1
|
Sheng X, Zhang H, Liu M, Tang X, Xing J, Chi H, Zhan W. Development and Evaluation of Recombinant B-Cell Multi-Epitopes of PDHA1 and GAPDH as Subunit Vaccines against Streptococcus iniae Infection in Flounder (Paralichthys olivaceus). Vaccines (Basel) 2023; 11:vaccines11030624. [PMID: 36992208 DOI: 10.3390/vaccines11030624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Streptococcus iniae is a severe Gram-positive pathogen that can infect a wide range of freshwater and marine fish species. In continuation of our earlier studies on the development of S. iniae vaccine candidates, pyruvate dehydrogenase E1 subunit alpha (PDHA1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were highly efficacious in protecting flounder (Paralichthys olivaceus) against S. iniae. In the present study, to investigate the potential of multi-epitope vaccination strategy to prevent flounder against S. iniae infection, the liner B-cell epitopes of PDHA1 and GAPDH proteins were predicted using a bioinformatics approach and were identified by immunoassay, and recombinant B-cell multi-epitopes of PDHA1 and GAPDH (rMEPIP and rMEPIG) containing immunodominant epitope-concentrated domains were expressed in Escherichia coli BL21 (DE3) and were used as a subunit vaccine to immunize healthy flounder, while recombinant PDHA1 (rPDHA1), GAPDH (rGAPDH) and formalin-inactivated S. iniae (FKC) served as controls. Then, the immunoprotection efficacy of rMEPIP and rMEPIG was evaluated by determining the percentages of CD4-1+, CD4-2+, CD8β+ T lymphocytes and surface-IgM-positive (sIgM+) lymphocytes in peripheral blood leucocytes (PBLs), spleen leucocytes (SPLs) and head kidney leucocytes (HKLs), as well as total IgM, specific IgM, and relative percentage survival (RPS) post immunization, respectively. It was found that fish immunized with rPDHA1, rGAPDH, rMEPIP, rMEPIG and FKC showed significant increases in sIgM+, CD4-1+, CD4-2+, and CD8β+ lymphocytes and production of total IgM and specific IgM against S. iniae or recombinant proteins rPDHA1 and rGAPDH, which indicated the activation of humoral and cellular immune responses after vaccination. Moreover, RPS rate of the multi-epitope vaccine rMEPIP and rMEPIG groups reached 74.07% and 77.78%, higher than that of rPDHA1 and rGAPDH (62.96% and 66.67%) and KFC (48.15%). These results demonstrated that B-cell multi-epitope protein vaccination, rMEPIP and rMEPIG, could give a better protective effect against S. iniae infection, which provided a promising strategy to design the efficient vaccine in teleost fish.
Collapse
Affiliation(s)
- Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Honghua Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Min Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
2
|
Immune Activation Following Vaccination of Streptococcus iniae Bacterin in Asian Seabass ( Lates calcarifer, Bloch 1790). Vaccines (Basel) 2023; 11:vaccines11020351. [PMID: 36851232 PMCID: PMC9963699 DOI: 10.3390/vaccines11020351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Juvenile Asian seabass (Lates calcarifer) (body weight 10 ± 0.7 g) were intraperitoneally injected with 1012 CFU fish-1 of formalin-killed Streptococcus iniae. The protective efficacy of the vaccine on survival and infection rate was assessed upon challenge at 4, 8, 12, 20, and 28 weeks post-vaccination. The results revealed that the challenged vaccinated fish showed no mortality at all time points, and the control fish presented 10-43.33% mortality. The infection rate at 2 weeks post-challenge was 0-13.33% in the vaccinated fish and 30-82.35% in the control group. At 8 weeks post-vaccination, the vaccinated fish showed comparable ELISA antibody levels with the control; however, the antibody levels of the vaccinated fish increased significantly after the challenge (p < 0.05), suggesting the presence of an adaptive response. Innate immune genes, including MHC I, MHC II, IL-1β, IL-4/13B, and IL-10, were significantly upregulated at 12 h post-challenge in the vaccinated fish but not in the control. In summary, vaccination with S. iniae bacterin provided substantial protection by stimulating the innate and specific immune responses of Asian seabass against S. iniae infection.
Collapse
|
3
|
Yang JI, Kim KH. Display of Streptococcus iniae α-Enolase on the Surface of Virus-Like Particles (VLPs) of Nervous Necrosis Virus (NNV) Using SpyTag/SpyCatcher. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1066-1072. [PMID: 36171522 DOI: 10.1007/s10126-022-10166-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Virus-like particle (VLP)-based vaccines are promising candidates for overcoming the safety problems of live vaccines and weak immunogenicity of subunit vaccines. VLPs can be used as a platform for the development of combined vaccines by expressing foreign antigens, and foreign antigens can be displayed on the surface of VLPs by conjugation. In the present study, to use nervous necrosis virus (NNV) VLPs as a delivery tool for Streptococcus iniae α-enolase by displaying on the VLP's surface, the split-intein (SpyTag/SpyCatcher) conjugation system was used. NNV capsid protein fused to SpyTag (Capsid-SpyTag) and S. iniae α-enolase fused to SpyCatcher (α-enolase-SpyCatcher) were recombinantly produced, then mixed in various ratios. A ratio of Capsid-SpyTag to α-enolase-SpyCatcher of 1 to 1.5 showed the highest coupling efficiency corresponding to 83-92% of coupled capsid protein dimer and 32-52% of coupled capsid protein monomer. In TEM observation, VLP of Capsid-SpyTag had a regular shape and size of about 40 nm, while VLP fused with α-enolase-SpyCatcher showed an irregular shape and size of about 40-50 nm in diameter. In preliminary immunization experiments, olive flounder (Paralichthys olivaceus) and zebrafish (Danio rerio) immunized with VLP fused with α-enolase-SpyCatcher showed the lowest cumulative mortality against S. iniae infection.
