1
|
Saco Y, Bassols A. Acute phase proteins in cattle and swine: A review. Vet Clin Pathol 2023; 52 Suppl 1:50-63. [PMID: 36526287 DOI: 10.1111/vcp.13220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The major acute phase proteins (APPs) in cattle are haptoglobin (Hp) and serum amyloid A (SAA), and in swine, are Hp, SAA, C-reactive protein (CRP), and Pig major acute phase protein (Pig-MAP). Many methodologic assays are presently available to measure these parameters, which are still being improved to increase their specificity, sensitivity, user-friendliness, and economic availability. In cattle, the main applications are the diagnosis and monitoring of frequent diseases such as mastitis and metritis in dairy cows and respiratory problems in young calves. In pigs, APPs are useful in the control of bacterial and viral infections, and they may be used at the slaughterhouse to monitor subclinical pathologies and improve food safety. The utility of APP in animal production must not be forgotten; optimization of protocols to improve performance, welfare, and nutrition may benefit from the use of APPs. Other sample types besides serum or plasma have potential uses; APP determination in milk is a powerful tool in the control of mastitis, saliva is a non-invasive sample type, and meat juice is easily obtained at the slaughterhouse. Increasing our knowledge of reference intervals and the influence of variables such as age, breed, sex, and the season is important. Finally, worldwide harmonization and standardization of analytical procedures will help to expand the use of APPs.
Collapse
Affiliation(s)
- Yolanda Saco
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Bassols A, Robles-Guirado JA, Arroyo L, Soler L, García N, Pato R, Peña R, Saco Y, Armengol R, Lampreave F, Alava MA, Canalias F, Piñeiro M. Validation of new automated turbidimetric immunoassays for the measurement of haptoglobin and inter-α-trypsin inhibitor heavy chain H4 specific for the bovine species. Vet Clin Pathol 2023; 52 Suppl 1:64-74. [PMID: 36328958 DOI: 10.1111/vcp.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Good strategical programs are required for the early detection of disease even in the absence of evident clinical signs, which is crucial in satisfying animal welfare. Haptoglobin (Hp) and inter-α-trypsin inhibitor heavy chain H4 (ITIH4) are acute phase proteins and good biomarkers of early inflammation in cattle, with plasma levels that significantly increase after injury or infection. OBJECTIVES We aimed to develop and validate two new immunoturbidimetric methods for Hp and ITIH4. METHODS Species-specific antibodies were obtained and used to develop the immunoassays. For the Hp assay, antibodies were fixed to latex microparticles to enhance detection. The immunoassays were set up in an automated analyzer to carry out validation studies. Reference intervals were calculated using Reference Value Advisor. RESULTS The Hp immunoturbidimetric method had a linear analytical range up to 0.40 mg/mL. The limit of detection (LoD) was 0.005 mg/mL, and the limit of quantification (LoQ) was 0.007 mg/mL. Total imprecision was less than 7%. Comparison with ELISA and single radial immunodiffusion (SRID) showed good correlation, whereas the comparison with the colorimetric method showed constant and proportional differences. The ITIH4 immunoassay showed linearity up to 5 mg/mL, and the LoD was 0.002 mg/mL. Total imprecision was less than 6%. Method comparison showed a good correlation with single radial immunodiffusion, both methods being equivalent. Bilirubin, triglycerides, and hemoglobin presented no interference in any of the assays. Reference intervals were 0.007-0.017 mg/mL for Hp and 0.2-0.7 mg/mL for ITIH4 in dairy cows 10 days before parturition. CONCLUSIONS Immunoturbidimetric methods developed for Hp and ITIH4 can measure basal and increased levels of these proteins, showing adequate precision, accuracy, and robustness.
