the highest, respectively, suggesting NNV-specific immune response. It also revealed that convalescent fish were re-infected by NNV although NNV multiplication was strongly regulated. Interestingly, NNV-specific antibodies were detectable in 20% and ≥80% of convalescent fish before and after re-infection with NNV, respectively. However, no NNV-neutralizing activity was detected before and after re-infection in almost all of the convalescent fish. Therefore, NNV-neutralizing antibodies might not be necessary for the protection of convalescent fish against NNV re-infection after previous NNV infection.
Collapse
Affiliation(s)
- Hyun Jung Gye
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Toyohiko Nishizawa
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea.
| |
Collapse
|
30
|
Lin CF, Jiang HK, Chen NC, Wang TY, Chen TY. Novel subunit vaccine with linear array epitope protect giant grouper against nervous necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2018; 74:551-558. [PMID: 29355759 DOI: 10.1016/j.fsi.2018.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Viral nervous necrosis caused by nervous necrosis virus (NNV) is one of the most severe diseases resulting in high fish mortality rates and high economic losses in the giant grouper industry. Various NNV vaccines have been evaluated, such as inactivated viruses, virus-like particles (VLPs), recombinant coat proteins, synthetic peptides of coat proteins, and DNA vaccines. However, a cheaper manufacturing process and effective protection of NNV vaccines for commercial application are yet to be established. Hence, the present study developed a novel subunit vaccine composed of a carrier protein, receptor-binding domain of Pseudomonas exotoxin A, and tandem-repeated NNV coat protein epitopes by using the structural basis of epitope prediction and the linear array epitope (LAE) technique. On the basis of the crystal structure of the NNV coat protein, the epitope was predicted from the putative target cell receptor-binding region to elicit neutralizing immune responses. The safety of the LAE vaccine was evaluated, and all vaccinated fish survived without any physiological changes. The coat protein-specific antibody titers in the vaccinated fish increased after vaccine administration and exerted NNV-neutralizing effects. The efficacy tests revealed that the relative percent survival (RPS) of LAE antigen formulated with adjuvant was above 72% and LAE vaccine was effective for preventing NNV infection in giant grouper. This study is the first to develop an NNV vaccine by using epitope repeats, which provided effective protection to giant grouper against virus infection. The LAE construct can be used as a vaccine design platform against various pathogenic diseases.
Collapse
Affiliation(s)
- Chao-Fen Lin
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Han-Kai Jiang
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nai-Chi Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ting-Yu Wang
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
31
|
Oral immunization with cell-free self-assembly virus-like particles against orange-spotted grouper nervous necrosis virus in grouper larvae, Epinephelus coioides. Vet Immunol Immunopathol 2018; 197:69-75. [PMID: 29475509 DOI: 10.1016/j.vetimm.2018.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 12/27/2017] [Accepted: 01/23/2018] [Indexed: 11/22/2022]
Abstract
Nervous necrosis virus (NNV) infection causes viral nervous necrosis, inflicting serious economic losses in marine fish cultivation. Vaccination is the most effective choice for controlling and preventing viral infection. Virus-like particles (VLPs) are considered a novel vaccine platform because they are not infectious and they induce neutralizing antibodies efficiently. In the present study, we investigated the effect of the recombinant orange-spotted grouper NNV (OSGNNV) capsid proteins produced in Escherichia coli and cell-free self-assembled into VLPs on protective immune responses in orange-spotted grouper following immersion, intramuscular injection and oral immunization. We found the OSGNNV VLPs elicited neutralizing antibody with high efficacy, and provided the fish with full protection against OSGNNV challenge. In addition, the cell-free self-assembled OSGNNV VLPs did not contain residual host cell components and was safer compared with the intracellular assembled VLPs. Thus, oral vaccination is a more convenient and preferred route for fish vaccination. Our results show that the fish fed four times with a diet supplemented with 50-200 μg/g OSGNNV VLPs at 7-day intervals have sufficient protection. These findings demonstrate that cell-free self-assembled OSGNNV VLPs have potential as oral vaccines in grouper.
