1
|
Durand G, Charrier P, Bes S, Bernard L, Lamothe V, Gruffat D, Bonnet M. Gene expression of free fatty acids-sensing G protein-coupled receptors in beef cattle. J Anim Sci 2024; 102:skae114. [PMID: 38659415 DOI: 10.1093/jas/skae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024] Open
Abstract
Many physiological functions are regulated by free fatty acids (FFA). Recently, the discovery of FFA-specific G protein-coupled receptors (FFARs) has added to the complexity of their actions at the cellular level. The study of FFAR in cattle is still in its earliest stages focusing mainly on dairy cows. In this study, we set out to map the expression of genes encoding FFARs in 6 tissues of beef cattle. We also investigated the potential effect of dietary forage nature on FFAR gene expression. To this end, 16 purebred Charolais bulls were fed a grass silage ration or a maize silage ration (n = 8/group) with a forage/concentrate ratio close to 60:40 for 196 d. The animals were then slaughtered at 485 ± 42 d and liver, spleen, ileum, rectum, perirenal adipose tissue (PRAT), and Longissimus Thoracis muscle were collected. FFAR gene expression was determined by real-time quantitative PCR. Our results showed that of the five FFARs investigated, FFAR1, FFAR2, FFAR3, and GPR84 are expressed (Ct < 30) in all six tissues, whereas FFAR4 was only expressed (Ct < 30) in PRAT, ileum, and rectum. In addition, our results showed that the nature of the forage, i.e., grass silage or maize silage, had no effect on the relative abundance of FFAR in any of the tissues studied (P value > 0.05). Taken together, these results open new perspectives for studying the physiological role of these receptors in beef cattle, particularly in nutrient partitioning during growth.
Collapse
Affiliation(s)
- Guillaume Durand
- INRAE, Université Clermont Auvergne, VetagroSup, UMRH, 63122 Saint-Genès-Champanelle, France
- Bordeaux Sciences Agro, 33170 Gradignan, France
| | | | - Sébastien Bes
- INRAE, Université Clermont Auvergne, VetagroSup, UMRH, 63122 Saint-Genès-Champanelle, France
| | - Laurence Bernard
- INRAE, Université Clermont Auvergne, VetagroSup, UMRH, 63122 Saint-Genès-Champanelle, France
| | | | - Dominique Gruffat
- INRAE, Université Clermont Auvergne, VetagroSup, UMRH, 63122 Saint-Genès-Champanelle, France
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, VetagroSup, UMRH, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
2
|
Fabjanowska J, Kowalczuk-Vasilev E, Klebaniuk R, Milewski S, Gümüş H. N-3 Polyunsaturated Fatty Acids as a Nutritional Support of the Reproductive and Immune System of Cattle-A Review. Animals (Basel) 2023; 13:3589. [PMID: 38003206 PMCID: PMC10668692 DOI: 10.3390/ani13223589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This paper focuses on the role of n-3 fatty acids as a nutrient crucial to the proper functioning of reproductive and immune systems in cattle. Emphasis was placed on the connection between maternal and offspring immunity. The summarized results confirm the importance and beneficial effect of n-3 family fatty acids on ruminant organisms. Meanwhile, dietary n-3 fatty acids supplementation, especially during the critical first week for dairy cows experiencing their peripartum period, in general, is expected to enhance reproductive performance, and the impact of its supplementation appears to be dependent on body condition scores of cows during the drying period, the severity of the negative energy balance, and the amount of fat in the basic feed ration. An unbalanced, insufficient, or excessive fatty acid supplementation of cows' diets in the early stages of pregnancy (during fetus development) may affect both the metabolic and nutritional programming of the offspring. The presence of the polyunsaturated fatty acids of the n-3 family in the calves' ration affects not only the performance of calves but also the immune response, antioxidant status, and overall metabolism of the future adult cow.