Collapse
Affiliation(s)
- Anna Bassols
- Servei de Bioquímica Clínica Veterinària (SBCV), Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Angel Robles-Guirado
- Servei de Bioquímica Clínica Veterinària (SBCV), Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Arroyo
- Servei de Bioquímica Clínica Veterinària (SBCV), Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Natalia García
- Departamento de Bioquímica y Biología molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Raquel Pato
- Servei de Bioquímica Clínica Veterinària (SBCV), Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Peña
- Servei de Bioquímica Clínica Veterinària (SBCV), Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yolanda Saco
- Servei de Bioquímica Clínica Veterinària (SBCV), Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramon Armengol
- Departament de Ciència Animal, ETSEA, Universitat de Lleida, Lleida, Spain
| | - Fermín Lampreave
- Departament de Ciència Animal, ETSEA, Universitat de Lleida, Lleida, Spain
| | - María A Alava
- Departament de Ciència Animal, ETSEA, Universitat de Lleida, Lleida, Spain
| | - Francesca Canalias
- Laboratori de Referència d'Enzimologia Clínica (LREC), Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
3
|
Ma Y, Li R, Wang J, Jiang W, Yuan X, Cui J, Wang C. ITIH4, as an inflammation biomarker, mainly increases in bacterial bloodstream infection. Cytokine 2020; 138:155377. [PMID: 33348064 DOI: 10.1016/j.cyto.2020.155377] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Bloodstream infection (BSI) is usually accompanied with the changes of varieties of inflammation proteins. In our previous study, we identified that inter-α-trypsin inhibitor heavy chain H4 (ITIH4) was highly expressed in the infection arms than the normal control arm. However, the correlated verification and mechanism remain obscure. Escherichia coli infected mice model and clinical serum samples were used to validate the concentration of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), as well as ITIH4, in ELISA method. Cytokines (IL-6, TNF-α, IL-10 and lipopolysaccharide (LPS)) were used to stimulate the HepG2 cell model to explore which cytokines influence the expression of ITIH4. JAK/STAT inhibitor was treated before IL-6 and LPS stimulation. Westernblot, as well as real-time PCR were performed to detect the expression of ITIH4 in liver tissue from protein and transcription levels. Immunohistochemistry analysis was used to observe the expression of ITIH4 in mice liver tissue. In mice model, IL-6, TNF-α, as well as IL-10 increased in the infection arms than the normal control arm. ITIH4 in serum and liver tissue of mice model increased from 1 h to 128 h, which were remarkably different from that of the normal control arm. Besides, ITIH4 increased in the bacterial infection arm greatly than the fungemia arm, mycoplasma pneumoniae (MP) arm and febrile arm in clinical serum samples. Furthermore, using the HepG2 cell line, we demonstrated that ITIH4 was up-regulated at both protein and mRNA levels upon dose- and time- response treatments with IL-6, as well as LPS. Moreover, IL-6 or LPS mediated induction of ITIH4 expression could be significantly decreased by treatment with an JAK/STAT inhibitor in protein or mRNA level. No changes were observed after TNF-α or IL-10 stimulation. ITIH4 might be a critical inflammatory biomarker which correlated with the development of BSI, especially with bacterial bloodstream infection. It is expected that this study would provide some insights into potential functional mechanisms underlying BSI.
Collapse
Affiliation(s)
- Yating Ma
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China; Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Ruibing Li
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianan Wang
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Wencan Jiang
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaozhou Yuan
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiayue Cui
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Chengbin Wang
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China; Nankai University School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Cai L, Tong J, Zhang Z, Zhang Y, Jiang L, Hou X, Zhang H. Staphylococcus aureus-induced proteomic changes in the mammary tissue of rats: A TMT-based study. PLoS One 2020; 15:e0231168. [PMID: 32365127 PMCID: PMC7197811 DOI: 10.1371/journal.pone.0231168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/17/2020] [Indexed: 01/29/2023] Open
Abstract
Staphylococcus aureus is one of the most important pathogens causing mastitis in dairy cows. The objective of this study was to establish a rat model of mastitis induced by S. aureus infection and to explore changes in the proteomes of mammary tissue in different udder states, providing a better understanding of the host immune response to S. aureus mastitis. On day 3 post-partum, 6 rats were randomly divided into two groups (n = 3), with either 100 μL of PBS (blank group) or a S. aureus suspension containing 2×107 CFU·mL−1 (challenge group) infused into the mammary gland duct. After 24 h of infection, the rats were sacrificed, and mammary gland tissue was collected. Tandem mass tag (TMT)-based technology was applied to compare the proteomes of healthy and mastitic mammary tissues. Compared with the control group, the challenge group had 555 proteins with significant differences in expression, of which 428 were significantly upregulated (FC>1.2 and p<0.05) and 127 were downregulated (FC>0.83 and p<0.05 or p<0.01). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that upregulated differentially significant expressed proteins (DSEPs) were associated with mainly immune responses, including integrin alpha M, inter-α-trypsin inhibitor heavy chain 4, and alpha-2-macroglobulin. This study is the first in which a rat model of S. aureus-induced mastitis was used to explore the proteins related to mastitis in dairy cows by TMT technology, providing a model for replication of dairy cow S. aureus-induced mastitis experiments.
