1
|
Hummel G, Aagaard K. Arthropods to Eutherians: A Historical and Contemporary Comparison of Sparse Prenatal Microbial Communities Among Animalia Species. Am J Reprod Immunol 2024; 92:e13897. [PMID: 39140417 DOI: 10.1111/aji.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Since the advent of next-generation sequencing, investigators worldwide have sought to discern whether a functional and biologically or clinically relevant prenatal microbiome exists. One line of research has led to the hypothesis that microbial DNA detected in utero/in ovo or prior to birth/hatching is a result of contamination and does not belong to viable and functional microbes. Many of these preliminary evaluations have been conducted in humans, mice, and nonhuman primates due to sample and specimen availability. However, a comprehensive review of the literature across animal species suggests organisms that maintain an obligate relationship with microbes may act as better models for interrogating the selective pressures placed on vertical microbial transfer over traditional laboratory species. To date, studies in humans and viviparous laboratory species have failed to illustrate the clear presence and transfer of functional microbes in utero. Until a ground truth regarding the status and relevance of prenatal microbes can be ascertained, it is salient to conduct parallel investigations into the prevalence of a functional prenatal microbiome across the developmental lifespan of multiple organisms in the kingdom Animalia. This comprehensive understanding is necessary not only to determine the role of vertically transmitted microbes and their products in early human health but also to understand their full One Health impact. This review is among the first to compile such comprehensive primary conclusions from the original investigator's conclusions, and hence collectively illustrates that prenatal microbial transfer is supported by experimental evidence arising from over a long and rigorous scientific history encompassing a breadth of species from kingdom Animalia.
Collapse
Affiliation(s)
- Gwendolynn Hummel
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Kjersti Aagaard
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
2
|
Nishihara K, Villot C, Cangiano L, Guan LL, Steele M. Bacteria colonization and gene expression related to immune function in colon mucosa is associated with growth in neonatal calves regardless of live yeast supplementation. J Anim Sci Biotechnol 2024; 15:76. [PMID: 38835065 DOI: 10.1186/s40104-024-01030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/01/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND As Holstein calves are susceptible to gastrointestinal disorders during the first week of life, understanding how intestinal immune function develops in neonatal calves is important to promote better intestinal health. Feeding probiotics in early life may contribute to host intestinal health by facilitating beneficial bacteria colonization and developing intestinal immune function. The objective of this study was to characterize the impact of early life yeast supplementation and growth on colon mucosa-attached bacteria and host immune function. RESULTS Twenty Holstein bull calves received no supplementation (CON) or Saccharomyces cerevisiae boulardii (SCB) from birth to 5 d of life. Colon tissue biopsies were taken within 2 h of life (D0) before the first colostrum feeding and 3 h after the morning feeding at d 5 of age (D5) to analyze mucosa-attached bacteria and colon transcriptome. Metagenome sequencing showed that there was no difference in α and β diversity of mucosa-attached bacteria between day and treatment, but bacteria related to diarrhea were more abundant in the colon mucosa on D0 compared to D5. In addition, qPCR indicated that the absolute abundance of Escherichia coli (E. coli) decreased in the colon mucosa on D5 compared to D0; however, that of Bifidobacterium, Lactobacillus, and Faecalibacterium prausnitzii, which could competitively exclude E. coli, increased in the colon mucosa on D5 compared to D0. RNA-sequencing showed that there were no differentially expressed genes between CON and SCB, but suggested that pathways related to viral infection such as "Interferon Signaling" were activated in the colon mucosa of D5 compared to D0. CONCLUSIONS Growth affected mucosa-attached bacteria and host immune function in the colon mucosa during the first 5 d of life in dairy calves independently of SCB supplementation. During early life, opportunistic pathogens may decrease due to intestinal environmental changes by beneficial bacteria and/or host immune function. Predicted activation of immune function-related pathways may be the result of host immune function development or suggest other antigens in the intestine during early life. Further studies focusing on the other antigens and host immune function in the colon mucosa are required to better understand intestinal immune function development.
Collapse
Affiliation(s)
- Koki Nishihara
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, N1G 1Y2, Canada
| | - Clothilde Villot
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
- Lallemand SAS, Blagnac, F-31702, France
| | - Lautaro Cangiano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, N1G 1Y2, Canada.