Collapse
Affiliation(s)
- Julia Fabjanowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Renata Klebaniuk
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Szymon Milewski
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Hıdır Gümüş
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, 15030 Burdur, Türkiye;
| |
Collapse
|
3
|
Duncan EM, Vita L, Dibnah B, Hudson BD. Metabolite-sensing GPCRs controlling interactions between adipose tissue and inflammation. Front Endocrinol (Lausanne) 2023; 14:1197102. [PMID: 37484963 PMCID: PMC10357040 DOI: 10.3389/fendo.2023.1197102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Metabolic disorders including obesity, diabetes and non-alcoholic steatohepatitis are a group of conditions characterised by chronic low-grade inflammation of metabolic tissues. There is now a growing appreciation that various metabolites released from adipose tissue serve as key signalling mediators, influencing this interaction with inflammation. G protein-coupled receptors (GPCRs) are the largest family of signal transduction proteins and most historically successful drug targets. The signalling pathways for several key adipose metabolites are mediated through GPCRs expressed both on the adipocytes themselves and on infiltrating macrophages. These include three main groups of GPCRs: the FFA4 receptor, which is activated by long chain free fatty acids; the HCA2 and HCA3 receptors, activated by hydroxy carboxylic acids; and the succinate receptor. Understanding the roles these metabolites and their receptors play in metabolic-immune interactions is critical to establishing how these GPCRs may be exploited for the treatment of metabolic disorders.
Collapse
|
4
|
Chen Z, Lu Q, Wang J, Cao X, Wang K, Wang Y, Wu Y, Yang Z. The function of omega-3 polyunsaturated fatty acids in response to cadmium exposure. Front Immunol 2022; 13:1023999. [PMID: 36248838 PMCID: PMC9558127 DOI: 10.3389/fimmu.2022.1023999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Throughout history, pollution has become a part of our daily life with the improvement of life quality and the advancement of industry and heavy industry. In recent years, the adverse effects of heavy metals, such as cadmium (Cd), on human health have been widely discussed, particularly on the immune system. Here, this review summarizes the available evidence on how Cd exposure may affect health. By analyzing the general manifestations of inflammation caused by Cd exposure, we find that the role of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) in vivo can counteract Cd-induced harm. Additionally, we elucidate the effects of n-3 PUFAs on the immune system, and analyze their prophylactic and therapeutic effects on Cd exposure. Overall, this review highlights the role of n-3 PUFAs in the pathological changes induced by Cd exposure. Although n-3 PUFAs remain to be verified whether they can be used as therapeutic agents, as rehabilitation therapy, supplementation with n-3 PUFAs is reliable and effective.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiacheng Wang
- College of Medical, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Zhangping Yang,
| |
Collapse
|
5
|
D'Aquila P, Giacconi R, Malavolta M, Piacenza F, Bürkle A, Villanueva MM, Dollé MET, Jansen E, Grune T, Gonos ES, Franceschi C, Capri M, Grubeck-Loebenstein B, Sikora E, Toussaint O, Debacq-Chainiaux F, Hervonen A, Hurme M, Slagboom PE, Schön C, Bernhardt J, Breusing N, Passarino G, Provinciali M, Bellizzi D. Microbiome in Blood Samples From the General Population Recruited in the MARK-AGE Project: A Pilot Study. Front Microbiol 2021; 12:707515. [PMID: 34381434 PMCID: PMC8350766 DOI: 10.3389/fmicb.2021.707515] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023] Open
Abstract
The presence of circulating microbiome in blood has been reported in both physiological and pathological conditions, although its origins, identities and function remain to be elucidated. This study aimed to investigate the presence of blood microbiome by quantitative real-time PCRs targeting the 16S rRNA gene. To our knowledge, this is the first study in which the circulating microbiome has been analyzed in such a large sample of individuals since the study was carried out on 1285 Randomly recruited Age-Stratified Individuals from the General population (RASIG). The samples came from several different European countries recruited within the EU Project MARK-AGE in which a series of clinical biochemical parameters were determined. The results obtained reveal an association between microbial DNA copy number and geographic origin. By contrast, no gender and age-related difference emerged, thus demonstrating the role of the environment in influencing the above levels independent of age and gender at least until the age of 75. In addition, a significant positive association was found with Free Fatty Acids (FFA) levels, leukocyte count, insulin, and glucose levels. Since these factors play an essential role in both health and disease conditions, their association with the extent of the blood microbiome leads us to consider the blood microbiome as a potential biomarker of human health.