Collapse
|
32
|
Huang R, Zhang J, Zhu G, He J, Xie J. The core ubiquitin system of mandarin fish, Siniperca chuatsi, can be utilized by infectious spleen and kidney necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2017; 70:293-301. [PMID: 28889013 DOI: 10.1016/j.fsi.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/30/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
The process of ubiquitination regulates various cellular processes. The ubiquitin-proteasome system (UPS) in fish, which is important for the generation of innate and adaptive immune responses to pathogens, is the target of aquatic viruses to achieve immune evasion. We cloned and characterized three genes, namely, a ubiquitin-activating enzyme (ScE1), a ubiquitin-conjugating enzyme (ScE2), and a HECT-type ubiquitin ligase (ScE3) of mandarin fish Siniperca chuatsi. The genes were expressed in all tissues and the highest levels were observed in the blood. In infectious spleen and kidney necrosis virus (ISKNV)-infected mandarin fish fry cells, the expression levels of the three genes in vitro were almost identical, and upregulated during the early stage and downregulated at the late stage. In the blood of ISKNV-infected mandarin fish, their expressions in vivo were downregulated equally although peaking at different timepoints, indicating the suppression of UPS by viral infection. Furthermore, these recombinant proteins were determined to function well in ubiquitination assays in vitro. Moreover, ScE1 and ScE2 can be utilized by four RING-type viral E3s (vE3s) that are encoded by ISKNV. The in vitro activity of vE3 was stronger than that of ScE3, suggesting that the fish UPS may be hijacked by ISKNV via E3 activity competition and expression modulation. The present study investigated the function of mandarin fish UPS as well as its response to iridovirus infection, providing insights to better understand the virus-host interactions and the mechanism of ISKNV in evading host immune responses.
Collapse
Affiliation(s)
- Runqing Huang
- State Key Laboratory of Biocontrol/Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol/Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Guohua Zhu
- State Key Laboratory of Biocontrol/Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Junfeng Xie
- State Key Laboratory of Biocontrol/Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
33
|
Nguyen HT, Nguyen TTT, Wang YT, Wang PC, Chen SC. Effectiveness of formalin-killed vaccines containing CpG oligodeoxynucleotide 1668 adjuvants against Vibrio harveyi in orange-spotted grouper. FISH & SHELLFISH IMMUNOLOGY 2017; 68:124-131. [PMID: 28698120 DOI: 10.1016/j.fsi.2017.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/04/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Vibrio harveyi is a major bacterial pathogen that causes serious vibriosis in cultured groupers, leading to massive deaths. In this study, we evaluated the immune responses and protective efficacy of vaccines containing V. harveyi formalin-killed cells (FKC) formulated with CpG ODN 1668-enriched plasmids (p30CpG and p60CpG) in the orange-spotted grouper. Results indicated that antibody titres were remarkably increased in vaccinated fish 2 weeks post-immunisation. Expression level of major histocompatibility complex (MHC) class II, CD 8, and toll-like receptor 9 was significantly upregulated in the spleen of fish immunised with CpG ODN 1668-adjuvanted vaccines, as recorded at 6 weeks after immunisation. Additionally, the FKC + p60CpG-vaccinated fish displayed greater mRNA levels of MHC I and tumor necrosis factor-alpha. Of note, the relative percent survival after V. harveyi challenge was significantly higher in FKC + p60CpG-vaccinated fish (96.2%) than in FKC + p30CpG-vaccinated (79.8%) and FKC-vaccinated fish (59.9%). These results demonstrate that the FKC + CpG ODN 1668 vaccines are promising candidates that could enhance both innate and adaptive immune responses, conferred remarkable protection, and CpG ODN 1668 is a potential adjuvant for vaccines against V. harveyi.
