1
|
Zhang Z, Zhang H, Luo Q, Zheng Y, Kong W, Huang L, Zhao M. Variations in NSP1 of Porcine Reproductive and Respiratory Syndrome Virus Isolated in China from 1996 to 2022. Genes (Basel) 2023; 14:1435. [PMID: 37510339 PMCID: PMC10379836 DOI: 10.3390/genes14071435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Since its successful isolation in China in 1995, the porcine reproductive and respiratory syndrome virus (PRRSV) has been mutating into highly pathogenic strains by constantly changing pathogenicity and genetic makeup. In this study, we investigated the prevalence and genetic variation of nonstructural protein 1 (NSP1) in PRRSV-2, the main strain prevalent in China. After formulating hypotheses regarding the biology of the NSP1 protein, the nucleotide and amino acid similarity of NSP1 were analyzed and compared in 193 PRRSV-2 strains. The results showed that NSP1 has a stable hydrophobic protein with a molecular weight of 43,060.76 Da. Although NSP1 lacked signal peptides, it could regulate host cell signaling. Furthermore, NSP1 of different strains had high nucleotide (79.6-100%) and amino acid similarity (78.6-100%). In the amino acid sequence comparison of 15 representative strains of PRRSV-2, multiple amino acid substitution sites were found in NSP1. Phylogenetic tree analysis showed that lineages 1 and 8 had different evolutionary branches with long genetic distances. This study lays the foundation for an in-depth understanding of the nature and genetic variation of NSP1 and the development of a safe and effective vaccine in the future.
Collapse
Affiliation(s)
- Zhiqing Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA;
| | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| |
Collapse
|
2
|
van Kleef M, Pretorius A. Editorial: Immune transcriptome sequencing reveals secrets of veterinary infectious diseases. Front Vet Sci 2023; 10:1208088. [PMID: 37323830 PMCID: PMC10265631 DOI: 10.3389/fvets.2023.1208088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
|
3
|
Clilverd H, Martín-Valls G, Li Y, Martín M, Cortey M, Mateu E. Infection dynamics, transmission, and evolution after an outbreak of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1109881. [PMID: 36846785 PMCID: PMC9947509 DOI: 10.3389/fmicb.2023.1109881] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
The present study was aimed at describing the infection dynamics, transmission, and evolution of porcine reproductive and respiratory syndrome virus (PRRSV) after an outbreak in a 300-sow farrow-to-wean farm that was implementing a vaccination program. Three subsequent batches of piglets (9-11 litters/batch) were followed 1.5 (Batch 1), 8 (Batch 2), and 12 months after (Batch 3) from birth to 9 weeks of age. The RT-qPCR analysis showed that shortly after the outbreak (Batch 1), one third of sows were delivering infected piglets and the cumulative incidence reached 80% by 9 weeks of age. In contrast, in Batch 2, only 10% animals in total got infected in the same period. In Batch 3, 60% litters had born-infected animals and cumulative incidence rose to 78%. Higher viral genetic diversity was observed in Batch 1, with 4 viral clades circulating, of which 3 could be traced to vertical transmission events, suggesting the existence of founder viral variants. In Batch 3 though only one variant was found, distinguishable from those circulating previously, suggesting that a selection process had occurred. ELISA antibodies at 2 weeks of age were significantly higher in Batch 1 and 3 compared to Batch 2, while low levels of neutralizing antibodies were detected in either piglets or sows in all batches. In addition, some sows present in Batch 1 and 3 delivered infected piglets twice, and the offspring were devoid of neutralizing antibodies at 2 weeks of age. These results suggest that a high viral diversity was featured at the initial outbreak followed by a phase of limited circulation, but subsequently an escape variant emerged in the population causing a rebound of vertical transmission. The presence of unresponsive sows that had vertical transmission events could have contributed to the transmission. Moreover, the records of contacts between animals and the phylogenetic analyses allowed to trace back 87 and 47% of the transmission chains in Batch 1 and 3, respectively. Most animals transmitted the infection to 1-3 pen-mates, but super-spreaders were also identified. One animal that was born-viremic and persisted as viremic for the whole study period did not contribute to transmission.
