1
|
Li Y, Quan Y, Chen P, Zhuge X, Qin T, Chen S, Peng D, Liu X. Development of High-Production Bacterial Biomimetic Vesicles for Inducing Mucosal Immunity Against Avian Pathogenic Escherichia coli. Int J Mol Sci 2024; 25:12055. [PMID: 39596124 PMCID: PMC11593933 DOI: 10.3390/ijms252212055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
To evaluate the immunoprotective effect of bacterial biomimetic vesicles (BBVs) against avian pathogenic Escherichia coli (APEC), a ΔtolA J11 mutant strain was generated by deleting the tolA gene in the low pathogenic O78 serotype J11 strain. The total protein content of outer membrane vesicles (OMVs) derived from the ΔtolA J11 strain exhibited a sevenfold increase compared to the wild-type strain. Additionally, high-pressure homogenization technology was employed to produce BBVs, resulting in a sixfold increase in total protein content compared to spontaneously secreted OMVs from ΔtolA J11. The immunogenicity of both OMVs and BBVs was assessed through intranasal or intramuscular immunization in specific pathogen-free (SPF) chickens. Results demonstrated that intranasal immunization with OMVs or BBVs in chickens elicited specific IgY antibodies against APEC outer membrane proteins and specific sIgA antibodies in the nasal cavity and trachea, as well as a significant increase in the proliferation response of chicken peripheral blood lymphocytes. The bacterial load in the blood and various organs of the challenged chickens were significantly reduced, resulting in a 66.67% and 58.30% survival rate against a high pathogenic serotype O78 strain challenge, while the control group exhibited only a 16.67% survival rate. The intramuscular immunization with OMVs or BBVs in chickens only induced specific IgY antibodies, with a survival rate of only 33.33% for challenged chickens during the same period. Therefore, intranasal vaccination of the highly productive BBVs is capable of eliciting an immune response similar to that of OMVs and providing protection against APEC infection, thus offering innovative insights for the advancement of APEC vaccines.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| | - Yuji Quan
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| | - Peng Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| | - Xiangkai Zhuge
- School of Public Health, Nantong University, Nantong 226019, China;
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| |
Collapse
|
2
|
Ceccopieri C, Madej JP. Chicken Secondary Lymphoid Tissues-Structure and Relevance in Immunological Research. Animals (Basel) 2024; 14:2439. [PMID: 39199973 PMCID: PMC11350708 DOI: 10.3390/ani14162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Recent discoveries have indicated the importance of developing modern strategies for vaccinations, more ethical research models, and effective alternatives to antibiotic treatment in farm animals. Chickens (Gallus gallus) play a crucial role in this context given the commercial and economic relevance of poultry production worldwide and the search for analogies between the immune systems of humans and birds. Specifically, chicken secondary lymphoid tissues share similar features to their human counterparts. Chickens have several secondary or peripheral lymphoid tissues that are the sites where the adaptive immune response is initiated. The more general classification of these organs divides them into the spleen and skin-, pineal-, or mucosa-associated lymphoid tissues. Each of these tissues is further subdivided into separate lymphoid structures that perform specific and different functions along the animal's body. A review summarizing the state of the art of research on chicken secondary lymphoid organs is of great relevance for the design of future studies.