- Present Address: Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
3
|
El Jeni R, Villot C, Koyun OY, Osorio-Doblado A, Baloyi JJ, Lourenco JM, Steele M, Callaway TR. Invited review: "Probiotic" approaches to improving dairy production: Reassessing "magic foo-foo dust". J Dairy Sci 2024; 107:1832-1856. [PMID: 37949397 DOI: 10.3168/jds.2023-23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The gastrointestinal microbial consortium in dairy cattle is critical to determining the energetic status of the dairy cow from birth through her final lactation. The ruminant's microbial community can degrade a wide variety of feedstuffs, which can affect growth, as well as production rate and efficiency on the farm, but can also affect food safety, animal health, and environmental impacts of dairy production. Gut microbial diversity and density are powerful tools that can be harnessed to benefit both producers and consumers. The incentives in the United States to develop Alternatives to Antibiotics for use in food-animal production have been largely driven by the Veterinary Feed Directive and have led to an increased use of probiotic approaches to alter the gastrointestinal microbial community composition, resulting in improved heifer growth, milk production and efficiency, and animal health. However, the efficacy of direct-fed microbials or probiotics in dairy cattle has been highly variable due to specific microbial ecological factors within the host gut and its native microflora. Interactions (both synergistic and antagonistic) between the microbial ecosystem and the host animal physiology (including epithelial cells, immune system, hormones, enzyme activities, and epigenetics) are critical to understanding why some probiotics work but others do not. Increasing availability of next-generation sequencing approaches provides novel insights into how probiotic approaches change the microbial community composition in the gut that can potentially affect animal health (e.g., diarrhea or scours, gut integrity, foodborne pathogens), as well as animal performance (e.g., growth, reproduction, productivity) and fermentation parameters (e.g., pH, short-chain fatty acids, methane production, and microbial profiles) of cattle. However, it remains clear that all direct-fed microbials are not created equal and their efficacy remains highly variable and dependent on stage of production and farm environment. Collectively, data have demonstrated that probiotic effects are not limited to the simple mechanisms that have been traditionally hypothesized, but instead are part of a complex cascade of microbial ecological and host animal physiological effects that ultimately impact dairy production and profitability.
Collapse
Affiliation(s)
- R El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C Villot
- Lallemand SAS, Blagnac, France, 31069
| | - O Y Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J J Baloyi
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - M Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
4
|
Chen JF, Ou-Yang MC, Hsia KC, Li CM, Yeh YT, Ho HH. A Three-Arm, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Safety of Lactobacillus salivarius AP-32 and Bifidobacterium animalis CP-9 Used Individually in Healthy Infants. Nutrients 2023; 15:3426. [PMID: 37571365 PMCID: PMC10421338 DOI: 10.3390/nu15153426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Probiotics are considered safe and beneficial to human health. However, the safety of Lactobacillus salivarius AP-32 and Bifidobacterium animalis CP-9 in infants has not been confirmed. This study was to assess the safety of long-term oral administration of L. salivarius AP-32 and B. animalis CP-9 in healthy infants compared with placebo. A three-arm, randomized, double-blind, placebo-controlled trial was conducted in healthy, full-term infants. Eighty-eight infants between 7 days and 2 months (60 ± 7 days) of age were selected and randomized to treatment with L. salivarius AP-32, B. animalis CP-9 or placebo for 4 months. The unblinding indicated subjects were randomized to receive B. animalis CP-9 (N = 28), L. salivarius AP-32 (N = 29), or placebo (N = 31). A total of 76 infants completed the 4-month treatment with fully compliance. The primary outcome was weight gain, with no significant difference in infant weight at 4 months when comparing AP-32 or CP-9 group with the placebo group, either. The head circumference and recumbent length of the CP-9 group were not significantly different from those of the placebo group. The recumbent length of the AP-32 group was slightly lower than that in the placebo group at month 4, but there was no difference between the two groups in head circumference. Overall, the growth trend of all treatments was similar without significant difference. Furthermore, there were no apparent differences between each group in digestive tolerance, the occurrence of adverse events, crying/fussing time and episodes, alpha diversity, and beta diversity. The CP-9 group showed a significant increase in the abundance of the Bacteroides genus, while the AP-32 group demonstrated a significant increase in the abundance of the Lactobacillus genus when comparing the two probiotic groups. Our study findings indicate that the oral administration of both AP-32 and CP-9 strains has a positive impact on the maintenance of a healthy gut flora in infants. Long-term use of L. salivarius AP-32 or B. animalis CP-9 is safe for infants from 7 days to 6 months of age.
Collapse
Affiliation(s)
- Jui-Fen Chen
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan; (J.-F.C.); (K.-C.H.); (C.-M.L.)
| | - Mei-Chen Ou-Yang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Ko-Chiang Hsia
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan; (J.-F.C.); (K.-C.H.); (C.-M.L.)
| | | | - Ching-Min Li
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan; (J.-F.C.); (K.-C.H.); (C.-M.L.)
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 831, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 831, Taiwan
| | - Hsieh-Hsun Ho
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan; (J.-F.C.); (K.-C.H.); (C.-M.L.)