Collapse
Affiliation(s)
- Jeong In Yang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
4
|
Kuryłek A, Stasiak M, Kern-Zdanowicz I. Virulence factors of Streptococcus anginosus - a molecular perspective. Front Microbiol 2022; 13:1025136. [PMID: 36386673 PMCID: PMC9643698 DOI: 10.3389/fmicb.2022.1025136] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/21/2023] Open
Abstract
Streptococcus anginosus together with S. constellatus and S. intermedius constitute the Streptococcus anginosus group (SAG), until recently considered to be benign commensals of the human mucosa isolated predominantly from oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. For years the virulence potential of SAG was underestimated, mainly due to complications in correct species identification and their assignment to the physiological microbiota. Still, SAG representatives have been associated with purulent infections at oral and non-oral sites resulting in abscesses formation and empyema. Also, life threatening blood infections caused by SAG have been reported. However, the understanding of SAG as potential pathogen is only fragmentary, albeit certain aspects of SAG infection seem sufficiently well described to deserve a systematic overview. In this review we summarize the current state of knowledge of the S. anginosus pathogenicity factors and their mechanisms of action.
Collapse
|
5
|
Xu QY, Pan Q, Wu Q, Xin JQ. Mycoplasma Bovis adhesins and their target proteins. Front Immunol 2022; 13:1016641. [PMID: 36341375 PMCID: PMC9630594 DOI: 10.3389/fimmu.2022.1016641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mycoplasmosis is an important infectious disease of cattle caused by Mycoplasma bovis (M. bovis) which poses a serious threat to the breeding industry. Adhesin is involved in the initial process of M. bovis colonization, which is closely related to the infection, cell invasion, immune escape and virulence of this pathogenic microorganism. For the reason that M. bovis lacks a cell wall, its adhesin is predominantly located on the surface of the cell membrane. The adhesins of M. bovis are usually identified by adhesion and adhesion inhibition analysis, and more than 10 adhesins have been identified so far. These adhesins primarily bind to plasminogen, fibronectin, heparin and amyloid precursor-like protein-2 of host cells. This review aims to concisely summarize the current knowledge regarding the adhesins of M. bovis and their target proteins of the host cell. Additionally, the biological characteristics of the adhesin will be briefly analyzed.
Collapse
|
6
|
Smyrli M, Anka IZ, Koutsoni O, Dotsika E, Kyriazis ID, Pavlidis M, Katharios P. Development of autogenous vaccines for farmed European seabass against Aeromonas veronii using zebrafish as a model for efficacy assessment. FISH & SHELLFISH IMMUNOLOGY 2022; 123:381-387. [PMID: 35318138 DOI: 10.1016/j.fsi.2022.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Aeromonas veronii bv. sobria is an emerging pathogen for the European seabass cultured in the Aegean Sea (Mediterranean) causing significant problems in the Greek and Turkish aquaculture industry since no licensed vaccine is currently available for the disease. A bivalent vaccine was developed based on two phenotypically distinct strains of the pathogen, PDB (motile, pigment-producing strain) and NS (non-motile, non-pigment-producing). The two strains comprising the bivalent vaccine were evaluated as monovalent products in zebrafish before the seabass trials. Challenges using the homologous or the heterologous strain showed that both vaccines were protective with RPS values ranging between 66 and 100% in zebrafish. The bivalent vaccine was then tested in European seabass following dip or intraperitoneal administration. Efficacy was evaluated separately against both strains comprising the bivalent vaccine. Dip vaccination applied to juvenile seabass of 2.5 g average weight provided protection following challenge tests 30 days post vaccination only in one of the two strains tested (strain PDB, RPS: 88%). This was also the case in the injection vaccination of adult seabass of 60 g average weight where the vaccine was effective only against the PDB strain (RPS: 63%). High antibody titers against both strains were found at 30 and 60 days after intraperitoneal vaccination in the adult seabass. The use of zebrafish as a model for vaccine development for aquaculture species is discussed.