Collapse
Affiliation(s)
| | - Gerard Martín-Valls
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Yanli Li
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marga Martín
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | | |
Collapse
|
4
|
Lv H, Peng Z, Jia B, Jing H, Cao S, Xu Z, Dong W. Transcriptome analysis of PK-15 cells expressing CSFV NS4A. BMC Vet Res 2022; 18:434. [PMID: 36503524 PMCID: PMC9742017 DOI: 10.1186/s12917-022-03533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Classical swine fever (CSF) is a severe disease of pigs that results in huge economic losses worldwide and is caused by classical swine fever virus (CSFV). CSFV nonstructural protein 4 A (NS4A) plays a crucial role in infectious CSFV particle formation. However, the function of NS4A during CSFV infection is not well understood. RESULTS: In this study, we used RNA-seq to investigate the functional role of CSFV NS4A in PK-15 cells. A total of 3893 differentially expressed genes (DEGs) were identified in PK-15 cells expressing NS4A compared to cells expressing the empty vector (NC). Twelve DEGs were selected and further verified by RT‒qPCR. GO and KEGG enrichment analyses revealed that these DEGs were associated with multiple biological functions, including cell adhesion, apoptosis, host defence response, the inflammatory response, the immune response, and autophagy. Interestingly, some genes associated with host immune defence and inflammatory response were downregulated, and some genes associated with host apoptosis and autophagy were upregulated. CONCLUSION CSFV NS4A inhibits the innate immune response, and suppresses the expression of important genes associated with defence response to viruses and inflammatory response, and regulates cell adhesion, apoptosis and autophagy.
Collapse
Affiliation(s)
- Huifang Lv
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Zhifeng Peng
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Bingxin Jia
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Huiyuan Jing
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Sufang Cao
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Zhikun Xu
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Wang Dong
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| |
Collapse
|
5
|
Mapping the Key Residues within the Porcine Reproductive and Respiratory Syndrome Virus nsp1α Replicase Protein Required for Degradation of Swine Leukocyte Antigen Class I Molecules. Viruses 2022; 14:v14040690. [PMID: 35458420 PMCID: PMC9030574 DOI: 10.3390/v14040690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
The nonstructural protein 1α (nsp1α) of the porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to target swine leukocyte antigen class I (SLA-I) for degradation, but the molecular details remain unclear. In this report, we further mapped the critical residues within nsp1α by site-directed mutagenesis. We identified a cluster of residues (i.e., Phe17, Ile81, Phe82, Arg86, Thr88, Gly90, Asn91, Phe94, Arg97, Thr160, and Asn161) necessary for this function. Interestingly, they are all located in a structurally relatively concentrated region. Further analysis by reverse genetics led to the generation of two viable viral mutants, namely, nsp1α-G90A and nsp1α-T160A. Compared to WT, nsp1α-G90A failed to co-localize with either chain of SLA-I within infected cells, whereas nsp1α-T160A exhibited a partial co-localization relationship. Consequently, the mutant nsp1α-G90A exhibited an impaired ability to downregulate SLA-I in infected macrophages as demonstrated by Western blot, indirect immunofluorescence, and flow cytometry analysis. Consistently, the ubiquitination level of SLA-I was significantly reduced in the conditions of both infection and transfection. Together, our results provide further insights into the mechanism underlying PRRSV subversion of host immunity and have important implications in vaccine development.
Collapse
|
6
|
Liu JX, Chao XY, Chen P, Wang YD, Su TJ, Li M, Xu RY, Wu Q. Transcriptome Analysis of Selenium-Treated Porcine Alveolar Macrophages Against Lipopolysaccharide Infection. Front Genet 2021; 12:645401. [PMID: 33747052 PMCID: PMC7970123 DOI: 10.3389/fgene.2021.645401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/02/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jia-Xuan Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xin-Yu Chao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Peng Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yi-Ding Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Tong-Jian Su
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Meng Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ru-Yu Xu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|