| |
Collapse
|
5
|
Banchi P, Colitti B, Del Carro A, Corrò M, Bertero A, Ala U, Del Carro A, Van Soom A, Bertolotti L, Rota A. Challenging the Hypothesis of in Utero Microbiota Acquisition in Healthy Canine and Feline Pregnancies at Term: Preliminary Data. Vet Sci 2023; 10:vetsci10050331. [PMID: 37235414 DOI: 10.3390/vetsci10050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
At present, there are no data on the presence of bacteria in healthy canine and feline pregnancies at term. Here, we investigated the uterine microbiome in bitches (n = 5) and queens (n = 3) undergoing elective cesarean section in two facilities. Samples included swabs from the endometrium, amniotic fluid, and meconium, and environmental swabs of the surgical tray as controls. Culture and 16S rRNA gene sequencing were used to investigate the presence of bacteria. Culture was positive for 34.3% of samples (uterus n = 3, amniotic fluid n = 2, meconium n = 4, controls n = 0), mostly with low growth of common contaminant bacteria. With sequencing techniques, the bacterial abundance was significantly lower than in environmental controls (p < 0.05). Sequencing results showed a species-specific pattern, and significant differences between canine and feline bacterial populations were found at order, family, and genus level. No differences were found in alpha and beta diversities between feto-maternal tissues and controls (p > 0.05). Dominant phyla were Bacteroidetes, Firmicutes, and Proteobacteria in different proportions based on tissue and species. Culture and sequencing results suggest that the bacterial biomass is very low in healthy canine and feline pregnancies at term, that bacteria likely originate from contamination from the dam's skin, and that the presence of viable bacteria could not be confirmed most of the time.
Collapse
Affiliation(s)
- Penelope Banchi
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Andrea Del Carro
- Iunovet-Clinique Vetérinaire Saint Hubert, 06240 Beausoleil, France
| | - Michela Corrò
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Alessia Bertero
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Angela Del Carro
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Luigi Bertolotti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Ada Rota
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| |
Collapse
|
6
|
Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol 2022; 19:785-803. [PMID: 36097076 DOI: 10.1038/s41575-022-00675-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/08/2022]
Abstract
The intestinal tract faces numerous challenges that require several layers of defence. The tight epithelium forms a physical barrier that is further protected by a mucus layer, which provides various site-specific protective functions. Mucus is produced by goblet cells, and as a result of single-cell RNA sequencing identifying novel goblet cell subpopulations, our understanding of their various contributions to intestinal homeostasis has improved. Goblet cells not only produce mucus but also are intimately linked to the immune system. Mucus and goblet cell development is tightly regulated during early life and synchronized with microbial colonization. Dysregulation of the developing mucus systems and goblet cells has been associated with infectious and inflammatory conditions and predisposition to chronic disease later in life. Dysfunctional mucus and altered goblet cell profiles are associated with inflammatory conditions in which some mucus system impairments precede inflammation, indicating a role in pathogenesis. In this Review, we present an overview of the current understanding of the role of goblet cells and the mucus layer in maintaining intestinal health during steady-state and how alterations to these systems contribute to inflammatory and infectious disease.
Collapse
Affiliation(s)
- Jenny K Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemisty and Cell biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Li LG, Fu HG, Zhao YH, Zhao PJ, Meng QK, Zheng RJ, Li EY. A Meta-Analysis on the Impact of Prenatal and Early Childhood Antimicrobial Use on Autism Spectrum Disorders. Ann Pharmacother 2022:10600280221130280. [PMID: 36254661 DOI: 10.1177/10600280221130280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the impact of prenatal and early childhood antimicrobial use on autism spectrum disorders (ASD). DATA SOURCES We searched PubMed and Embase databases for relevant studies from inception to August 2022. STUDY SELECTION AND DATA EXTRACTION Peer-reviewed, observational studies were all acceptable. Raw data were extracted into a predefined worksheet and quality analysis was performed using the Newcastle-Ottawa Scale. DATA SYNTHESIS Nineteen studies were identified in the meta-analysis. Prenatal antimicrobial exposure was not associated with ASD (P = 0.06 > 0.05), whereas early childhood antimicrobial exposure was associated with an increased odds ratio of ASD (OR = 1.17, 95% CI = [1.08-1.27], P value < 0.001). The sibling-matched analysis, with a very limited sample size, suggested that neither prenatal (P = 0.47 > 0.05) nor early childhood (P = 0.13 > 0.05) antimicrobial exposure was associated with ASD. Medical professionals may need to take the possible association into consideration when prescribing an antimicrobial in children. CONCLUSIONS Early childhood antimicrobial exposure could increase the incidence of ASD. In future studies, it would be necessary to control for confounding factors, such as genetic factors, parenteral age at birth, or low birthweight, to further validate the association.