Collapse
Affiliation(s)
- Maria Smyrli
- University of Crete, Department of Biology, Voutes University Campus, Heraklion, 70013, Greece; Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Former American Base of Gournes, Heraklion, 71500, Greece
| | - Ishrat Zahan Anka
- University of Crete, Department of Biology, Voutes University Campus, Heraklion, 70013, Greece; Chattogram Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Olga Koutsoni
- Hellenic Pasteur Institute, Department of Microbiology, Laboratory of Cellular Immunology, Greece
| | - Eleni Dotsika
- Hellenic Pasteur Institute, Department of Microbiology, Laboratory of Cellular Immunology, Greece
| | - Ioannis D Kyriazis
- Hellenic Pasteur Institute, Department of Microbiology, Laboratory of Cellular Immunology, Greece; University of Thessaly, Department of Biochemistry and Biotechnology, Greece
| | - Michail Pavlidis
- University of Crete, Department of Biology, Voutes University Campus, Heraklion, 70013, Greece
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Former American Base of Gournes, Heraklion, 71500, Greece.
| |
Collapse
|
7
|
Yang JI, Kim KH. Fusion of Streptococcus iniae α-enolase to IMX313 enhanced antibody titer and survival rate in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2021; 115:70-74. [PMID: 34089887 DOI: 10.1016/j.fsi.2021.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The polymerization of monomeric antigens can be a strategy to overcome the low immunogenicity of subunit vaccines. IMX313 is a hybrid oligomerization domain of chicken C4bp, and has been demonstrated to have potent activity as adjuvants for the fused antigens in mammals. In the present study, we investigated whether the oligomerization of α-enolase of Streptococcus iniae by fusion with IMX313 affected on antibody induction and on protection against S. iniae infection in olive flounder (Paralichthys olivaceus). The oligomerization of S. iniae enolase by fusion with IMX313 (enolase-IMX313) was verified by non-reducing PAGE, and the antibody titer against enolase in olive flounder immunized with enolase-IMX313 was significantly higher than that in fish immunized with enolase alone. Furthermore, although the survival of olive flounder immunized with enolase alone was low, fish immunized with enolase-IMX313 showed much higher survival (RPS 50%) in accordance with higher serum antibody titer, suggesting that fusion of antigens with IMX313 can be an effective way to enhance protective efficacy of subunit vaccines in olive flounder.
Collapse
Affiliation(s)
- Jeong In Yang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
8
|
Bailone RL, Fukushima HCS, Ventura Fernandes BH, De Aguiar LK, Corrêa T, Janke H, Grejo Setti P, Roça RDO, Borra RC. Zebrafish as an alternative animal model in human and animal vaccination research. Lab Anim Res 2020; 36:13. [PMID: 32382525 PMCID: PMC7203993 DOI: 10.1186/s42826-020-00042-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Much of medical research relies on animal models to deepen knowledge of the causes of animal and human diseases, as well as to enable the development of innovative therapies. Despite rodents being the most widely used research model worldwide, in recent decades, the use of the zebrafish (Danio rerio) model has exponentially been adopted among the scientific community. This is because such a small tropical freshwater teleost fish has crucial genetic, anatomical and physiological homology with mammals. Therefore, zebrafish constitutes an excellent experimental model for behavioral, genetic and toxicological studies which unravels the mechanism of various human diseases. Furthermore, it serves well to test new therapeutic agents, such as the safety of new vaccines. The aim of this review was to provide a systematic literature review on the most recent studies carried out on the topic. It presents numerous advantages of this type of animal model in tests of efficacy and safety of both animal and human vaccines, thus highlighting gains in time and cost reduction of research and analyzes.
Collapse
Affiliation(s)
- Ricardo Lacava Bailone
- Ministry of Agriculture, Livestock and Supply, Federal Inspection Service, São Carlos, SP Brazil
- São Paulo State University, Botucatu, SP Brazil
| | - Hirla Costa Silva Fukushima
- Health and Biological Sciences Center, Federal University, Federal University of São Carlos, São Carlos, SP Brazil
| | | | - Luís Kluwe De Aguiar
- Department of Food Technology and Innovation, Harper Adams University, Newport, UK
| | - Tatiana Corrêa
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| | - Helena Janke
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| | - Princia Grejo Setti
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| | | | - Ricardo Carneiro Borra
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| |
Collapse
|
9
|
Dumesnil A, Martelet L, Grenier D, Auger JP, Harel J, Nadeau E, Gottschalk M. Enolase and dipeptidyl peptidase IV protein sub-unit vaccines are not protective against a lethal Streptococcus suis serotype 2 challenge in a mouse model of infection. BMC Vet Res 2019; 15:448. [PMID: 31823789 PMCID: PMC6905021 DOI: 10.1186/s12917-019-2196-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/26/2019] [Indexed: 02/02/2023] Open
Abstract
Background Streptococcus suis is a major swine pathogen causing arthritis, meningitis and sudden death in post-weaning piglets and is also a zoonotic agent. S. suis comprises 35 different serotypes of which the serotype 2 is the most prevalent in both pigs and humans. In the absence of commercial vaccines, bacterins (mostly autogenous), are used in the field, with controversial results. In the past years, the focus has turned towards the development of sub-unit vaccine candidates. However, published results are sometimes contradictory regarding the protective effect of a same candidate. Moreover, the adjuvant used may significantly influence the protective capacity of a given antigen. This study focused on two protective candidates, the dipeptidyl peptidase IV (DPPIV) and the enolase (SsEno). Both proteins are involved in S. suis pathogenesis, and while contradictory protection results have been obtained with SsEno in the past, no data on the protective capacity of DPPIV was available. Results Results showed that among all the field strains tested, 86 and 88% were positive for the expression of the SsEno and DPPIV proteins, respectively, suggesting that they are widely expressed by strains of different serotypes. However, no protection was obtained after two vaccine doses in a CD-1 mouse model of infection, regardless of the use of four different adjuvants. Even though no protection was obtained, significant amounts of antibodies were produced against both antigens, and this regardless of the adjuvant used. Conclusions Taken together, these results demonstrate that S. suis DPPIV and SsEno are probably not good vaccine candidates, at least not in the conditions evaluated in this study. Further studies in the natural host (pig) should still be carried out. Moreover, this work highlights the importance of confirming results obtained by different research groups.