Collapse
Affiliation(s)
- Hai Trong Nguyen
- Department of Veterinary Medicine, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Thuy Thi Thu Nguyen
- Department of Veterinary Medicine, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Yi-Ting Wang
- Department of Veterinary Medicine, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Pei-Chyi Wang
- Department of Veterinary Medicine, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Shih-Chu Chen
- Department of Veterinary Medicine, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan; Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan; International Degree Program of Ornamental Fish Science and Technology, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| |
Collapse
|
34
|
Taylor-Brown A, Pillonel T, Bridle A, Qi W, Bachmann NL, Miller TL, Greub G, Nowak B, Seth-Smith HMB, Vaughan L, Polkinghorne A. Culture-independent genomics of a novel chlamydial pathogen of fish provides new insight into host-specific adaptations utilized by these intracellular bacteria. Environ Microbiol 2017; 19:1899-1913. [PMID: 28205377 DOI: 10.1111/1462-2920.13694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022]
Abstract
Several Chlamydiales families are associated with epitheliocystis, a common condition of the fish gill epithelium. These families share common ancestors with the Chlamydiaceae and environmental Chlamydiae. Due to the lack of culture systems, little is known about the biology of these chlamydial fish pathogens. We investigated epitheliocystis in cultured Orange-spotted grouper (Epinephelus coioides) from North Queensland, Australia. Basophilic inclusions were present in the gills of 22/31 fish and the presence of the chlamydial pathogen in the cysts was confirmed by in situ hybridization. Giant grouper (Epinephelus lanceolatus) cultured in the same systems were epitheliocystis free. 16S rRNA gene sequencing revealed a novel member of the Candidatus Parilichlamydiaceae: Ca. Similichlamydia epinephelii. Using metagenomic approaches, we obtained an estimated 68% of the chlamydial genome, revealing that this novel chlamydial pathogen shares a number of key pathogenic hallmarks with the Chlamydiaceae, including an intact Type III Secretion system and several chlamydial virulence factors. This provides additional evidence that these pathogenic mechanisms were acquired early in the evolution of this unique bacterial phylum. The identification and genomic characterization of Ca. S. epinephelii provides new opportunities to study the biology of distantly-related chlamydial pathogens while shining a new light on the evolution of pathogenicity of the Chlamydiaceae.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Centre for Animal Health Innovation, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Andrew Bridle
- Institute of Marine and Antarctic Studies, University of Tasmania, Newnham, Tasmania, 7248, Australia
| | - Weihong Qi
- Functional Genomics Centre, University of Zurich, Zurich, CH-8057, Switzerland
| | - Nathan L Bachmann
- Centre for Animal Health Innovation, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Terrence L Miller
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Marine and Environmental Sciences, James Cook University, Cairns, Queensland, 4878, Australia
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Barbara Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Newnham, Tasmania, 7248, Australia
| | - Helena M B Seth-Smith
- Functional Genomics Centre, University of Zurich, Zurich, CH-8057, Switzerland.,Institute of Veterinary Pathology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Lloyd Vaughan
- Institute of Veterinary Pathology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| |
Collapse
|
35
|
Huang R, Zhu G, Zhang J, Lai Y, Xu Y, He J, Xie J. Betanodavirus-like particles enter host cells via clathrin-mediated endocytosis in a cholesterol-, pH- and cytoskeleton-dependent manner. Vet Res 2017; 48:8. [PMID: 28179028 PMCID: PMC5299686 DOI: 10.1186/s13567-017-0412-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
Betanodavirus, also referred to nervous necrosis virus (NNV), is the causative agent of the fatal disease, viral nervous necrosis and has brought significant economic losses in marine and freshwater cultured fish, especially larvae and juveniles. Here, we used an established invasion model with virus-like particle (VLP)-cells, mimicking orange-spotted grouper nervous necrosis virus (OGNNV), to investigate the crucial events of virus entry. VLP were observed in the perinuclear regions of Asian sea bass (SB) cells within 1.5 h after attachment. VLP uptake was strongly inhibited when cells were pretreated with biochemical inhibitors (chlorpromazine and dynasore) blocking clathrin-mediated endocytosis (CME) or transfected with siRNA against clathrin heavy and light chains. Inhibitors against key regulators of caveolae/raft-dependent endocytosis and macropinocytosis had no effect on VLP uptake. In contrast, disruption of cellular cholesterol by methyl-β-cyclodextrin or reduction of cholesterol fluidity by Cholera toxin B subunit significantly decreased VLP entry. Furthermore, VLP entry is dependent on low pH and cytoskeleton, demonstrated by inhibitor (chloroquine, ammonia chloride, cytochalasin D, wiskostatin, and nocodazole) perturbation. Therefore, OGNNV VLP enter SB cells via CME depending on dynamin-2, cholesterol and its fluidity, low pH, and cytoskeleton. In addition, ten more cell lines were screened for VLP entry and VLP can only enter NNV-sensitive cells, GB and SSN-1, via CME, indicating that CME is the common endocytosis pathway for VLP. These results may provide the data for NNV entry without the influence of the viral genome, an ideal model for exploring the behaviour of betanodavirus in cells, and valuable references to vaccine development.