Collapse
Affiliation(s)
- Li-Guo Li
- Department of rehabilitation medicine, Zhengzhou Health Vocational College, Zhengzhou, China
| | - Hong-Guang Fu
- Department of rehabilitation medicine, Zhengzhou Health Vocational College, Zhengzhou, China
| | - Yong-Hong Zhao
- Department of children rehabilitation, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng-Ju Zhao
- Department of children rehabilitation, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing-Kai Meng
- Department of children rehabilitation, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui-Juan Zheng
- Department of children rehabilitation, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - En-Yao Li
- Department of children rehabilitation, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Winters AD, Romero R, Greenberg JM, Galaz J, Shaffer ZD, Garcia-Flores V, Kracht DJ, Gomez-Lopez N, Theis KR. Does the Amniotic Fluid of Mice Contain a Viable Microbiota? Front Immunol 2022; 13:820366. [PMID: 35296083 PMCID: PMC8920496 DOI: 10.3389/fimmu.2022.820366] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
The existence of an amniotic fluid microbiota (i.e., a viable microbial community) in mammals is controversial. Its existence would require a fundamental reconsideration of fetal in utero exposure to and colonization by microorganisms and the role of intra-amniotic microorganisms in fetal immune development as well as in pregnancy outcomes. In this study, we determined whether the amniotic fluid of mice harbors a microbiota in late gestation. The profiles of the amniotic fluids of pups located proximally or distally to the cervix were characterized through quantitative real-time PCR, 16S rRNA gene sequencing, and culture (N = 21 dams). These profiles were compared to those of technical controls for bacterial and DNA contamination. The load of 16S rRNA genes in the amniotic fluid exceeded that in controls. Additionally, the 16S rRNA gene profiles of the amniotic fluid differed from those of controls, with Corynebacterium tuberculostearicum being differentially more abundant in amniotic fluid profiles; however, this bacterium was not cultured from amniotic fluid. Of the 42 attempted bacterial cultures of amniotic fluids, only one yielded bacterial growth – Lactobacillus murinus. The 16S rRNA gene of this common murine-associated bacterium was not detected in any amniotic fluid sample, suggesting it did not originate from the amniotic fluid. No differences in the 16S rRNA gene load, 16S rRNA gene profile, or bacterial culture were observed between the amniotic fluids located Proximally and distally to the cervix. Collectively, these data indicate that, although there is a modest DNA signal of bacteria in murine amniotic fluid, there is no evidence that this signal represents a viable microbiota. While this means that amniotic fluid is not a source of microorganisms for in utero colonization in mice, it may nevertheless contribute to fetal exposure to microbial components. The developmental consequences of this observation warrant further investigation.
Collapse
Affiliation(s)
- Andrew D. Winters
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Detroit Medical Center, Detroit, MI, United States
| | - Jonathan M. Greenberg
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Zachary D. Shaffer
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- MD/PhD Combined Degree Program, Wayne State University School of Medicine, Detroit, MI, United States
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - David J. Kracht
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Kevin R. Theis, ; Nardhy Gomez-Lopez,
| | - Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Kevin R. Theis, ; Nardhy Gomez-Lopez,
| |
Collapse
|
9
|
Cristobal-Carballo O, McCoard SA, Cookson AL, Laven RA, Ganesh S, Lewis SJ, Muetzel S. Effect of Divergent Feeding Regimes During Early Life on the Rumen Microbiota in Calves. Front Microbiol 2021; 12:711040. [PMID: 34745024 PMCID: PMC8565576 DOI: 10.3389/fmicb.2021.711040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to determine whether divergent feeding regimes during the first 41 weeks of the life of a calf are associated with long-term changes in the rumen microbiota and the associated fermentation end-products. Twenty-four calves (9 ± 5 days of age) were arranged in a 2 × 2 factorial design with two divergent treatments across three dietary phases. In phase 1 (P01), calves were offered a low-milk volume/concentrate starter diet with early weaning (CO) or high-milk volume/pasture diet and late weaning (FO). In phase 2 (P02), calves from both groups were randomly allocated to either high-quality (HQ) or low-quality (LQ) pasture grazing groups. In phase 3 (P03), calves were randomly allocated to one of two grazing groups and offered the same pasture-only diet. During each dietary phase, methane (CH4) and hydrogen (H2) emissions and dry matter intake (DMI) were measured in respiration chambers, and rumen samples for the evaluation of microbiota and short-chain fatty acid (SCFA) characterizations were collected. In P01, CO calves had a higher solid feed intake but a lower CH4 yield (yCH4) and acetate:propionate ratio (A:P) compared with FO calves. The ruminal bacterial community had lower proportions of cellulolytic bacteria in CO than FO calves. The archaeal community was dominated by Methanobrevibacter boviskoreani in CO calves and by Mbb. gottschalkii in FO calves. These differences, however, did not persist into P02. Calves offered HQ pastures had greater DMI and lower A:P ratio than calves offered LQ pastures, but yCH4 was similar between groups. The cellulolytic bacteria had lower proportions in HQ than LQ calves. In all groups, the archaeal community was dominated by Mbb. gottschalkii. No treatment interactions were observed in P02. In P03, all calves had similar DMI, CH4 and H2 emissions, SCFA proportions, and microbial compositions, and no interactions with previous treatments were observed. These results indicate that the rumen microbiota and associated fermentation end-products are driven by the diet consumed at the time of sampling and that previous dietary interventions do not lead to a detectable long-term microbial imprint or changes in rumen function.