Collapse
Affiliation(s)
- Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Rende, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) INRCA National Institute on Health and Science on Ageing, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) INRCA National Institute on Health and Science on Ageing, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) INRCA National Institute on Health and Science on Ageing, Ancona, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - María Moreno Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Sport Science, Human Performance Research Centre, University of Konstanz, Konstanz, Germany
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center, Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | | | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olivier Toussaint
- Research Unit of Cellular Biology (URBC) Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Florence Debacq-Chainiaux
- Research Unit of Cellular Biology (URBC) Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | | | - Mikko Hurme
- Medical School, University of Tampere, Tampere, Finland
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, Netherlands
| | | | | | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Rende, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) INRCA National Institute on Health and Science on Ageing, Ancona, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Rende, Italy
| |
Collapse
|
6
|
Hidalgo MA, Carretta MD, Burgos RA. Long Chain Fatty Acids as Modulators of Immune Cells Function: Contribution of FFA1 and FFA4 Receptors. Front Physiol 2021; 12:668330. [PMID: 34276398 PMCID: PMC8280355 DOI: 10.3389/fphys.2021.668330] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Long-chain fatty acids are molecules that act as metabolic intermediates and constituents of membranes; however, their novel role as signaling molecules in immune function has also been demonstrated. The presence of free fatty acid (FFA) receptors on immune cells has contributed to the understanding of this new role of long-chain fatty acids (LCFAs) in immune function, showing their role as anti-inflammatory or pro-inflammatory molecules and elucidating their intracellular mechanisms. The FFA1 and FFA4 receptors, also known as GPR40 and GPR120, respectively, have been described in macrophages and neutrophils, two key cells mediating innate immune response. Ligands of the FFA1 and FFA4 receptors induce the release of a myriad of cytokines through well-defined intracellular signaling pathways. In this review, we discuss the cellular responses and intracellular mechanisms activated by LCFAs, such as oleic acid, linoleic acid, palmitic acid, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), in T-cells, macrophages, and neutrophils, as well as the role of the FFA1 and FFA4 receptors in immune cells.
Collapse
Affiliation(s)
- Maria A Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Maria D Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
7
|
Wang X, Ilarraza R, Tancowny BP, Alam SB, Kulka M. Disrupted Lipid Raft Shuttling of FcεRI by n-3 Polyunsaturated Fatty Acid Is Associated With Ligation of G Protein-Coupled Receptor 120 (GPR120) in Human Mast Cell Line LAD2. Front Nutr 2020; 7:597809. [PMID: 33330598 PMCID: PMC7732685 DOI: 10.3389/fnut.2020.597809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
n-3 polyunsaturated fatty acids (PUFA) influences a variety of disease conditions, such as hypertension, heart disease, diabetes, cancer and allergic diseases, by modulating membrane constitution, inhibiting production of proinflammatory eicosanoids and cytokines, and binding to cell surface and nuclear receptors. We have previously shown that n-3 PUFA inhibit mast cell functions by disrupting high affinity IgE receptor (FcεRI) lipid raft partitioning and subsequent suppression of FcεRI signaling in mouse bone marrow-derived mast cells. However, it is still largely unknown how n-3 PUFA modulate human mast cell function, which could be attributed to multiple mechanisms. Using a human mast cell line (LAD2), we have shown similar modulating effects of n-3 PUFA on FcεRI lipid raft shuttling, FcεRI signaling, and mediator release after cell activation through FcεRI. We have further shown that these effects are at least partially associated with ligation of G protein-coupled receptor 120 expressed on LAD2 cells. This observation has advanced our mechanistic knowledge of n-3 PUFA's effect on mast cells and demonstrated the interplay between n-3 PUFA, lipid rafts, FcεRI, and G protein-coupled receptor 120. Future research in this direction may present new targets for nutritional intervention and therapeutic agents.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Ramses Ilarraza
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Brian P Tancowny
- Department of Biochemistry, Prion Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Syed Benazir Alam
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,National Research Council Canada, Nanotechnology Research Centre, Edmonton, AB, Canada
| | - Marianna Kulka
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,National Research Council Canada, Nanotechnology Research Centre, Edmonton, AB, Canada
| |
Collapse
|
8
|
Bionaz M, Vargas-Bello-Pérez E, Busato S. Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J Anim Sci Biotechnol 2020; 11:110. [PMID: 33292523 PMCID: PMC7667790 DOI: 10.1186/s40104-020-00512-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