Collapse
Affiliation(s)
- Audrey Dumesnil
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Léa Martelet
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada.,Oral Ecology Research Group (GREB), Faculty of Dentistry, Laval University, Quebec City, Quebec, Canada
| | - Jean-Philippe Auger
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Josée Harel
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Eric Nadeau
- Prevtec Microbia Inc. 3395 Casavant W. Blvd, Saint-Hyacinthe, QC, J2S 0B8, Canada
| | - Marcelo Gottschalk
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada. .,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Wang E, Liu T, Wu J, Wang K, Chen D, Geng Y, Huang X, Ouyang P, Lai W, Ai X. Molecular characterization, phylogenetic analysis and adjuvant effect of channel catfish interleukin-1βs against Streptococcus iniae. FISH & SHELLFISH IMMUNOLOGY 2019; 87:155-165. [PMID: 30630049 DOI: 10.1016/j.fsi.2019.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/30/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Channel catfish is one of the most extensively cultured species worldwide, which is widely used as a classical model for comparative immunology. Interleukin-1β (IL1β) is an immunoregulatory cytokine with the potential to enhance the immune response induced by vaccines in many animals. To characterize the molecular characterization and identify the immunoadjuvant role of channel catfish IL1β, molecular cloning, phylogenetic analysis, and expression of two IL1β genes were performed, the bioactivity of their recombinant proteins (rIL1β1 and rIL1β2) were detected in vitro and their adjuvant effects on a subunit vaccine encoding C5a peptidase (pSCPI) of Streptococcus iniae were evaluated. The results indicated that two IL1βs remained highly conserved possessing five conserved motifs compared with other fish IL1βs, although there were 28 nucleotide differences and 16 amino acid differences between channel catfish IL1β1 and IL1β2. Analysis of the ratios of nonsynonymous (dN) and synonymous (dS) substitutions revealed that fish IL1β genes were subjected to negative/purifying selection with global dN/dS ratios value 0.425. The results of adjuvant effect showed that compared with injection of pSCPI alone, co-injecting pSCPI with both rIL1β1 and rIL1β2 significantly enhanced antibody levels, serum bactericidal activity, lysozyme activity, alternative complement hemolytic activity, and the expression of endogenous IL1β and TNF-α in head kidney and spleen. Although vaccination with rIL1β1 or rIL1β2 failed to offer immunoprotection against S. iniae infection, the RPS (relative percent survival) of pSCPI+rIL1β1 and pSCPI+rIL1β2 groups were both higher than pSCPI alone (RPS, 50%), with 64.26% and 60.71%, respectively. Moreover, pSCPI+rIL1β1+rIL1β2 offered significantly higher (P < 0.05) immunoprotection (RPS, 75%) against S. iniae infection than pSCPI alone. Our present results not only enrich the molecular structure study of fish IL1βs but also signify that two recombinant channel catfish IL1βs can be used as potential adjuvants in a subunit vaccine model against bacterial infection, which are of profound importance to prevent and control bacterial disease in channel catfish.