Collapse
Affiliation(s)
| | - Jan P. Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
3
|
Kamathewatta KI, Condello AK, Kulappu Arachchige SN, Young ND, Shil PK, Noormohammadi AH, Tivendale KA, Wawegama NK, Browning GF. Characterisation of the tracheal transcriptional response of chickens to chronic infection with Mycoplasma synoviae. Vet Microbiol 2024; 294:110119. [PMID: 38772075 DOI: 10.1016/j.vetmic.2024.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Mycoplasma synoviae causes infectious synovitis and respiratory tract infections in chickens and is responsible for significant economic losses in the poultry industry. Effective attachment and colonisation of the trachea is critical for the persistence of the organism and progression of the disease it causes. The respiratory tract infection is usually sub-clinical, but concurrent infection with infectious bronchitis virus (IBV) is known to enhance the pathogenicity of M. synoviae. This study aimed to explore differentially expressed genes in the tracheal mucosa, and their functional categories, during chronic infection with M. synoviae, using a M. synoviae-IBV infection model. The transcriptional profiles of the trachea were assessed 2 weeks after infection using RNA sequencing. In chickens infected with M. synoviae or IBV, only 1 or 8 genes were differentially expressed compared to uninfected chickens, respectively. In contrast, the M. synoviae-IBV infected chickens had 621 upregulated and 206 downregulated genes compared to uninfected chickens. Upregulated genes and their functional categories were suggestive of uncontrolled lymphoid cell proliferation and an ongoing pro-inflammatory response. Genes associated with anti-inflammatory effects, pathogen removal, apoptosis, regulation of the immune response, airway homoeostasis, cell adhesion and tissue regeneration were downregulated. Overall, transcriptional changes in the trachea, 2 weeks after infection with M. synoviae and IBV, indicate immune dysregulation, robust inflammation and a lack of cytotoxic damage during chronic infection. This model provides insights into the pathogenesis of chronic infection with M. synoviae.
Collapse
Affiliation(s)
- Kanishka I Kamathewatta
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Kanci Condello
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Sathya N Kulappu Arachchige
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Pollob K Shil
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, Australia
| | - Kelly A Tivendale
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Han S, Wang Y, Chang W, Wang L, Fang J, Han J, Hou X, Qi X, Wang J. Evaluation of the protective efficacy of six major immunogenic proteins of Mycoplasma Synoviae. Front Vet Sci 2024; 10:1334638. [PMID: 38239753 PMCID: PMC10794622 DOI: 10.3389/fvets.2023.1334638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Mycoplasma synoviae (MS) is a primary avian pathogen prevalent worldwide that causes airsacculitis and synovitis in birds. Vaccination is recommended as the most cost-effective strategy in the control of MS infection. Novel alternative vaccines are needed for eradicating and controlling MS infection in flocks. DnaK, enolase, elongation factor Tu (EF-Tu), MSPB, NADH oxidase and LP78 are the major immunogenic antigens of MS and are promising targets for subunit vaccine candidates. In the present study, genes encoding DnaK, enolase, EF-Tu, MSPB, LP78, and NADH oxidase were cloned and expressed in Escherichia coli. Enzyme-linked immunosorbent assay showed that the six recombinant proteins were recognized by convalescent sera, indicating that they were expressed during infection. Two injections of the six subunit vaccines induced a robust antibody response and increased the concentrations of IFN-γ and IL-4, especially rEnolase and rEF-Tu. The proliferation of peripheral blood lymphocytes was enhanced in all of the immunized groups. Chickens immunized with rEnolase, rEF-Tu, rLP78, and rMSPB conferred significant protection against MS infection, as indicated by significantly lower DNA copies in the trachea, lower scores of air sac lesions, and lesser tracheal mucosal thickness than that in the challenge control. Especially, rEnolase provided the best protective efficacy, followed by rEF-Tu, rMSPB, and rLP78. Our finds demonstrate that the subunit vaccines and bacterin can only reduce the lesions caused by MS infection, but not prevent colonization of the organism. Our findings may contribute to the development of novel vaccine agents against MS infection.