Collapse
Affiliation(s)
- Omar Cristobal-Carballo
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand.,School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Sue A McCoard
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Adrian L Cookson
- Food System Integrity Team, AgResearch Grasslands, Palmerston North, New Zealand.,School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Richard A Laven
- School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Siva Ganesh
- Biostatistics Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Sarah J Lewis
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Stefan Muetzel
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| |
Collapse
|
10
|
Cristobal-Carballo O, McCoard SA, Cookson AL, Ganesh S, Lowe K, Laven RA, Muetzel S. Effect of Methane Inhibitors on Ruminal Microbiota During Early Life and Its Relationship With Ruminal Metabolism and Growth in Calves. Front Microbiol 2021; 12:710914. [PMID: 34603238 PMCID: PMC8482044 DOI: 10.3389/fmicb.2021.710914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to determine whether dietary supplementation with methanogen inhibitors during early life may lead to an imprint on the rumen microbial community and change the rumen function and performance of calves to 49-weeks of rearing. Twenty-four 4-day-old Friesian x Jersey cross calves were randomly assigned into a control and a treatment group. Treated calves were fed a combination of chloroform (CF) and 9,10-anthraquinone (AQ) in the solid diets during the first 12 weeks of rearing. Afterward, calves were grouped by treatments until week 14, and then managed as a single group on pasture. Solid diets and water were offered ad libitum. Methane measurements, and sample collections for rumen metabolite and microbial community composition were carried out at the end of weeks 2, 4, 6, 8, 10, 14, 24 and 49. Animal growth and dry matter intake (DMI) were regularly monitored over the duration of the experiment. Methane emissions decreased up to 90% whilst hydrogen emissions increased in treated compared to control calves, but only for up to 2 weeks after treatment cessation. The near complete methane inhibition did not affect calves’ DMI and growth. The acetate:propionate ratio decreased in treated compared to control calves during the first 14 weeks but was similar at weeks 24 and 49. The proportions of Methanobrevibacter and Methanosphaera decreased in treated compared to control calves during the first 14 weeks; however, at week 24 and 49 the archaea community was similar between groups. Bacterial proportions at the phylum level and the abundant bacterial genera were similar between treatment groups. In summary, methane inhibition increased hydrogen emissions, altered the methanogen community and changed the rumen metabolite profile without major effects on the bacterial community composition. This indicated that the main response of the bacterial community was not a change in composition but rather a change in metabolic pathways. Furthermore, once methane inhibition ceased the methanogen community, rumen metabolites and hydrogen emissions became similar between treatment groups, indicating that perhaps using the treatments tested in this study, it is not possible to imprint a low methane microbiota into the rumen in the solid feed of pre-weaned calves.
Collapse
Affiliation(s)
- Omar Cristobal-Carballo
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand.,School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Susan A McCoard
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Adrian L Cookson
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.,Food System Integrity, AgResearch Grasslands, Palmerston North, New Zealand
| | - Siva Ganesh
- Biostatistics Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Katherine Lowe
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Richard A Laven
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Stefan Muetzel
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| |
Collapse
|
11
|
Arshad MA, Hassan FU, Rehman MS, Huws SA, Cheng Y, Din AU. Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:883-895. [PMID: 34632119 PMCID: PMC8484983 DOI: 10.1016/j.aninu.2021.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Colonization and development of the gut microbiome is a crucial consideration for optimizing the health and performance of livestock animals. This is mainly attributed to the fact that dietary and management practices greatly influence the gut microbiota, subsequently leading to changes in nutrient utilization and immune response. A favorable microbiome can be implanted through dietary or management interventions of livestock animals, especially during early life. In this review, we explore all the possible factors (for example gestation, colostrum, and milk feeding, drinking water, starter feed, inoculation from healthy animals, prebiotics/probiotics, weaning time, essential oil and transgenesis), which can influence rumen microbiome colonization and development. We discuss the advantages and disadvantages of potential strategies used to manipulate gut development and microbial colonization to improve the production and health of newborn calves at an early age when they are most susceptible to enteric disease. Moreover, we provide insights into possible interventions and their potential effects on rumen development and microbiota establishment. Prospects of latest techniques like transgenesis and host genetics have also been discussed regarding their potential role in modulation of rumen microbiome and subsequent effects on gut development and performance in neonatal ruminants.