Collapse
Affiliation(s)
- Runqing Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guohua Zhu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuxiong Lai
- Department of Nephrology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Yu Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
36
|
Cheng YK, Wu YC, Chi SC. Humoral and cytokine responses in giant groupers after vaccination and challenge with betanodavirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:385-394. [PMID: 27581743 DOI: 10.1016/j.dci.2016.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
Giant groupers were immunized with two dosages (Vhigh and Vlow) of inactivated nervous necrosis virus (NNV) and subsequently challenged with NNV at 4 weeks post vaccination (wpv). Several indicators were used to analyze the protective effects of the NNV vaccine. The neutralizing antibody titer of fish serum mostly corresponded to the survival rate of immunized fish in the NNV challenge test. Extravascular IgM+ cells were detected in the brains of both NNV-infected and noninfected groupers. After NNV infection, CD8α and IgM gene expression increased in the brains, indicating CD8α+ and IgM+ lymphocyte infiltration. Moreover, the NNV load was not the highest in dead grouper brains, suggesting that this load in the brain was not the key factor for the death of groupers. However, the brains of dead fish showed the highest expression of the interleukin (IL)-1β gene, a neurotoxic factor in the brain. Therefore, IL-1β overexpression is likely to be associated with the death of NNV-infected groupers.
Collapse
Affiliation(s)
- Yuan-Kai Cheng
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Chi Wu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan.
| | - Shau-Chi Chi
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
37
|
Prokaryotic Production of Virus-Like Particle Vaccine of Betanodavirus. Methods Mol Biol 2016; 1404:211-223. [PMID: 27076301 DOI: 10.1007/978-1-4939-3389-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Betanodaviruses are the causative agents of viral nervous necrosis (VNN), a serious disease of cultured marine fish worldwide. To control this disease, vaccines of subunit capsid proteins (recombinant proteins or peptides), inactivated viruses, and virus-like particles (VLPs) were developed. VLP, which is highly similar to the wild-type virus in virion structure and contains no viral genome, was proved as one of the good and safe vaccines that can activate humoral immune response in the long term and induce cellular and innate immunities in the early stage post-immunization. The VLP vaccines can be expressed in vitro either by Baculovirus-based or yeast-based eukaryotic system or by bacterial expression system. In this chapter, the prokaryotic expression and the subsequent purification of VLP of betanodavirus orange-spotted grouper nervous necrosis virus (OGNNV) are presented.