Collapse
Affiliation(s)
- Shuizhong Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ying Wang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Junyang Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingjing Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaolan Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Zhang G, Han L, Zhao Y, Li Q, Wang S, Shi H. Development and evaluation of a multi-epitope subunit vaccine against Mycoplasma synoviae infection. Int J Biol Macromol 2023; 253:126685. [PMID: 37666406 DOI: 10.1016/j.ijbiomac.2023.126685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Mycoplasma synoviae is an extremely significant avian pathogen, causing substantial financial harm to poultry farmers worldwide, and impacting both chicken and turkey production. Multi-epitope vaccines offer higher immunity and lower allergenicity compared to conventional vaccines. In this study, our objective is to develop a multi-epitope vaccine for M. synoviae (MSMV) and to evaluate the immune responses and protective efficacy of MSMV in chickens. We successfully identified a total of 14 B-cell, 5 MHC-I, and 16 MHC-II binding epitopes from the immunodominant proteins RS01790, BMP, GrpE, RS00900, and RS00275. Subsequently, we synthesized the multi-epitope vaccine by connecting all conserved epitopes using appropriate linkers. The resulting MSMV demonstrated notable antigenicity, non-allergenic properties, and stability. Notably, the MSMV effectively stimulated high levels of antibody production in chickens. Furthermore, MSMV the vaccine elicited a robust cellular immune response in chickens, characterized by a well-balanced Th1/Th2-type cytokine profile and enhanced lymphocyte proliferation. In immune protection experiments, the vaccinated chickens exhibited reduced air sac lesion scores and tracheal mucosal thickness compared to their non-vaccinated chickens. Additionally, vaccinated chickens displayed lower M. synoviae loads in throat swabs. These findings collectively suggested that the MSMV holds significant potential as a promising vaccine candidate for managing M. synoviae infections.
Collapse
Affiliation(s)
- Guihua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lejiabao Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuying Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
6
|
Omotainse OS, Wawegama NK, Kulappu Arachchige SN, Coppo MC, Vaz PK, Saliha U, Bogeski M, Noormohammadi AH, Stent AW. Th-1 cytotoxic cell-mediated response predominates in the tracheal mucosa following Mycoplasma synoviae infection of MS-H-vaccinated chickens. Vet Microbiol 2023; 287:109921. [PMID: 38000210 DOI: 10.1016/j.vetmic.2023.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/03/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Mycoplasma synoviae is a pathogen of poultry that causes upper respiratory tract disease. MS-H is a live attenuated temperature-sensitive vaccine that effectively control M. synoviae infection in chickens. However, the mechanisms underpinning protection have not been described previously. In this study, specific-pathogen-free chickens were vaccinated at 3 weeks of age with MS-H vaccine and challenged with field strain M. synoviae 94011/v-18d at 6 weeks of age. Tracheal mucosal inflammation was characterised by the assessment of thickness, histopathological lesions, cellular infiltrates and cytokine transcription. Tracheal lesion scores of unvaccinated-challenged (-V+C) birds were higher than that of vaccinated-challenged (+V+C) birds. +V+C birds displayed early upregulation of IL-4, consistent with a Th-2-skewed response, followed by a later increase in IFN-γ transcription, indicating transition to a Th-1-skewed response. -V+C birds displayed a concurrent early Th-2 and Th-17 response characterised by increase expression of IL-4 and IL-17A respectively, and late T regulatory response characterised by increased IL-10 transcription. +V+C chickens had more cytotoxic T cells (CD8+ T cells) at 7- and 21 days post-challenge (dpc), while -V+C chickens had higher numbers of infiltrating CD4+CD25+ at 7 and 21 dpc. Overall, these observations suggest that the immune response in +V+C chickens had an inflammation characterised by an early Th-2 skewed response followed closely by a Th-1 response and infiltration of cytotoxic T cells, while the response in -V+C chickens was an early Th-2/Th-17-skewed response closely followed by a T regulatory response.
Collapse
Affiliation(s)
- Oluwadamilola S Omotainse
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia.
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Sathya N Kulappu Arachchige
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Mauricio C Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Concepción, Biobío, Chile
| | - Paola K Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Uneeb Saliha
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Mirjana Bogeski
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Andrew W Stent
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| |
Collapse
|
7
|
Zhang G, Han L, Li Z, Chen Y, Li Q, Wang S, Shi H. Screening of immunogenic proteins and evaluation of vaccine candidates against Mycoplasma synoviae. NPJ Vaccines 2023; 8:121. [PMID: 37582795 PMCID: PMC10427712 DOI: 10.1038/s41541-023-00721-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Mycoplasma synoviae (M. synoviae) is a serious avian pathogen that causes significant economic losses to chicken and turkey producers worldwide. The currently available live attenuated and inactivated vaccines provide limited protection. The objective of this study was to identify potential subunit vaccine candidates using immunoproteomics and reverse vaccinology analyses and to evaluate their preliminary protection. Twenty-four candidate antigens were identified, and five of them, namely RS01790 (a putative sugar ABC transporter lipoprotein), BMP (a substrate-binding protein of the BMP family ABC transporter), GrpE (a nucleotide exchange factor), RS00900 (a putative nuclease), and RS00275 (an uncharacterized protein), were selected to evaluate their immunogenicity and preliminary protection. The results showed that all five antigens had good immunogenicity, and they were localized on the M. synoviae cell membrane. The antigens induced specific humoral and cellular immune responses, and the vaccinated chickens exhibited significantly greater body weight gain and lower air sac lesion scores and tracheal mucosal thicknesses. Additionally, the vaccinated chickens had lower M. synoviae loads in throat swabs than non-vaccinated chickens. The protective effect of the RS01790, BMP, GrpE, and RS00900 vaccines was better than that of the RS00275 vaccine. In conclusion, our study demonstrates the potential of subunit vaccines as a new approach to developing M. synoviae vaccines, providing new ideas for controlling the spread of M. synoviae worldwide.
