1
|
Jonare L, Wattrang E, Östlund E, Wall H, Jacobson M, Jansson DS. Subcutaneous inoculation of Escherichia coli in broiler chickens causes cellulitis and elicits innate and specific immune responses. BMC Vet Res 2024; 20:545. [PMID: 39623373 PMCID: PMC11610265 DOI: 10.1186/s12917-024-04392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Cellulitis caused by Escherichia coli is a common cause of condemnation of broiler chickens at slaughter worldwide and is associated with economic losses and a possible negative impact on animal welfare. The study objective was to monitor clinical signs and immune responses after subcutaneous E. coli inoculation (1.1-1.8 × 107 CFU), aiming to induce cellulitis. Three groups of broiler chickens (n = 15/group) were inoculated with well-characterized E. coli strains (group A: ECA18 O24:H4/ST117 and group B: ECB11 O153:H9/ST38) or with saline (control) at 22 days-of-age. Clinical signs of disease, body weight and immune parameters were monitored until euthanasia 12-14 days after inoculation followed by post-mortem examination. RESULTS The daily weight gain of the inoculated chickens was significantly lower one day after inoculation compared to the controls. Seven (23%) of the inoculated chickens displayed clinical signs: ruffled feathers, mild weakness, open-beak breathing and/or reluctance to stand, of which two birds were euthanized and one bird died. Five chickens in group B were observed with bacteraemia, which lasted up to three days after inoculation for two chickens. A transient increase in chicken mannose receptor MRC1L-B expression on circulating monocytes was observed one day after inoculation in both E. coli inoculated groups, with a more pronounced increase in group B. On day 7 after inoculation, the in vitro adherence of heterophils, monocytes and thrombocytes to the inoculated strain was increased in group B. Antibody titers to the inoculation strains were increased in some chickens in both groups on days 7 and 14 after inoculation, with the highest titers in group B. Seven (47%) and 13 (87%) of the chickens in group A and B, respectively, were diagnosed with cellulitis at post-mortem examination. In most birds, lesions consisted of plaque-like material embedded in the subcutaneous tissue of the abdominal wall. CONCLUSIONS Inoculation of E. coli caused cellulitis and prompted a rapid activation/redistribution of circulating monocytes followed by antibody production. The responses were most pronounced in chickens inoculated with E. coli strain ECB11, presumably because of a higher virulence.
Collapse
Affiliation(s)
- Liv Jonare
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden.
| | - Eva Wattrang
- Department of Microbiology, Swedish Veterinary Agency, 751 89, Uppsala, Sweden
| | - Emma Östlund
- Department of Microbiology, Swedish Veterinary Agency, 751 89, Uppsala, Sweden
| | - Helena Wall
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Box 7024, 750 07, Uppsala, Sweden
| | - Magdalena Jacobson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden
| | - Désirée S Jansson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden
| |
Collapse
|
2
|
Lee Y, Lee R, Kim J, Han YH, Hunter C, Park J. Comparative analysis of changes in immune cell in the chicken spleen across different ages using flow cytometry. BMC Vet Res 2024; 20:429. [PMID: 39334332 PMCID: PMC11438354 DOI: 10.1186/s12917-024-04287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Concurrent emerging and reemerging avian infectious diseases cause multiple risk factors in poultry. A body amount studies attempted to understand pathogen-associated immunity in chickens. Recent research has made progress in identifying immune functions in chicken, there are still gaps in knowledge, especially regarding immune responses during infectious diseases. A deeper understanding in chicken immune system is critical for improving disease control strategies and vaccine development. RESULTS This study proposes analytical method for chicken splenocytes, enabling the tracking changes in T cells, monocytes, and B cells across three ages. Optimized lymphocyte-activating conditions were suggested using concanavalin A and chicken interleikin-2, which facilitate immune cell activation and proliferation. Next, splenocytes from embryonic day 18, day 5, and day 30 were compared using surface markers and flow cytometry analysis. We observed an increase in T cell subsets, including activated T cells (CD4+CD44+ and CD8+CD44+), and B cells, along with a reduced monocyte population after hatching. However, morphological changes and genetic expression of functional immune molecules were limited. CONCLUSIONS The present findings on chicken immune system development offer valuable insights into the avian immune system, including analytical methods and the phenotypic and functional changes in immune cells. Updated immune-boosting strategies during the early stages of life are crucial for developing preventive measures against major infectious diseases in the poultry industry.
Collapse
Affiliation(s)
- Yeonjae Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Rangyeon Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Jieun Kim
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
- College of Biomedicine Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yong-Hyun Han
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
- College of Parmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Christopher Hunter
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jeongho Park
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea.
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea.