Collapse
Affiliation(s)
- Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tao Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jie Wu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Weimin Lai
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, PR China
| |
Collapse
|
11
|
Jagau H, Behrens IK, Lahme K, Lorz G, Köster RW, Schneppenheim R, Obser T, Brehm MA, König G, Kohler TP, Rohde M, Frank R, Tegge W, Fulde M, Hammerschmidt S, Steinert M, Bergmann S. Von Willebrand Factor Mediates Pneumococcal Aggregation and Adhesion in Blood Flow. Front Microbiol 2019; 10:511. [PMID: 30972039 PMCID: PMC6443961 DOI: 10.3389/fmicb.2019.00511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pneumoniae is a major cause of community acquired pneumonia and septicaemia in humans. These diseases are frequently associated with thromboembolic cardiovascular complications. Pneumococci induce the exocytosis of endothelial Weibel-Palade Bodies and thereby actively stimulate the release of von Willebrand factor (VWF), which is an essential glycoprotein of the vascular hemostasis. Both, the pneumococcus induced pulmonary inflammation and the thromboembolytic complications are characterized by a dysbalanced hemostasis including a marked increase in VWF plasma concentrations. Here, we describe for the first time VWF as a novel interaction partner of capsulated and non-encapsulated pneumococci. Moreover, cell culture infection analyses with primary endothelial cells characterized VWF as bridging molecule that mediates bacterial adherence to endothelial cells in a heparin-sensitive manner. Due to the mechanoresponsive changes of the VWF protein conformation and multimerization status, which occur in the blood stream, we used a microfluidic pump system to generate shear flow-induced multimeric VWF strings on endothelial cell surfaces and analyzed attachment of RFP-expressing pneumococci in flow. By applying immunofluorescence visualization and additional electron microscopy, we detected a frequent and enduring bacterial attachment to the VWF strings. Bacterial attachment to the endothelium was confirmed in vivo using a zebrafish infection model, which is described in many reports and acknowledged as suitable model to study hemostasis mechanisms and protein interactions of coagulation factors. Notably, we visualized the recruitment of zebrafish-derived VWF to the surface of pneumococci circulating in the blood stream and detected a VWF-dependent formation of bacterial aggregates within the vasculature of infected zebrafish larvae. Furthermore, we identified the surface-exposed bacterial enolase as pneumococcal VWF binding protein, which interacts with the VWF domain A1 and determined the binding kinetics by surface plasmon resonance. Subsequent epitope mapping using an enolase peptide array indicates that the peptide 181YGAEIFHALKKILKS195 might serve as a possible core sequence of the VWF interaction site. In conclusion, we describe a VWF-mediated mechanism for pneumococcal anchoring within the bloodstream via surface-displayed enolase, which promotes intravascular bacterial aggregation.
Collapse
Affiliation(s)
- Hilger Jagau
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ina-Kristin Behrens
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Karen Lahme
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Georgina Lorz
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Reinhard W Köster
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf (UKE Hamburg), Hamburg, Germany
| | - Tobias Obser
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf (UKE Hamburg), Hamburg, Germany
| | - Maria A Brehm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf (UKE Hamburg), Hamburg, Germany
| | - Gesa König
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf (UKE Hamburg), Hamburg, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Universität Greifswald, Greifswald, Germany
| | - Manfred Rohde
- Helmholtz Centre for Infection Research, Central Facility for Microscopy, Braunschweig, Germany
| | - Ronald Frank
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Werner Tegge
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marcus Fulde
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Universität Greifswald, Greifswald, Germany
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Simone Bergmann
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
12
|
The Quorum Quenching Bacterium Bacillus licheniformis T-1 Protects Zebrafish against Aeromonas hydrophila Infection. Probiotics Antimicrob Proteins 2019; 12:160-171. [DOI: 10.1007/s12602-018-9495-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Kim YS, Yoon NK, Karisa N, Seo SH, Lee JS, Yoo SS, Yoon IJ, Kim YC, Lee H, Ahn J. Identification of novel immunogenic proteins against Streptococcus parauberis in a zebrafish model by reverse vaccinology. Microb Pathog 2019; 127:56-59. [DOI: 10.1016/j.micpath.2018.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
|
14
|
Sheng X, Gao J, Liu H, Tang X, Xing J, Zhan W. Recombinant phosphoglucomutase and CAMP factor as potential subunit vaccine antigens induced high protection against Streptococcus iniae infection in flounder (Paralichthys olivaceus). J Appl Microbiol 2018; 125:997-1007. [PMID: 29877008 DOI: 10.1111/jam.13948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/17/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022]
Abstract
AIMS The aim of this study was to screen vaccine candidates from virulence factors of Streptococcus iniae in flounder model. METHODS AND RESULTS The immunogenicity of recombinant phosphoglucomutase (rPGM) and rCAMP factor was confirmed by Western blot. The percentage of surface membrane immunoglobulin-positive (sIg+ ) lymphocytes in peripheral blood leucocytes, the specific and total serum IgM and the activity of acid phosphatase (ACP) and peroxidase (POD) in flounder were determined with flow cytometry, ELISA and commercial enzyme activity kits, respectively, after intraperitoneal immunization with rPGM and rCAMP factor. The results showed that rPGM and rCAMP factor could induce significant rise in sIg+ lymphocytes, specific serum IgM and activities of ACP and POD. Additionally, the relative percent survival rate of the vaccinated flounder was 64 and 54% in challenge experiment using S. iniae, respectively. These results indicated that rPGM and rCAMP factor could evoke humoural and innate immune response in flounder and provide high-efficiency immunoprotection against S. iniae infection. CONCLUSIONS Phosphoglucomutase (PGM) and CAMP factor were promising vaccine candidates against S. iniae in flounder. SIGNIFICANCE AND IMPACT OF THE STUDY Phosphoglucomutase and CAMP factor have the potential to be vaccine candidates, which provide important information for us to develop the effective subunit vaccines, especially the multivaccine, against S .iniae in aquaculture.