Collapse
|
38
|
Lin K, Zhu Z, Ge H, Zheng L, Huang Z, Wu S. Immunity to nervous necrosis virus infections of orange-spotted grouper (Epinephelus coioides) by vaccination with virus-like particles. FISH & SHELLFISH IMMUNOLOGY 2016; 56:136-143. [PMID: 27394969 DOI: 10.1016/j.fsi.2016.06.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/25/2016] [Accepted: 06/29/2016] [Indexed: 05/27/2023]
Abstract
Nervous necrosis virus (NNV) is a kind of the betanodaviruses, which can cause viral nervous necrosis (VNN) and massive mortality in larval and juvenile stages of orange-spotted grouper (Epinephelus coioides). Due to the lack of viral genomes, virus-like particles (VLPs) are considered as one of the most promising candidates in vaccine study to control this disease. In this study, a type of VLPs, which was engineered on the basis of orange-spotted grouper nervous necrosis virus (OGNNV), was produced from prokaryotes. They possessed the similar structure and size to the native NNV. In addition, synthetic oligodeoxynucleotide (ODN) containing CpG motif was added in vaccines, and the expression patterns of several genes were analyzed after injecting with VLP and VLP with adjuvant (VA) to assess the regulation effect of vaccine for inducing immune responses. RT-PCR assays showed that six related genes in healthy tissues were ubiquitously expressed in all nine tested tissues. The vaccine alone was able to enhance the expression of genes, including MHCIa, MyD88, TLR3, TLR9 and TLR22 after vaccination, indicating that the vaccine was able to induce immune response in grouper. In liver, spleen and kidney, the gene expressions of VA group were all significantly higher than that of VLP group at 72 h post-stimulation, showing that the fish of VA challenge group obtained the longer-lasting protective immunity and resistance to pathogen challenge than that of VLP group. The data indicated that the efficacy of vaccine could be further enhanced by CpG ODN after vaccination and provided the reference for the development of future viral vaccine in grouper.
Collapse
Affiliation(s)
- Kebing Lin
- Fisheries Research Institute of Fujian, Xiamen 361012, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361012, China
| | - Zhihuang Zhu
- Fisheries Research Institute of Fujian, Xiamen 361012, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361012, China
| | - Hui Ge
- Fisheries Research Institute of Fujian, Xiamen 361012, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361012, China
| | - Leyun Zheng
- Fisheries Research Institute of Fujian, Xiamen 361012, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361012, China
| | - Zhongchi Huang
- Fisheries Research Institute of Fujian, Xiamen 361012, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361012, China.
| | - Shuiqing Wu
- Fisheries Research Institute of Fujian, Xiamen 361012, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361012, China
| |
Collapse
|
39
|
Costa JZ, Thompson KD. Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. FISH & SHELLFISH IMMUNOLOGY 2016; 53:35-49. [PMID: 26997200 DOI: 10.1016/j.fsi.2016.03.033] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 05/22/2023]
Abstract
Over the last three decades, the causative agent of viral encephalopathy and retinopathy (VER) disease has become a serious problem of marine finfish aquaculture, and more recently the disease has also been associated with farmed freshwater fish. The virus has been classified as a Betanodavirus within the family Nodaviridae, and the fact that Betanodaviruses are known to affect more than 120 different farmed and wild fish and invertebrate species, highlights the risk that Betanodaviruses pose to global aquaculture production. Betanodaviruses have been clustered into four genotypes, based on the RNA sequence of the T4 variable region of their capsid protein, and are named after the fish species from which they were first derived i.e. Striped Jack nervous necrosis virus (SJNNV), Tiger puffer nervous necrosis virus (TPNNV), Barfin flounder nervous necrosis virus (BFNNV) and Red-spotted grouper nervous necrosis virus (RGNNV), while an additional genotype turbot betanodavirus strain (TNV) has also been proposed. However, these genotypes tend to be associated with a particular water temperature range rather than being species-specific. Larvae and juvenile fish are especially susceptible to VER, with up to 100% mortality resulting in these age groups during disease episodes, with vertical transmission of the virus increasing the disease problem in smaller fish. A number of vaccine preparations have been tested in the laboratory and in the field e.g. inactivated virus, recombinant proteins, virus-like particles and DNA based vaccines, and their efficacy, based on relative percentage survival, has ranged from medium to high levels of protection to little or no protection. Ultimately a combination of effective prophylactic measures, including vaccination, is needed to control VER, and should also target larvae and broodstock stages of production to help the industry deal with the problem of vertical transmission. As yet there are no commercial vaccines for VER and the aquaculture industry eagerly awaits such a product. In this review we provide an overview on the current state of knowledge of the disease, the pathogen, and interactions between betanodavirus and its host, to provide a greater understanding of the multiple factors involved in the disease process. Such knowledge is needed to develop effective methods for controlling VER in the field, to protect the various aquaculture species farmed globally from the different Betanodavirus genotypes to which they are susceptible.