9
|
Fat taste signal transduction and its possible negative modulator components. Prog Lipid Res 2020; 79:101035. [DOI: 10.1016/j.plipres.2020.101035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
|
10
|
Masmeijer C, van Leenen K, De Cremer L, Deprez P, Cox E, Devriendt B, Pardon B. Effects of omega-3 fatty acids on immune, health and growth variables in veal calves. Prev Vet Med 2020; 179:104979. [PMID: 32388034 DOI: 10.1016/j.prevetmed.2020.104979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Under the present intensive rearing conditions, calves face a series of stressors and multiple pathogens often necessitating antimicrobial use. Multiple feed additives are currently explored for their ability to prevent disease and limit the use of antimicrobials. Supplementation of the polyunsaturated long chain n-3 fatty acids eicosapentaenoic (EPA) and docohexaenoic (DHA) from marine origin has been proposed as a strategy to improve immune function and prevent excessive inflammation reactions. The aim of this randomized clinical trial was to explore the effects of n-3 fatty acids (PUFAs) used as feed supplement on health, production and immune variables in a veal calf setting. One hundred-seventy calves were randomly assigned to 3 treatment groups: microalgae (MA, n = 57, 2.5 g DHA/animal/day), fish oil (FO, n = 57, 2.5 g EPA + DHA/animal/day)] and a control group (CON, n = 56). Average daily gain (ADG), bodyweight at 12 weeks on feed and slaughter weight were determined. Health monitoring consisted of recording of clinical signs and repeated thoracic ultrasonography. After 5, 8 and 11 weeks of supplementation, the function of neutrophils, monocytes and peripheral blood mononuclear cells (PBMCs) was evaluated ex vivo by measuring reactive oxygen species (ROS) production by neutrophils and monocytes and proliferation of and cytokine release by PBMCs. Under the field conditions of this study, dietary supplementation of MA and FO showed very limited immunomodulatory effects. Feeding MA led to increased ROS production by neutrophils, Estimate (E) = 0.38, Standard Error (SE) = 0.14; P < 0.05, compared to the control calves after 5 weeks of in-feed supplementation. FO reduced IL-6 secretion E= -0.29, SE= 0.11; P < 0.05 compared to MA treated animals after 11 weeks on feed. Health and production variables were unaffected by treatments. The doses of EPA and DHA used in this study did not cause immunomodulatory changes in highly stressed calves to such an extent that this led to better health or growth of animals.
Collapse
Affiliation(s)
- Christien Masmeijer
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium; Proviron Industries NV, Georges Gilliotstraat 60, Hemiksem, 2620, Belgium.
| | - Katharina van Leenen
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Lieze De Cremer
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Piet Deprez
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Bart Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| |
Collapse
|
11
|
Valenzuela P, Teuber S, Manosalva C, Alarcón P, Figueroa CD, Ratto M, Burgos RA, Hidalgo MA. Functional expression of the free fatty acids receptor-1 and -4 (FFA1/GPR40 and FFA4/GPR120) in bovine endometrial cells. Vet Res Commun 2019; 43:179-186. [PMID: 31187404 DOI: 10.1007/s11259-019-09758-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/24/2019] [Indexed: 01/22/2023]
Abstract
Endometrial epithelial cells play a key defensive role as part of the innate immune response of cow uterus. An association between risk of acquiring infectious diseases and increased levels of free fatty acids postpartum has been suggested, and the use of omega-3 fatty acids such as docosahexaenoic acid (DHA) has been proposed as a beneficial strategy to improve immunity and fertility. The goal of our study was to demonstrate the presence of free fatty acid (FFA)-1 and 4 receptors in endometrial cells and to investigate their role on DHA interference in lipopolysaccharide (LPS)-induced inflammatory endometrial activation. We demonstrated that the bovine endometrial (BEND) cells line and bovine endometrium express both FFA1 and FFA4 receptors. FFA1 and FFA4 receptors were localized in the epithelium lining the endometrial cavity and in endometrial glands whereas in BEND cells a characteristic cell membrane localization of both receptors was observed. DHA, a FFA4 natural agonist, increased intracellular calcium mobilization in BEND cells, but the FFA1 agonists oleic and linoleic acids did not increase this response. DHA-induced intracellular calcium mobilization was inhibited by the FFA4 and FFA1 antagonists AH7614 and GW1100, respectively. DHA significantly reduced LPS-induced prostaglandin E2 (PGE2) production, but none of the antagonists reduced the effect produced by DHA. On the contrary, linoleic acid increased LPS-induced PGE2 production. In conclusion, endometrial cells express FFA4 and FFA1 receptors, and DHA induces intracellular calcium release via FFA4 and FFA1 receptors. DHA reduces PGE2, but this response was not mediated by FFA4 or FFA1 receptors.
Collapse
Affiliation(s)
- Pamela Valenzuela
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Marcelo Ratto
- Institute of Animal Science, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Maria A Hidalgo
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|