1
|
Bourganou MV, Chatzopoulos DC, Lianou DT, Tsangaris GT, Fthenakis GC, Katsafadou AI. Scientometrics Evaluation of Published Scientific Papers on the Use of Proteomics Technologies in Mastitis Research in Ruminants. Pathogens 2024; 13:324. [PMID: 38668279 PMCID: PMC11053840 DOI: 10.3390/pathogens13040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The objective of this study was the presentation of quantitative characteristics regarding the scientific content and bibliometric details of the relevant publications. In total, 156 papers were considered. Most papers presented original studies (n = 135), and fewer were reviews (n = 21). Most original articles (n = 101) referred to work involving cattle. Most original articles described work related to the diagnosis (n = 72) or pathogenesis (n = 62) of mastitis. Most original articles included field work (n = 75), whilst fewer included experimental (n = 31) or laboratory (n = 30) work. The tissue assessed most frequently in the studies was milk (n = 59). Milk was assessed more frequently in studies on the diagnosis (61.1% of relevant studies) or pathogenesis (30.6%) of the infection, but mammary tissue was assessed more frequently in studies on the treatment (31.0%). In total, 47 pathogens were included in the studies described; most were Gram-positive bacteria (n = 34). The three bacteria most frequently included in the studies were Staphylococcus aureus (n = 55 articles), Escherichia coli (n = 31) and Streptococcus uberis (n = 19). The proteomics technology employed more often in the respective studies was liquid chromatography-tandem mass spectrometry (LC-MS/MS), either on its own (n = 56) or in combination with other technologies (n = 40). The median year of publication of articles involving bioinformatics or LC-MS/MS and bioinformatics was the most recent: 2022. The 156 papers were published in 78 different journals, most frequently in the Journal of Proteomics (n = 16 papers) and the Journal of Dairy Science (n = 12). The median number of cited references in the papers was 48. In the papers, there were 1143 co-authors (mean: 7.3 ± 0.3 co-authors per paper, median: 7, min.-max.: 1-19) and 742 individual authors. Among them, 15 authors had published at least seven papers (max.: 10). Further, there were 218 individual authors who were the first or last authors in the papers. Most papers were submitted for open access (n = 79). The median number of citations received by the 156 papers was 12 (min.-max.: 0-339), and the median yearly number of citations was 2.0 (min.-max.: 0.0-29.5). The h-index of the papers was 33, and the m-index was 2. The increased number of cited references in papers and international collaboration in the respective study were the variables associated with most citations to published papers. This is the first ever scientometrics evaluation of proteomics studies, the results of which highlighted the characteristics of published papers on mastitis and proteomics. The use of proteomics in mastitis research has focused on the elucidation of pathogenesis and diagnosis of the infection; LC-MS/MS has been established as the most frequently used proteomics technology, although the use of bioinformatics has also emerged recently as a useful tool.
Collapse
Affiliation(s)
- Maria V. Bourganou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (M.V.B.); (D.C.C.)
| | - Dimitris C. Chatzopoulos
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (M.V.B.); (D.C.C.)
| | - Daphne T. Lianou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.)
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - George C. Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.)
| | - Angeliki I. Katsafadou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (M.V.B.); (D.C.C.)
| |
Collapse
|
2
|
Applied Proteomics in 'One Health'. Proteomes 2021; 9:proteomes9030031. [PMID: 34208880 PMCID: PMC8293331 DOI: 10.3390/proteomes9030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
‘One Health’ summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.
Collapse
|
3
|
Intramammary infection caused by Staphylococcus aureus increases IgA antibodies to iron-regulated surface determinant-A, -B, and -H in bovine milk. Vet Immunol Immunopathol 2021; 235:110235. [PMID: 33838543 DOI: 10.1016/j.vetimm.2021.110235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/15/2022]
Abstract
The aim of this study was to identify virulence factors that have high immunogenicity. An in vivo-expressed Staphylococcus aureus antigen was identified by probing bacteriophage expression libraries of S. aureus with antibodies in bovine mastitis milk. Eighteen clones were isolated, and their proteins were identified as 5 characterised proteins (IsdA, Protein A, IsdB, autolysin, and imidazole glycerol phosphate dehydratase) and 13 hypothetical proteins. We focused on IsdA, IsdB, and IsdH as virulence factors that have a high immunogenicity and are capable of inducing a specific humoral immune response in S. aureus-infected quarters. The optical density (OD) values of IsdA and IsdB IgA and IgG antibodies in milk affected by naturally occurring mastitis caused by S. aureus increased significantly compared to those in healthy milk. In the experimental infection study, the OD values of IsdA- and B-specific IgA and IgG antibodies were significantly increased from 2 to 4 weeks after S. aureus infection compared to day 0 (P < 0.05). On the other hand, we demonstrated that milk from natural and experimental intramammary infections caused by S. aureus are associated with significantly higher IgA levels against IsdH (P < 0.05), but no significant change in IgG levels. Our findings facilitated our understanding of the pathogenicity of S. aureus in bovine mastitis, as well as the mechanisms by which specific humoral immune responses to S. aureus infection are induced. In addition, the results obtained could provide insight into how bovine mastitis can be controlled, for example, through vaccination.