Collapse
Affiliation(s)
- Janina Z Costa
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom
| |
Collapse
|
40
|
Xie J, Li K, Gao Y, Huang R, Lai Y, Shi Y, Yang S, Zhu G, Zhang Q, He J. Structural analysis and insertion study reveal the ideal sites for surface displaying foreign peptides on a betanodavirus-like particle. Vet Res 2016; 47:16. [PMID: 26754256 PMCID: PMC4710043 DOI: 10.1186/s13567-015-0294-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/21/2015] [Indexed: 01/09/2023] Open
Abstract
Betanodavirus infection causes fatal disease of viral nervous necrosis in many cultured marine and freshwater fish worldwide and the virus-like particles (VLP) are effective vaccines against betanodavirus. But vaccine and viral vector designs of betanodavirus VLP based on their structures remain lacking. Here, the three-dimensional structure of orange-spotted grouper nervous necrosis virus (OGNNV) VLP (RBS) at 3.9 Å reveals the organization of capsid proteins (CP). Based on the structural results, seven putative important sites were selected to genetically insert a 6× histidine (His)-tag for VLP formation screen, resulting in four His-tagged VLP (HV) at positions N-terminus, Ala220, Pro292 and C-terminus. The His-tags of N-terminal HV (NHV) were concealed inside virions while those of 220HV and C-terminal HV (CHV) were displayed at the outer surface. NHV, 220HV and CHV maintained the same cell entry ability as RBS in the Asian sea bass (SB) cell line, indicating that their similar surface structures can be recognized by the cellular entry receptor(s). For application of vaccine design, chromatography-purified CHV could provoke NNV-specific antibody responses as strong as those of RBS in a sea bass immunization assay. Furthermore, in carrying capacity assays, N-terminus and Ala220 can only carry short peptides and C-terminus can even accommodate large protein such as GFP to generate fluorescent VLP (CGV). For application of a viral vector, CGV could be real-time visualized to enter SB cells in invasion study. All the results confirmed that the C-terminus of CP is a suitable site to accommodate foreign peptides for vaccine design and viral vector development.
Collapse
Affiliation(s)
- Junfeng Xie
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Kunpeng Li
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuanzhu Gao
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Runqing Huang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuxiong Lai
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 518080, China.
| | - Yan Shi
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shaowei Yang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Guohua Zhu
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Qinfen Zhang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jianguo He
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
41
|
Epidemiological characterization of VNNV in hatchery-reared and wild marine fish on Hainan Island, China, and experimental infection of golden pompano (Trachinotus ovatus) juveniles. Arch Virol 2015; 160:2979-89. [PMID: 26350771 DOI: 10.1007/s00705-015-2590-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/27/2015] [Indexed: 12/14/2022]
Abstract
The current epidemiological situation of viral nervous necrosis virus (VNNV) on Hainan Island was investigated. A total of 490 hatchery-reared fish and 652 wild fish were sampled for VNNV detection from March 2013 to May 2014. Positive detection rates of 84.53% (153/181) and 0.97 % (3/309) were obtained in diseased and healthy hatchery-reared samples, respectively, by conventional RT-PCR. However, using more-sensitive nested RT-PCR, the positive detection rates in healthy hatchery-reared fish reached up to 64.08% (198/309), suggesting that asymptomatic VNNV carriers commonly exist among larvae and juveniles breeding on Hainan Island. In wild-fish samples, 2.6% (17/652) and 34.2% (223/652) positive detection rates were observed using RT-PCR and nested RT-PCR, respectively, indicating that wild fish may be a potential reservoir for VNNV. Phylogenetic analysis showed that all 52 VNNV isolates from cultured fish belong to the RGNNV genotype, but 2 out of 48 VNNV isolates from wild fish samples were found to be of the SJNNV genotype. This study is the first to confirm the existence of SJNNV-genotype VNNV in China. Golden pompano, an important fish species for culture, was selected as a fish model to investigate the optimal conditions for RGNNV disease progression in artificial infection experiments. The effects of temperature, salinity, and fish size were evaluated. Results showed that 28 °C and 20 ‰ are the optimal infection temperature and salinity, respectively, and golden pompano juveniles with small body sizes are more susceptible to RGNNV. These findings are highly consistent with those conditions involved in the natural outbreak of RGNNV.