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
3
|
Influence of Dietary Supplementation with Boswellia serrata and Salix alba on Performance and Blood Biochemistry in Free-Range Leghorn Laying Hens. Vet Sci 2022; 9:vetsci9040182. [PMID: 35448679 PMCID: PMC9030870 DOI: 10.3390/vetsci9040182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
This study was conducted to evaluate the safety and the beneficial effects of dietary supplementation with Boswellia serrata (Bs) and Salix alba (Sa) in Leghorn hens during the critical pre-laying and laying phases. A total of 120 pullets, 17 weeks of age, were assigned to two groups (Control—C; Treated—T, n = 60 each). For 12 weeks, the T group received a diet supplemented with 0.3% of dry extracts of Bs (5%) and Sa (5%). The study lasted 19 weeks. Productive performance, serum analytes, H/L ratio, IgA and anti-IBV antibodies were investigated. Water intake was significantly higher, while body and egg weight was significantly lower for the T group (p < 0.05). No other differences were detected in performance parameters, serum analytes, IgA and H/L ratio excluding t0, with a significantly (p < 0.05) higher H/R ratio and higher titers of anti-IBV antibody for the T group. Overall, the data obtained in this study show that the supplementation with Bs and Sa was safe and resulted in an increase in water consumption, a decrease in egg weight, and a sedative effect in the hens. In the future, it would be interesting to test this supplement in hens reared on intensive farms.
Collapse
|
4
|
Sreekantapuram S, Berens C, Barth SA, Methner U, Berndt A. Interaction of Salmonella Gallinarum and Salmonella Enteritidis with peripheral leucocytes of hens with different laying performance. Vet Res 2021; 52:123. [PMID: 34563266 PMCID: PMC8467188 DOI: 10.1186/s13567-021-00994-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Salmonella enterica ssp. enterica serovars Enteritidis (SE) and Gallinarum (SG) cause different diseases in chickens. However, both are able to reach the blood stream where heterophils and monocytes are potentially able to phagocytose and kill the pathogens. Using an ex vivo chicken whole blood infection model, we compared the complex interactions of the differentially host-adapted SE and SG with immune cells in blood samples of two White Leghorn chicken lines showing different laying performance (WLA: high producer; R11: low producer). In order to examine the dynamic interaction between peripheral blood leucocytes and the Salmonella serovars, we performed flow cytometric analyses and survival assays measuring (i) leucocyte numbers, (ii) pathogen association with immune cells, (iii) Salmonella viability and (iv) immune gene transcription in infected whole blood over a four-hour co-culture period. Inoculation of blood from the two chicken lines with Salmonella led primarily to an interaction of the bacteria with monocytes, followed by heterophils and thrombocytes. We found higher proportions of monocytes associated with SE than with SG. In blood samples of high producing chickens, a decrease in the numbers of both heterophils and Salmonella was observed. The Salmonella challenge induced transcription of interleukin-8 (IL-8) which was more pronounced in SG- than SE-inoculated blood of R11. In conclusion, the stronger interaction of monocytes with SE than SG and the better survivability of Salmonella in blood of low-producer chickens shows that the host-pathogen interaction and the strength of the immune defence depend on both the Salmonella serovar and the chicken line.
Collapse
Affiliation(s)
- Sravya Sreekantapuram
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Christian Berens
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Stefanie A Barth
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Angela Berndt
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany.
| |
Collapse
|
5
|
Lima EDS, Blagitz MG, Batista CF, Alves AJ, Fernandes ACDC, Ramos Sanchez EM, Frias Torres H, Diniz SA, Silva MX, Della Libera AMMP, de Souza FN. Milk Macrophage Function in Bovine Leukemia Virus-Infected Dairy Cows. Front Vet Sci 2021; 8:650021. [PMID: 34222393 PMCID: PMC8245700 DOI: 10.3389/fvets.2021.650021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
The implications of bovine leukemia virus (BLV) on innate and adaptive immune responses have been widely investigated; however, the effects of BLV on mammary gland immunity require further investigation. The present study investigated the viability, phagocytic capacity, and intracellular production of reactive oxygen and nitrogen species (RONS) by macrophages in milk samples from dairy cows naturally infected with BLV with or without persistent lymphocytosis (PL). No effect of BLV infection in the overall number of macrophages per milliliter and in the percentage of viable macrophages among overall milk viable cells was found. Furthermore, BLV-infected dairy cows had a higher frequency of viable milk macrophages, while healthy animals had a tendency toward a higher percentage of apoptotic milk macrophages. The percentage of milk macrophages that phagocytosed Staphylococcus aureus in seronegative animals was higher than that in BLV-infected dairy cows. No effect of BLV infection on the intracellular RONS production and the intensity of phagocytosis by milk macrophages was observed. Thus, this study provides new insights into the implications of BLV infections in the bovine mammary gland.