Collapse
Affiliation(s)
- X Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - J Gao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - H Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - X Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - J Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - W Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Sheng X, Liu M, Liu H, Tang X, Xing J, Zhan W. Identification of immunogenic proteins and evaluation of recombinant PDHA1 and GAPDH as potential vaccine candidates against Streptococcus iniae infection in flounder (Paralichthys olivaceus). PLoS One 2018; 13:e0195450. [PMID: 29847601 PMCID: PMC5976140 DOI: 10.1371/journal.pone.0195450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/22/2018] [Indexed: 11/30/2022] Open
Abstract
Streptococcus iniae is a major Gram-positive pathogen that causes invasive disease in fish worldwide. In this study, in order to identify immunogenic proteins for developing highly effective vaccine against S. iniae, whole-cell lysate proteins of S. iniae were analyzed by western blotting using flounder anti-S. iniae antibodies, and two positive protein bands of molecular weight 37 kDa and 40 kDa were screened, which were identified as pyruvate dehydrogenase E1 subunit alpha (PDHA1), BMP family ABC transporter substrate-binding protein (BMP) and L-lactate dehydrogenase (LDH), as well as ornithine carbamoyltransferase (OCT), lactate oxidas (LOx) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by mass spectrometry. Subsequently, the six recombinant proteins were produced and used to immunize healthy flounder, and the relative percent survival (RPS) value was 72.73%, 27.27%, 36.36%, 9.09%, 36.36% and 63.64% respectively after intraperitoneal challenge with live S. iniae, revealing that rPDHA1 and rGAPDH produced higher relative percent survival than formalin-killed S. iniae (36.36%). To further investigate the protective efficacy of rPDHA1 and rGAPDH, the proliferation of surface membrane immunoglobulin-positive (sIg+) lymphocytes in peripheral blood leucocytes, the total serum IgM, specific IgM against S. iniae and RPS were detected. The results showed that rPDHA1, rGAPDH and formalin-killed S. iniae significantly induced the proliferation of sIg+ lymphocytes, the production of total serum IgM and specific IgM as compared with the control group, and rGAPDH and rPDHA1 provide higher RPS (62.5% and 75%, respectively) again. These results demonstrated that rPDHA1 and rGAPDH are promising vaccine candidates against S. iniae infection in flounder.
Collapse
Affiliation(s)
- Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, P. R. China
| | - Min Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, P. R. China
| | - Haibo Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, P. R. China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, P. R. China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, P. R. China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, P. R. China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China
| |
Collapse
|
16
|
Wang Y, Wang E, He Y, Wang K, Yang Q, Wang J, Geng Y, Chen D, Huang X, Ouyang P, Lai W, Shi C. Identification and screening of effective protective antigens for channel catfish against Streptococcus iniae. Oncotarget 2018; 8:30793-30804. [PMID: 28415641 PMCID: PMC5458168 DOI: 10.18632/oncotarget.16475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/13/2017] [Indexed: 11/25/2022] Open
Abstract
Vaccination is a potential approach for prevention and control of disease in fish. The use of genetically engineered vaccines is an effective method and a green intervention to control bacterial infection in aquaculture. However, efforts to develop these vaccines are limited by the lack of conserved protective antigens. In this study, three candidate immunogens (Srr, NeuA, and Hsp) of the pathogenic Streptococcus iniae strain DGX07 isolated from diseased channel catfish were identified and analyzed. Molecular cloning, expression, and purification of candidate antigen genes were carried out to obtain the candidate immunogens in the form of recombinant subunit vaccines. Western blotting was performed to evaluate immunogenicity in vitro and channel catfish were vaccinated by intraperitoneal injection and the specific antibody titers and relative percent of survival were determined to evaluate immune protection in vivo. The results showed that these three candidate immunogens were expressed correctly as recombinant proteins fused with His tags, with molecular weights of 70 kDa for Srr, 86 kDa for NeuA, and 51 kDa for Hsp, respectively. Moreover, each immunogen was predicted to be located either extracellularly or on the surface of S. iniae, and were able to offer protection against S. iniae infection in the form of recombinant subunit vaccines with adjuvant ISA763, especially Srr, with a relative percent of survival of 70% for Srr, 55% for NeuA, and 50% for Hsp, respectively.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Basic Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China.,Pearl River Fishery Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
| | - Erlong Wang
- Department of Basic Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang He
- Department of Basic Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kaiyu Wang
- Department of Basic Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qian Yang
- Department of Basic Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Wang
- Department of Basic Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weimin Lai
- Department of Basic Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Cunbin Shi
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
| |
Collapse
|
17
|
Perez-Casal J, Prysliak T, Maina T, Suleman M, Jimbo S. Status of the development of a vaccine against Mycoplasma bovis. Vaccine 2017; 35:2902-2907. [PMID: 28433326 DOI: 10.1016/j.vaccine.2017.03.095] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 11/25/2022]
Abstract
Mycoplasma bovis is an important pathogen of cattle and, despite numerous efforts an effective vaccine for control of the disease it causes remains elusive. Although we now know more about the biology of this pathogen, information is lacking about appropriate protective antigens, the type of immune response that confers protection and adjuvants selection. The use of conserved recombinant proteins, selected using in silico approaches, as components of a vaccine may be a better choice over bacterin-based vaccines due to the limited protection afforded by them and adverse reactions caused by them. More studies are needed on the characterization of host-pathogen interactions and to elucidate M. bovis products modulating these interactions. These products could be the basis for development of vaccines to control M. bovis infections in dairy farms and feedlots.