Collapse
|
42
|
Chen SP, Peng RH, Chiou PP. Modulatory effect of CpG oligodeoxynucleotide on a DNA vaccine against nervous necrosis virus in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2015; 45:919-926. [PMID: 26093207 DOI: 10.1016/j.fsi.2015.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 06/07/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
We report the development of a DNA vaccine pcMGNNV2 against nervous necrosis virus (NNV), a leading cause of mass mortality in grouper larvae. In addition, the modulatory effect of CpG oligodeoxynucleotide (ODN), a Toll-like receptor 9 agonist, on the DNA vaccine was evaluated. The DNA vaccine alone elicited the production of NNV-specific antibodies, indicating that the vaccine was capable of triggering adaptive humoral response. Furthermore, significant induction of TLR9, Mx and IL-1β was observed in the spleen on day 7 post-vaccination, supporting that the vaccine could trigger TLR9 signaling. The incorporation of CpG ODN at high dose did not significantly affect the level of NNV-specific antibodies, but was able to moderately enhance the expression of Mx and IL-1β on day 7, indicating its ability in modulating innate response. After challenge with NNV, the vaccine alone enhanced the survival rate in infected larvae at both 1 and 2 weeks post-vaccination. The combination of CpG ODN further increased the survival rate at week 1 but not week 2. Interestingly, at week 2 the ODN appeared to induce a Th1-like response, as indicated by upregulation of T-bet (a Th1 marker) and downregulation of GATA-3 (a Th2 marker). Thus, the results suggest that the boosted Th1 response by CpG ODN does not augment the protection efficacy of pcMGNNV2 vaccine. To our best knowledge, this is the first report of a successful DNA vaccine against NNV in grouper.
Collapse
Affiliation(s)
- Shiang-Peng Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan; Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan
| | - Ran-Hong Peng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan
| | - Pinwen P Chiou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan.
| |
Collapse
|
43
|
A Review of Intra- and Extracellular Antigen Delivery Systems for Virus Vaccines of Finfish. J Immunol Res 2015; 2015:960859. [PMID: 26065009 PMCID: PMC4433699 DOI: 10.1155/2015/960859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/04/2023] Open
Abstract
Vaccine efficacy in aquaculture has for a long time depended on evaluating relative percent survival and antibody responses after vaccination. However, current advances in vaccine immunology show that the route in which antigens are delivered into cells is deterministic of the type of adaptive immune response evoked by vaccination. Antigens delivered by the intracellular route induce MHC-I restricted CD8+ responses while antigens presented through the extracellular route activate MHC-II restricted CD4+ responses implying that the route of antigen delivery is a conduit to induction of B- or T-cell immune responses. In finfish, different antigen delivery systems have been explored that include live, DNA, inactivated whole virus, fusion protein, virus-like particles, and subunit vaccines although mechanisms linking these delivery systems to protective immunity have not been studied in detail. Hence, in this review we provide a synopsis of different strategies used to administer viral antigens via the intra- or extracellular compartments. Further, we highlight the differences in immune responses induced by antigens processed by the endogenous route compared to exogenously processed antigens. Overall, we anticipate that the synopsis put together in this review will shed insights into limitations and successes of the current vaccination strategies used in finfish vaccinology.