Collapse
Affiliation(s)
- Lirong Cai
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jinjin Tong
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zhaonan Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yonghong Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaolin Hou
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hua Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- * E-mail:
| |
Collapse
|
5
|
Lu Q, Li X, Zhao J, Zhu J, Luo Y, Duan H, Ji P, Wang K, Liu B, Wang X, Fan W, Sun Y, Zhou EM, Zhao Q. Nanobody‑horseradish peroxidase and -EGFP fusions as reagents to detect porcine parvovirus in the immunoassays. J Nanobiotechnology 2020; 18:7. [PMID: 31910833 PMCID: PMC6945459 DOI: 10.1186/s12951-019-0568-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Antibodies are an important reagent to determine the specificity and accuracy of diagnostic immunoassays for various diseases. However, traditional antibodies have several shortcomings due to their limited abundance, difficulty in permanent storage, and required use of a secondary antibody. Nanobodies, which are derived from single-chain camelid antibodies, can circumvent many of these limitations and, thus, appear to be a promising substitute. In the presented study, a sandwich ELISA-like immunoassay and direct fluorescent assay with high sensitivity, good specificity, and easy operation were the first time to develop for detecting porcine parvovirus (PPV). After screening PPV viral particles 2 (VP2) specific nanobodies, horseradish peroxidase (HRP) and enhanced green fluorescent protein (EGFP) fusions were derived from the nanobodies by recombinant technology. Finally, using the nanobody-HRP and -EGFP fusions as probes, the developed immunoassays demonstrate specific, sensitive, and rapid detection of PPV. Results In the study, five PPV-VP2 specific nanobodies screened from an immunised Bactrian camel were successfully expressed with the bacterial system and purified with a Ni–NTA column. Based on the reporter-nanobody platform, HRP and EGFP fusions were separately produced by transfection of HEK293T cells. A sandwich ELISA-like assay for detecting PPV in the samples was firstly developed using PPV-VP2-Nb19 as the capture antibody and PPV-VP2-Nb56-HRP fusions as the detection antibody. The assay showed 92.1% agreement with real-time PCR and can be universally used to surveil PPV infection in the pig flock. In addition, a direct fluorescent assay using PPV-VP2-Nb12-EGFP fusion as a probe was developed to detect PPV in ST cells. The assay showed 81.5% agreement with real-time PCR and can be used in laboratory tests. Conclusions For the first time, five PPV-VP2 specific nanobody-HRP and -EGFP fusions were produced as reagents for developing immunoassays. A sandwich ELISA-like immunoassay using PPV-VP2-Nb19 as the capture antibody and PPV-VP2-Nb56-HRP fusion as the detection antibody was the first time to develop for detecting PPV in different samples. Results showed that the immunoassay can be universally used to surveil PPV infection in pig flock. A direct fluorescent assay using PPV-VP2-Nb12-EGFP as a probe was also developed to detect PPV in ST cells. The two developed immunoassays eliminate the use of commercial secondary antibodies and shorten detection time. Meanwhile, both assays display great developmental prospect for further commercial production and application.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jiakai Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jiahong Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Yuhang Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Hong Duan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Kun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Xueting Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Wenqi Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|