Collapse
Affiliation(s)
- Jose Perez-Casal
- Vaccine and Infectious Disease Organization - International Vaccine Centre - VIDO-InterVac, 120 Veterinary Rd, Saskatoon, Saskatchewan S7N 5E3, Canada.
| | - Tracy Prysliak
- Vaccine and Infectious Disease Organization - International Vaccine Centre - VIDO-InterVac, 120 Veterinary Rd, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Teresa Maina
- Vaccine and Infectious Disease Organization - International Vaccine Centre - VIDO-InterVac, 120 Veterinary Rd, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Muhammad Suleman
- Vaccine and Infectious Disease Organization - International Vaccine Centre - VIDO-InterVac, 120 Veterinary Rd, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Steve Jimbo
- Vaccine and Infectious Disease Organization - International Vaccine Centre - VIDO-InterVac, 120 Veterinary Rd, Saskatoon, Saskatchewan S7N 5E3, Canada
| |
Collapse
|
18
|
Liu X, Zheng C, Gao X, Chen J, Zheng K. Complete Molecular and Immunoprotective Characterization of Babesia microti Enolase. Front Microbiol 2017; 8:622. [PMID: 28443086 PMCID: PMC5387042 DOI: 10.3389/fmicb.2017.00622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
The apicomplexan Babesia microti is the primary causative agent of human babesiosis, one of the most broadly distributed tick-borne diseases worldwide. B. microti undergoes a complex lifecycle within both the mammalian host and the tick vector, and employs several different specific molecular mechanisms to enter host cells. Enolase, the key glycolytic enzyme in intracellular glucose metabolism, can also be expressed on the parasite’s outer surface, binds to human plasminogen, and coordinates apicomplexan parasite invasion of host cells, however, it lacks sorting sequences or lipoprotein anchor sites. In the present study, we isolated the coding gene of B. microti enolase (BmEno), expressed it within E. coli and purified the recombinant BmEno protein (rBmEno). Consequently, we confirmed cytoplasmic and surface localization of BmEno via immunofluorescence, and demonstrated that rBmEno catalyzes the dehydration of 2-phospho-D-glycerate to phosphoenolpyruvate. Moreover, our results showed that rBmEno binds to human plasminogen, and that the lysine analog ε-aminocaproic acid significantly inhibited this binding. Furthermore plasminogen bound to rBmEno converts to active plasmin. Additionally, actively immunizing mice with rBmEno could evoke a partial protective immunity against B. microti infection following challenge. In conclusion, B. microti enolase is a multifunctional cytoplasmic protein which is also expressed at the parasitic outer surface, facilitates binding to host plasminogen, and could partially protect hosts against parasite infection.
Collapse
Affiliation(s)
- Xiangye Liu
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical UniversityXuzhou, China
| | - Chen Zheng
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical UniversityXuzhou, China
| | - Xiaoge Gao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical UniversityXuzhou, China
| | - Jiaxu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health of China, WHO Collaborating Centre for Malaria, Schistosomiasis and FilariasisShanghai, China
| | - Kuiyang Zheng
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical UniversityXuzhou, China
| |
Collapse
|
19
|
Li X, Meng X, Luo K, Luan S, Cao B, Kong J. cDNA cloning and expression analysis of a phosphopyruvate hydratase gene from the chinese shrimp Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2017; 63:173-180. [PMID: 28216323 DOI: 10.1016/j.fsi.2017.01.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
In the present study a cDNA encoding a phosphopyruvate hydratase (enolase) was cloned from the muscle of the Chinese shrimp (Fenneropenaeus chinensis) and named as FcEnolase. The cDNA of FcEnolase encoded a protein of 434 amino acid residues with a molecular mass 47.22 kDa. The residues 342-355 constituted the signature motif "LLLKVNQIGSVTES". A SNP locus (C96T) in the ORF at 96 bp was identified. The results showed that the FcEnolase was a conserved gene. In the normal F. chinensis, the mRNA level in the muscle was much higher (P < 0.05) than the mRNA level in the gill and hepatopancreas. To verify the mRNA level of FcEnolase in the F. chinensis post WSSV infection, a real-time RT-PCR was performed. In the WSSV-infected F. chinensis, the FcEnolase mRNA level was significantly (P < 0.05) up-regulated in the muscle at 12 and 24 h post challenge (hpc) to approximately 2.7-fold and 2.7-fold the mRNA level in the controls, respectively. The FcEnolase mRNA level in the gill was significantly (P < 0.05) down-regulated at 6 hpc to approximately 0.3-fold the mRNA level in the control, followed by a significant (P < 0.05) up-regulation at 12 hpc to approximately 2.8-fold the mRNA level in the control. There was no obvious change of FcEnolase mRNA level in the hepatopancreas during the infection process. The expression profile coincided with the fact that WSSV primarily infects the tissues of muscle and gill, but hardly infects hepatopancreas. To verify the protein level of FcEnolase post WSSV infection, a Western blot was performed. The FcEnolase protein level in the muscle at 24 hpc significantly (P < 0.05) increased to approximately 2.1-fold the level in the control. These results showed the characterization of FcEnolase and suggested that the FcEnolase might be involved in the response of F. chinensis to WSSV infection.