Collapse
|
44
|
Wi GR, Hwang JY, Kwon MG, Kim HJ, Kang HA, Kim HJ. Protective immunity against nervous necrosis virus in convict grouper Epinephelus septemfasciatus following vaccination with virus-like particles produced in yeast Saccharomyces cerevisiae. Vet Microbiol 2015; 177:214-8. [PMID: 25759291 DOI: 10.1016/j.vetmic.2015.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/14/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Infection with nervous necrosis virus (NNV) causes viral nervous necrosis, which inflicts serious economic losses in marine fish cultivation. Virus-like particles (VLPs) are protein complexes consisting of recombinant virus capsid proteins, whose shapes are similar to native virions. VLPs are considered a novel vaccine platform because they are not infectious and have the ability to induce neutralizing antibodies efficiently. However, there have been few studies of protective immune responses employing virus challenge following immunization with NNV VLPs, and this is important for evaluating the utility of the vaccine. In the present study, we produced red-spotted grouper (Epinephelus akaara) NNV (RGNNV) VLPs in Saccharomyces cerevisiae and investigated protective immune responses in convict grouper (Epinephelus septemfasciatus) following intraperitoneal injection and oral immunization with the RGNNV VLPs. The parenterally administered VLPs elicited neutralizing antibody with high efficacy, and provided the fish with full protection against RGNNV challenge: 100% of the immunized fish survived compared with only 37% of the control fish receiving phosphate-buffered saline. RGNNV VLPs administered orally provoked neutralizing antibody systemically and conferred protective immunity against virus challenge: however only 57% of the fish survived. Our results demonstrate that RGNNV VLP produced in yeast has great potential as vaccine in fish.
Collapse
Affiliation(s)
- Ga Ram Wi
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, South Korea
| | - Jee Youn Hwang
- Fish Pathology Division, National Fisheries Research and Development Institute, Busan 619-902, South Korea
| | - Mun-Gyeong Kwon
- Fish Pathology Division, National Fisheries Research and Development Institute, Busan 619-902, South Korea
| | - Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, South Korea
| | - Hyun Ah Kang
- Department of Life Science, College of Natural Science, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, South Korea.
| |
Collapse
|
45
|
Kai YH, Wu YC, Chi SC. Immune gene expressions in grouper larvae (Epinephelus coioides) induced by bath and oral vaccinations with inactivated betanodavirus. FISH & SHELLFISH IMMUNOLOGY 2014; 40:563-9. [PMID: 25130145 DOI: 10.1016/j.fsi.2014.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/24/2014] [Accepted: 08/03/2014] [Indexed: 05/27/2023]
Abstract
Nervous necrosis virus (NNV) has caused mass mortality in many mariculture fish species. Bath vaccination of inactivated NNV and oral immunization of recombinant NNV coat protein are reported to protect grouper larvae against NNV infection. However, the information of immune gene expression in grouper larvae (Epinephelus coioides) after bath and oral immunizations is still limited. In this study, grouper larvae were respectively bath- and orally immunized with binary ethylenimine (BEI)-inactivated NNV, and the expression levels of immune genes were analyzed. Significant gene expressions of IL-1β, Mx, MHC-I, MHC-II, CD8α, IgM and IgT were observed in bath- and orally immunized fish 1-4 weeks post immunization (wpi). Particularly, the up-regulation of IL-1β and Mx gene expression lasted for 4 weeks. The IgT gene expression in gill was only induced by bath immunization, while that in gut was only stimulated by oral immunization. Both immunizations elicited MHC-I and CD8α gene expression relative to cellular immunity. Furthermore, NNV RNA genome, which was detected in inactivated NNV, could induce Mx gene expression in grouper brain (GB) cells, indicating that NNV RNA genome could be recognized by pathogen-recognition receptors (PRRs). In summary, bath and oral vaccinations with BEI-inactivated NNV triggered the gene expression of not only humoral immunity but also cellular immunity.
Collapse
Affiliation(s)
- Yu-Hsuan Kai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Chi Wu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Shau-Chi Chi
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|