Collapse
Affiliation(s)
- Ewerton de Souza Lima
- Núcleo Aplicado à Produção e Sanidade da Glândula Mamária, Departamento de Medicina Veterinária, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil.,Programa de Pós-Graduação em Ciência Animal, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Maiara Garcia Blagitz
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-Graduação em Saúde, Bem-estar e Produção Animal Sustentável na Fronteira Sul, Universidade Federal da Fronteira Sul, Avenida Edmundo Gaievski 1000, Realeza, Brazil
| | - Camila Freitas Batista
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre José Alves
- Núcleo Aplicado à Produção e Sanidade da Glândula Mamária, Departamento de Medicina Veterinária, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Artur Cezar de Carvalho Fernandes
- Núcleo Aplicado à Produção e Sanidade da Glândula Mamária, Departamento de Medicina Veterinária, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil.,Programa de Pós-Graduação em Ciência Animal, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Eduardo Milton Ramos Sanchez
- Department of Public Health, School of Health Sciences, National University Toribio Rodriguez de Mendonza of Amazonas, Chachapoyas, Peru.,Laboratório de Sorologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Hugo Frias Torres
- Parasitic and Infectious Diseases Laboratory, Animal Husbandry and Biotechnology Research Institute, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Peru
| | - Soraia Araújo Diniz
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcos Xavier Silva
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alice Maria Melville Paiva Della Libera
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Nogueira de Souza
- Núcleo Aplicado à Produção e Sanidade da Glândula Mamária, Departamento de Medicina Veterinária, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil.,Programa de Pós-Graduação em Ciência Animal, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil.,Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Alvarez KLF, Poma-Acevedo A, Fernández-Díaz M. A transient increase in MHC-II low monocytes after experimental infection with Avibacterium paragallinarum (serovar B-1) in SPF chickens. Vet Res 2020; 51:123. [PMID: 32977847 PMCID: PMC7517641 DOI: 10.1186/s13567-020-00840-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Infectious coryza (IC), an upper respiratory tract disease affecting chickens, is caused by Avibacterium paragallinarum. The clinical manifestations of IC include nasal discharge, facial swelling, and lacrimation. This acute disease results in high morbidity and low mortality, while the course of the disease is prolonged and mortality rates are increased in cases with secondary infections. Studies regarding the immune response in infected chickens are scarce, and the local immune response is the focal point of investigation. However, a large body of work has demonstrated that severe infections can impact the systemic immune response. The objective of this study was to evaluate the systemic effects of Avibacterium paragallinarum (serovar B-1) infection on immune cells in specific pathogen-free (SPF) chickens. The current study revealed the presence of a transient circulating monocyte population endowed with high phagocytic ability and clear downregulation of major histocompatibility complex class II (MHC-II) surface expression. In human and mouse studies, this monocyte population (identified as tolerant monocytes) has been correlated with a dysfunctional immune response, increasing the risk of secondary infections and mortality. Consistent with this dysfunctional immune response, we demonstrate that B cells from infected chickens produced fewer antibodies than those from control chickens. Moreover, T cells isolated from the peripheral blood of infected chickens had a lower ability to proliferate in response to concanavalin A than those isolated from control chickens. These findings could be related to the severe clinical signs observed in complicated IC caused by the presence of secondary infections.
Collapse
Affiliation(s)
- Karla Lucía F Alvarez
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur No 766 Km 198.5, Ica, Peru.
| | - Astrid Poma-Acevedo
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur No 766 Km 198.5, Ica, Peru
| | - Manolo Fernández-Díaz
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur No 766 Km 198.5, Ica, Peru
| |
Collapse
|
7
|
Hofmann T, Schmucker S. Characterization of Chicken Leukocyte Subsets from Lymphatic Tissue by Flow Cytometry. Cytometry A 2020; 99:289-300. [DOI: 10.1002/cyto.a.24214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/27/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Tanja Hofmann
- Department of Behavioral Physiology of Livestock Institute of Animal Science, University of Hohenheim, Garbenstr. 17 Stuttgart 70599 Germany
| | - Sonja Schmucker
- Department of Behavioral Physiology of Livestock Institute of Animal Science, University of Hohenheim, Garbenstr. 17 Stuttgart 70599 Germany
| |
Collapse
|
8
|
Sreekantapuram S, Lehnert T, Prauße MTE, Berndt A, Berens C, Figge MT, Jacobsen ID. Dynamic Interplay of Host and Pathogens in an Avian Whole-Blood Model. Front Immunol 2020; 11:500. [PMID: 32296424 PMCID: PMC7136455 DOI: 10.3389/fimmu.2020.00500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Microbial survival in blood is an essential step toward the development of disseminated diseases and blood stream infections. For poultry, however, little is known about the interactions of host cells and pathogens in blood. We established an ex vivo chicken whole-blood infection assay as a tool to analyze interactions between host cells and three model pathogens, Escherichia coli, Staphylococcus aureus, and Candida albicans. Following a systems biology approach, we complemented the experimental measurements with functional and quantitative immune characteristics by virtual infection modeling. All three pathogens were killed in whole blood, but each to a different extent and with different kinetics. Monocytes, and to a lesser extent heterophils, associated with pathogens. Both association with host cells and transcriptional activation of genes encoding immune-associated functions differed depending on both the pathogen and the genetic background of the chickens. Our results provide first insights into quantitative interactions of three model pathogens with different immune cell populations in avian blood, demonstrating a broad spectrum of different characteristics during the immune response that depends on the pathogen and the chicken line.
Collapse
Affiliation(s)
- Sravya Sreekantapuram
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institut, Jena, Germany
| | - Teresa Lehnert
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institut, Jena, Germany
| | - Maria T E Prauße
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institut, Jena, Germany.,Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Angela Berndt
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Christian Berens
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institut, Jena, Germany.,Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institut, Jena, Germany.,Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|