Collapse
Affiliation(s)
- Muhammad A Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Muhammad S Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University of Belfast, Belfast, BT9 5DL, GB-NIR, UK
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ahmad U Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
12
|
Wu Y, Wang L, Luo R, Chen H, Nie C, Niu J, Chen C, Xu Y, Li X, Zhang W. Effect of a Multispecies Probiotic Mixture on the Growth and Incidence of Diarrhea, Immune Function, and Fecal Microbiota of Pre-weaning Dairy Calves. Front Microbiol 2021; 12:681014. [PMID: 34335503 PMCID: PMC8318002 DOI: 10.3389/fmicb.2021.681014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The effects of different doses of a multispecies probiotic (MSP) mixture on growth performance, the incidence of diarrhea rate and immune function, and fecal microbial diversity and structure were evaluated in pre-weaning Holstein dairy calves at WK2, WK4, WK6, and WK8. Forty Chinese Holstein female newborn calves were randomly assigned to four treatments with 10 calves in each group, C (control group), T1 (0.5 g MSP/calf/day, T2 (1 g MSP/calf/day), and T3 (2 g MSP/calf/day) groups. The experimental period was 56 days. Feed intake and health scoring were recorded every day until the end of the experiment. Fecal contents and blood samples were sampled at WK2, WK4, WK6, and WK8. Growth performance, incidence of diarrhea, and total serum concentrations (IgA, IgG, and IgM) were analyzed. Bacterial 16S rRNA and fungal ITS genes were high-throughput sequenced for fecal microbiota. The relationships among the populations of the principal fecal microbiota at WK2 and the growth performance or serum immunoglobulin concentrations were analyzed using Pearson's rank correlation coefficients. The MSP supplementation reduced the incidence of diarrhea in the first 4 weeks of life, and serum IgA, IgG, and IgM concentrations increased between WK2 and WK8 in the T3 group. There was an increase in growth performance and reduction in the incidence of diarrhea until WK4 after birth in T3 group, compared with the control, T1, and T2 groups. The results of fecal microbiota analysis showed that Firmicutes and Bacteroides were the predominant phyla, with Blautia, Ruminococcaceae_UCG-005, norank_f__Muribaculaceae, Bacteroides, Subdoligranulum, and Bifidobacterium being the dominant genera in calf feces. Aspergillus, Thermomyces, and Saccharomyces were the predominant fungal phyla. Compared with the control, in T1 and T2 groups, the MSP supplementation reduced the relative abundance of Bacteroidetes and increased the relative abundance of Bifidobacterium, Lactobacillus, Collinsella, and Saccharomyces at WK2 in group T3. Thus, the fecal microbial composition and diversity was significantly affected by the MSP mixture during the first 2 weeks of the calves' life. MSP mixtures reduced the incidence of diarrhea in pre-weaning calves (during the first 4 weeks of life). There was a significant improvement in growth performance, reduction in calf diarrhea, balance in the fecal microbiota, and an overall improvement in serum immunity, compared with the control group. We, therefore, recommend adding 2 g/day of multispecies probiotic mixture supplementation in diets of dairy calves during their first 4 weeks of life before weaning.
Collapse
Affiliation(s)
- Yanyan Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ruiqing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Hongli Chen
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Junli Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wenjun Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
13
|
Ishimwe JA. Maternal microbiome in preeclampsia pathophysiology and implications on offspring health. Physiol Rep 2021; 9:e14875. [PMID: 34042284 PMCID: PMC8157769 DOI: 10.14814/phy2.14875] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Preeclampsia is a devastating hypertensive pregnancy disorder that currently affects 2%–8% of pregnancies worldwide. It is associated with maternal and fetal mortality and morbidity and adverse health outcomes both in mom and offspring beyond pregnancy. The pathophysiology is not completely understood, and there are no approved therapies to specifically treat for the disease, with only few therapies approved to manage symptoms. Recent advances suggest that aberrations in the composition of the microbiome may play a role in the pathogenesis of various diseases including preeclampsia. The maternal and uteroplacental environments greatly influence the long‐term health outcomes of the offspring through developmental programming mechanisms. The current review summarizes recent developments on the role of the microbiome in adverse pregnancy outcomes with a focus on preeclampsia. It also discusses the potential role of the maternal microbiome in fetal programming; explores gut‐targeted therapeutics advancement and their implications in the treatment of preeclampsia.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
14
|
Husso A, Lietaer L, Pessa-Morikawa T, Grönthal T, Govaere J, Van Soom A, Iivanainen A, Opsomer G, Niku M. The Composition of the Microbiota in the Full-Term Fetal Gut and Amniotic Fluid: A Bovine Cesarean Section Study. Front Microbiol 2021; 12:626421. [PMID: 33995290 PMCID: PMC8119756 DOI: 10.3389/fmicb.2021.626421] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
The development of a healthy intestinal immune system requires early microbial exposure. However, it remains unclear whether microbial exposure already begins at the prenatal stage. Analysis of such low microbial biomass environments are challenging due to contamination issues. The aims of the current study were to assess the bacterial load and characterize the bacterial composition of the amniotic fluid and meconium of full-term calves, leading to a better knowledge of prenatal bacterial seeding of the fetal intestine. Amniotic fluid and rectal meconium samples were collected during and immediately after elective cesarean section, performed in 25 Belgian Blue cow-calf couples. The samples were analyzed by qPCR, bacterial culture using GAM agar and 16S rRNA gene amplicon sequencing. To minimize the effects of contaminants, we included multiple technical controls and stringently filtered the 16S rRNA gene sequencing data to exclude putative contaminant sequences. The meconium samples contained a significantly higher amount of bacterial DNA than the negative controls and 5 of 24 samples contained culturable bacteria. In the amniotic fluid, the amount of bacterial DNA was not significantly different from the negative controls and all samples were culture negative. Bacterial sequences were identified in both sample types and were primarily of phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, with some individual variation. We conclude that most calves encounter in utero maternal-fetal transmission of bacterial DNA, but the amount of bacterial DNA is low and viable bacteria are rare.