Collapse
Affiliation(s)
- Xupeng Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Xianhong Meng
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Kun Luo
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Sheng Luan
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266300, PR China
| | - Baoxiang Cao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Jie Kong
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266300, PR China.
| |
Collapse
|
20
|
Wang E, Long B, Wang K, Wang J, He Y, Wang X, Yang Q, Liu T, Chen D, Geng Y, Huang X, Ouyang P, Lai W. Interleukin-8 holds promise to serve as a molecular adjuvant in DNA vaccination model against Streptococcus iniae infection in fish. Oncotarget 2016; 7:83938-83950. [PMID: 27911873 PMCID: PMC5356636 DOI: 10.18632/oncotarget.13728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/15/2016] [Indexed: 11/25/2022] Open
Abstract
DNA vaccines had been widely used in animal models against various viral infections, while it was not so convincing for many infectious diseases especially bacterial disease in aquaculture. Interleukin-8(IL-8) as one of the CXC chemokines, its immunological role and adjuvant potential which had been proved in mammals were rarely reported in fish species. In this study, recombination plasmid pcDNA3.1/IL-8(pcIL-8) was conducted and the capacity of IL-8 as molecular adjuvant was explored from several aspects by co-injecting with a DNA vaccine encoding α-enolase(pcENO) against Streptococcus iniae infection in channel catfish. The results suggested that co-injection of pcIL-8 with DNA vaccine increased the innate immunity and specific antibody levels, as well as increased the immune-related genes involving in pro-inflammatory response, humoral and cellular immunity. Moreover, pcIL-8 enhanced the immunoprotection of pcENO with the relative percent survival(RPS) of 60% to 80% against S.iniae infection at 4 week post vaccination(p.v.), with the significantly higher RPS of 73.33% in pcENO+pcIL-8 group compared with that of pcENO alone(53.33%) at challenge test of 8 weeks p.v. Taken together, these results indicate pcIL-8 as a molecular adjuvant co-injected with DNA vaccine not only improves the immunoprotection but also maintains long period of immunity for channel catfish against S.iniae infection. Our study signifies that IL-8 holds promise to serve as a potential adjuvant in DNA vaccines against bacterial infections for long time.
Collapse
Affiliation(s)
- Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Long
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang He
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xingli Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qian Yang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tao Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weimin Lai
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Wang E, Wang J, Long B, Wang K, He Y, Yang Q, Chen D, Geng Y, Huang X, Ouyang P, Lai W. Molecular cloning, expression and the adjuvant effects of interleukin-8 of channel catfish (Ictalurus Punctatus) against Streptococcus iniae. Sci Rep 2016; 6:29310. [PMID: 27373470 PMCID: PMC4931690 DOI: 10.1038/srep29310] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023] Open
Abstract
Interleukin-8 (IL-8) as an important cytokine involving in inflammatory and immune response, has been studied as effective adjuvants for vaccines in mammals. However, there are fewer reports about the characterization and adjuvant effects of IL-8 in fish. In this study, cloning and sequence analysis of IL-8 coding region of channel catfish (Ictalurus punctatus) were conducted, mature IL-8(rtIL-8) was expressed and evaluated for its adjuvant effects on the immunoprotection of subunit vaccine encoding α-enolase (rENO) of Streptococcus iniae from several aspects in channel catfish. The results showed co-vaccination of rENO with rtIL-8 enhanced immune responses including humoral and cellular immunity, with higher relative percent survival(RPS,71.4%) compared with the moderate RPS of rENO alone(50%) against S. iniae infection at 4 week post vaccination. While rtIL-8 failed to maintain long-lasting immune protection, only with RPS of 26.67% in rENO + rtIL-8-vaccinated fish compared with that of rENO alone(20%) at 8 week, signifying that IL-8 hold promise for use as potential immunopotentiator in vaccines against bacterial infections in fish, whereas it is insufficient to extend the immunoprotection for long time, and further studies are required to understand the mechanisms of IL-8 used as an adjuvant and seek for more effective way to strengthen the adjuvanticity of IL-8.
Collapse
Affiliation(s)
- Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jun Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Long
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yang He
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qian Yang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Weimin Lai
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
22
|
Barnes AC, Silayeva O. Vaccination against streptococcal infections in farmed fish. MICROBIOLOGY AUSTRALIA 2016. [DOI: 10.1071/ma16040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aquaculture produces more than 50% of fish for human consumption and, in spite of major improvements since the adoption of injectable vaccines in the 1990s, bacterial diseases still account for considerable losses, particularly in tropical and warm temperate species. Streptococcosis, caused predominantly by Streptococcus iniae and S. agalactiae, manifests as a generalised septicaemia and meningitis followed by rapid mortality. Vaccination against streptococcal infections is difficult as a result of multiple, poorly defined serotypes and consequent vaccine escape (reinfection of previously vaccinated animals). However, genomics applied to reverse vaccinology is providing novel insights into diversity among these aquatic pathogens and is identifying cross-serotype targets that may be exploited for new generation streptococcal vaccines for aquaculture.
Collapse
|