Collapse
Affiliation(s)
- Guihua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lejiabao Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zewei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yifei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
8
|
Klose SM, Omotainse OS, Zare S, Vaz PK, Armat P, Shil P, Wawegama N, Kanci Condello A, O'Rourke D, Disint JF, Andrews DM, Underwood GJ, Morrow CJ, Marenda MS, Noormohammadi AH. Virulence factors of Mycoplasma synoviae: Three genes influencing colonization, immunogenicity, and transmissibility. Front Microbiol 2022; 13:1042212. [PMID: 36532420 PMCID: PMC9749132 DOI: 10.3389/fmicb.2022.1042212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2023] Open
Abstract
Infections caused by Mycoplasma synoviae are major welfare and economic concerns in poultry industries worldwide. These infections cause chronic respiratory disease and/or synovitis in chickens and turkeys leading to reduced production and increased mortality rates. The live attenuated vaccine strain MS-H (Vaxsafe® MS), commonly used for protection against M. synoviae infection in many countries, contains 32 single nucleotide variations compared to its wildtype parent strain, 86079/7NS. Genomic analysis of vaccine strains reisolated from flocks following the administration of MS-H has identified reversions to the original 86079/7NS sequence in the obgE, oppF and gapdh genes. Here, three MS-H field reisolates containing the 86079/7NS genotype in obgE (AS2), obgE and oppF (AB1), and obgE, oppF and gapdh (TS4), as well as the vaccine MS-H and the parental strain 86079/7NS were experimentally inoculated to chickens. The strains were assessed for their ability to infect and elicit immune responses in the recipient chickens, as well as in naïve in-contact chickens. Despite the loss of temperature sensitivity phenotype and colonization of the reisolates in the lower respiratory tract, there was no significant differences detected in the microscopic mucosal thickness of the middle or lower trachea of the inoculated chickens. Concurrent reversions in ObgE, OppF and GAPDH proteins were associated with higher gross air sac lesion scores and increased microscopic upper-tracheal mucosal thickness in chickens directly inoculated with the reisolates following intratracheal administration of a virulent strain of infectious bronchitis virus. The gross air sac lesions of the chickens in-contact with those inoculated with reisolates were not significantly different to those of chickens in-contact with MS-H inoculated chickens, suggesting that horizontal transmission of the reisolates in the poultry flock will not lead to higher pathogenicity or clinical signs. These results suggest a significant role of GAPDH and/or cumulative effect of ObgE, OppF and GAPDH on M. synoviae pathogenicity. Future experiments will be required to investigate the effect of single mutations in gapdh or oppF gene on pathogenicity of M. synoviae.
Collapse
Affiliation(s)
- Sara M. Klose
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | - Oluwadamilola S. Omotainse
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | - Sahar Zare
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | - Paola K. Vaz
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Parisa Armat
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Pollob Shil
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | - Nadeeka Wawegama
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Kanci Condello
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Denise O'Rourke
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | - Jillian F. Disint
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | | | | | - Chris J. Morrow
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- Bioproperties Pty Ltd., Ringwood, VIC, Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | - Amir H. Noormohammadi
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| |
Collapse
|