Collapse
Affiliation(s)
- Aleksi Husso
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Leen Lietaer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Tiina Pessa-Morikawa
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Grönthal
- Central Laboratory, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jan Govaere
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Antti Iivanainen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Geert Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mikael Niku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Gschwind R, Fournier T, Kennedy S, Tsatsaris V, Cordier AG, Barbut F, Butel MJ, Wydau-Dematteis S. Evidence for contamination as the origin for bacteria found in human placenta rather than a microbiota. PLoS One 2020; 15:e0237232. [PMID: 32776951 PMCID: PMC7416914 DOI: 10.1371/journal.pone.0237232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/13/2020] [Indexed: 01/12/2023] Open
Abstract
Until recently the in utero environment of pregnant women was considered sterile. Recent high-sensitivity molecular techniques and high-throughput sequencing lead to some evidence for a low-biomass microbiome associated with the healthy placenta. Other studies failed to reveal evidence for a consistent presence of bacteria using either culture or molecular based techniques. Comparing conflicting “placental microbiome” studies is complicated by the use of varied and inconsistent protocols. Given this situation, we undertook an evaluation of the in utero environment sterility using several controlled methods, in the same study, to evaluate the presence or absence of bacteria and to explain contradictions present in the literature. Healthy pregnant women (n = 38) were recruited in three maternity wards. Placenta were collected after cesarean section with or without Alexis® and vaginal delivery births. For this study we sampled fetal membranes, umbilical cord and chorionic villi. Bacterial presence was analyzed using bacterial culture and qPCR on 34 fetal membranes, umbilical cord and chorionic villi samples. Shotgun metagenomics was performed on seven chorionic villi samples. We showed that the isolation of meaningful quantities of viable bacteria or bacterial DNA was possible only outside the placenta (fetal membranes and umbilical cords) highlighting the importance of sampling methods in studying the in utero environment. Bacterial communities described by metagenomics analysis were similar in chorionic villi samples and in negative controls and were dependent on the database chosen for the analysis. We conclude that the placenta does not harbor a specific, consistent and functional microbiota.
Collapse
Affiliation(s)
- Rémi Gschwind
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
| | - Thierry Fournier
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
- PremUp Foundation, Paris, France
| | - Sean Kennedy
- Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Vassilis Tsatsaris
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
- PremUp Foundation, Paris, France
| | - Anne-Gaël Cordier
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
- PremUp Foundation, Paris, France
| | - Frédéric Barbut
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
- PremUp Foundation, Paris, France
| | - Marie-José Butel
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
- PremUp Foundation, Paris, France
| | - Sandra Wydau-Dematteis
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
- PremUp Foundation, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Fuhler GM. The immune system and microbiome in pregnancy. Best Pract Res Clin Gastroenterol 2020; 44-45:101671. [PMID: 32359685 DOI: 10.1016/j.bpg.2020.101671] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
Hormonal changes during pregnancy instigate numerous physiological changes aimed at the growth and delivery of a healthy baby. A careful balance between immunological tolerance against fetal antigens and immunity against infectious agents needs to be maintained. A three-way interaction between pregnancy hormones, the immune system and our microbiota is now emerging. Recent evidence suggests that microbial alterations seen during pregnancy may help maintain homeostasis and aid the required physiological changes occurring in pregnancy. However, these same immunological and microbial alterations may also make women more vulnerable during pregnancy and the post-partum period, especially regarding immunological and infectious diseases. Thus, a further understanding of the host-microbial interactions taking place during pregnancy may improve identification of populations at risk for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- G M Fuhler
- Erasmus MC University Medical Center Rotterdam, Department of Gastroenterology and Hepatology, Erasmus Medical Center, Gravendijkwal 230, 3015CE, Rotterdam, the Netherlands.
| |
Collapse
|
17
|
Stras SF, Werner L, Toothaker JM, Olaloye OO, Oldham AL, McCourt CC, Lee YN, Rechavi E, Shouval DS, Konnikova L. Maturation of the Human Intestinal Immune System Occurs Early in Fetal Development. Dev Cell 2019; 51:357-373.e5. [PMID: 31607651 DOI: 10.1016/j.devcel.2019.09.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/16/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
There are limited data on fetal and early life development of human intestinal immunity. Using mass cytometry (CyTOF) and next-generation sequencing of B and T cell receptor (BCR and TCR) repertoires, we demonstrate complex intestinal immunity from 16 weeks' gestational age (GA). Both BCR and TCR repertoires are diverse with CDRH and CDR3β length increasing with advancing GA. The difference-from-germline, CDR insertions and/or deletions, similarly occur in utero for TCR but not BCR, suggesting earlier mucosal T than B cell maturity. Innate immunity is dominated by macrophages, dendritic cells (DCs), innate lymphoid cells (ILCs), and natural killer (NK) cells. Follicular and transitional B cells are enriched in fetuses while CD69+IgM+ B cells are abundant in infants. Both CD4+ and CD8+ T cells are abundant, capable of secreting cytokines and are phenotypically of the tissue resident memory state in utero. Our data provide the foundation for a 2nd trimester and infant intestinal immune atlas and suggest that a complex innate and adaptive immune landscape exists significantly earlier than previously reported.
Collapse
Affiliation(s)
- Stephanie F Stras
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Lael Werner
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jessica M Toothaker
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Oluwabunmi O Olaloye
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Austin L Oldham
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Collin C McCourt
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Yu Nee Lee
- Pediatric Department A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Erez Rechavi
- Pediatric Department A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Liza Konnikova
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
18
|
Malmuthuge N, Griebel PJ. A Novel Animal Model for Regional Microbial Dysbiosis of the Pioneer Microbial Community. Front Microbiol 2019; 10:1706. [PMID: 31396198 PMCID: PMC6668574 DOI: 10.3389/fmicb.2019.01706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/10/2019] [Indexed: 01/17/2023] Open
Abstract
Pioneer microbiota colonizing the newborn gastrointestinal tract has long-lasting effects on host health. Restoration of the gut microbial community, following dysbiosis during the neonatal period, may be one strategy to prevent undesirable health outcomes linked to an altered neonatal gut microbiome. Without appropriate animal models that recreate the prolonged human neonatal developmental period it is not possible to effectively analyze interventions designed to restore regional microbial populations. Our study used a lamb model in which intestinal segments were surgically isolated (blind-ended) in fetal lambs to create early microbial dysbiosis by delaying post-natal exposure to intestinal ingesta. Intestinal segments isolated in utero retained blood flow, innervation, and lymphatic drainage through the mesenteric attachment. Continuity of the fetal gastro-intestinal tract was re-established by side-to-side anastomosis of intestine proximal and distal to each isolated intestinal segment. Microbial restoration was then implemented in neonatal lambs by reconnecting a portion of the in utero isolated intestinal segments to adjacent intestinal tract 1 and 7 days after birth. Bacterial communities colonizing the adjacent intestine, in utero isolated intestinal segments, and reconnected intestinal segments were profiled using 16S amplicon sequencing on days 1, 7, and 56 of age. The in utero isolated intestinal segments were colonized 1 day after birth but the density of active bacteria was reduced and community composition altered when compared to adjacent intestine. Proteobacteria dominated the adjacent small intestine at early time points (day 1 and day 7) with a shift to primarily Firmicutes on day 56, consistent with establishment of an anaerobic bacterial community. In contrast, Proteobacteria persisted as the predominant community for 56 days in the in utero isolated intestinal segments. There was, however, almost full restoration of the microbial community composition in the in utero isolated intestinal segments following reconnection to the adjacent intestine. The density of beneficial bacteria, especially Bifidobacterium, remained significantly lower in the reconnected intestinal segments at 56 days when compared to adjacent intestine. Post-natal persistence of a stable pioneer community (Proteobacteria) in the in utero isolated intestinal segments provides a model system to study the temporal effects of regional microbial dysbiosis throughout a prolonged neonatal period.
Collapse
Affiliation(s)
- Nilusha Malmuthuge
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Philip J. Griebel
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
19
|
Review: Are there indigenous Saccharomyces in the digestive tract of livestock animal species? Implications for health, nutrition and productivity traits. Animal 2019; 14:22-30. [PMID: 31303186 DOI: 10.1017/s1751731119001599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
All livestock animal species harbour complex microbial communities throughout their digestive tract that support vital biochemical processes, thus sustaining health and productivity. In part as a consequence of the strong and ancient alliance between the host and its associated microbes, the gut microbiota is also closely related to productivity traits such as feed efficiency. This phenomenon can help researchers and producers develop new and more effective microbiome-based interventions using probiotics, also known as direct-fed microbials (DFMs), in Animal Science. Here, we focus on one type of such beneficial microorganisms, the yeast Saccharomyces. Saccharomyces is one of the most widely used microorganisms as a DFM in livestock operations. Numerous studies have investigated the effects of dietary supplementation with different species, strains and doses of Saccharomyces (mostly Saccharomyces cerevisiae) on gut microbial ecology, health, nutrition and productivity traits of several livestock species. However, the possible existence of Saccharomyces which are indigenous to the animals' digestive tract has received little attention and has never been the subject of a review. We for the first time provide a comprehensive review, with the objective of shedding light into the possible existence of indigenous Saccharomyces of the digestive tract of livestock. Saccharomyces cerevisiae is a nomadic yeast able to survive in a broad range of environments including soil, grass and silages. Therefore, it is very likely that cattle and other animals have been in direct contact with this and other types of Saccharomyces throughout their entire existence. However, to date, the majority of animal scientists seem to agree that the presence of Saccharomyces in any section of the gut only reflects dietary contamination; in other words, these are foreign organisms that are only transiently present in the gut. Importantly, this belief (i.e. that Saccharomyces come solely from the diet) is often not well grounded and does not necessarily hold for all the many other groups of microbes in the gut. In addition to summarizing the current body of literature involving Saccharomyces in the digestive tract, we discuss whether the beneficial effects associated with the consumption of Saccharomyces may be related to its foreign origin, though this concept may not necessarily satisfy the theories that have been proposed to explain probiotic efficacy in vivo. This novel review may prove useful for biomedical scientists and others wishing to improve health and productivity using Saccharomyces and other beneficial microorganisms.
Collapse
|