Collapse
|
4
|
Chakraborty S, Dhama K, Tiwari R, Iqbal Yatoo M, Khurana SK, Khandia R, Munjal A, Munuswamy P, Kumar MA, Singh M, Singh R, Gupta VK, Chaicumpa W. Technological interventions and advances in the diagnosis of intramammary infections in animals with emphasis on bovine population-a review. Vet Q 2020; 39:76-94. [PMID: 31288621 PMCID: PMC6830988 DOI: 10.1080/01652176.2019.1642546] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mastitis, an inflammation of the udder, is a challenging problem in dairy animals accounting for high economic losses. Disease complexity, degree of economic losses and increasing importance of the dairy industries along with public health concerns envisages devising appropriate diagnostics of mastitis, which can offer rapid, accurate and confirmatory diagnosis. The various diagnostic tests of mastitis have been divided into general or phenotypic and specific or genotypic tests. General or phenotypic tests are those that identify general alterations, which are not specific to any pathogen. Genotypic tests are specific, hence confirmatory for diagnosis of mastitis and include specific culture, polymerase chain reaction (PCR) and its various versions (e.g. qRT-PCR), loop-mediated isothermal amplification, lateral flow assays, nucleotide sequencing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and other molecular diagnostic methods. However, for highly specific and confirmatory diagnosis, pure cultures still provide raw materials for more sophisticated diagnostic technological interventions like PCR and nucleotide sequencing. Diagnostic ability of like infra-red thermography (IRT) has been shown to be similar to California mastitis test and also differentiates clinical mastitis from subclinical mastitis cases. As such, IRT can become a convenient and portable diagnostic tool. Of note, magnetic nanoparticles-based colorimetric biosensor assay was developed by using for instance proteolytic activity of plasmin or anti-S. aureus antibody. Last but not least, microRNAs have been suggested to be potential biomarkers for diagnosing bovine mastitis. This review summarizes the various diagnostic tests available for detection of mastitis including diagnosis through general and specific technological interventions and advances.
Collapse
Affiliation(s)
- Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry , West Tripura , India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir , Srinagar , India
| | | | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University , Bhopal , India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University , Bhopal , India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - M Asok Kumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Mithilesh Singh
- Immunology Section, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok , Thailand
| |
Collapse
|
5
|
Abdi RD, Dunlap JR, Gillespie BE, Ensermu DB, Almeida RA, Kerro Dego O. Comparison of Staphylococcus aureus surface protein extraction methods and immunogenicity. Heliyon 2019; 5:e02528. [PMID: 31687478 PMCID: PMC6820086 DOI: 10.1016/j.heliyon.2019.e02528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/05/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is the major contagious bovine mastitis pathogen and has no effective vaccine. Strain variation and limited knowledge of common immunogenic antigen/s are among major constraints for developing effective vaccines. S. aureus cell surface proteins that are exposed to the host immune system constitute good vaccine candidates. The objective of this study was to compare two novel S. aureus surface protein extraction methods with biotinylation method and evaluate immune-reactivity of extracted proteins. Surface proteins were extracted from nine genetically distinct S. aureus strains from cases of bovine mastitis. After extraction, bacterial cell integrity was examined by Gram staining and electron microscopy to determine if extraction methods caused damage to cells that may release non-surface proteins. The extracted proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and evaluated for immune-reactivity using western blot. Results showed that all three extraction methods provided multiple protein bands on SDS-PAGE. Western blot result showed several immunoreactive surface proteins, in which some proteins strongly (well-resolved, thick, dark, and intense band) reacted across the nine strains tested. The three methods are valid for the extraction of surface proteins and hexadecane, and cholic acid methods are more feasible than biotinylation since both are easier, cheaper, and have minor effects on the bacterial cell. Strongly immune-reactive surface proteins may serve as potential candidates for a vaccine to control S. aureus mastitis in dairy cows.
Collapse
Affiliation(s)
- Reta Duguma Abdi
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Greenvale, NY11548, United States
| | - John R. Dunlap
- Joint Institute for Advanced Materials (JIAM) Microscopy Center and Advanced Microscopy and Imaging Center, The University of Tennessee, Knoxville, TN, 37996, United States
| | - Barbara E. Gillespie
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Desta Beyene Ensermu
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Raul Antonio Almeida
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
- Corresponding author.
| |
Collapse
|
6
|
Côté-Gravel J, Malouin F. Symposium review: Features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies. J Dairy Sci 2018; 102:4727-4740. [PMID: 30580940 DOI: 10.3168/jds.2018-15272] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/07/2018] [Indexed: 12/25/2022]
Abstract
Bovine mastitis affects animal health and welfare and milk production and quality, and it challenges the economic success of dairy farms. Staphylococcus aureus is one of the most commonly found pathogens in clinical mastitis but it also causes subclinical, persistent, and difficult-to-treat intramammary infections. Because of the failure of conventional antibiotic treatments and increasing pressure and concern from experts and consumers over the use of antibiotics in the dairy industry, many attempts have been made over the years to develop a vaccine for the prevention and control of Staph. aureus intramammary infections. Still, no commercially available vaccine formulation demonstrates sufficient protection and cost-effective potential. Multiple factors account for the lack of protection, including inadequate vaccine targets, high diversity among mastitis-provoking strains, cow-to-cow variation in immune response, and a failure to elicit an immune response that is appropriate for protection against a highly complex pathogen. The purpose of this review is to summarize key concepts related to the pathogenesis of Staph. aureus, and its interaction with the host, as well as to describe recent vaccine development strategies for prevention and control of Staph. aureus mastitis.
Collapse
Affiliation(s)
- Julie Côté-Gravel
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1
| | - François Malouin
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1.
| |
Collapse
|
7
|
Taylor A, Mills D, Wang T, Ntalamagka N, Cummins SF, Elizur A. A Sperm Spawn-Inducing Pheromone in the Silver Lip Pearl Oyster (Pinctada maxima). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:531-541. [PMID: 29705863 DOI: 10.1007/s10126-018-9824-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Pheromones are considered to play an important role in broadcast spawning in aquatic animals, facilitating synchronous release of gametes. In oysters, the sperm has been implicated as a carrier for the spawn-inducing pheromone (SIP). In hatchery conditions, male pearl oysters (Pinctata maxima) can be stimulated to spawn through a variety of approaches (e.g. rapid temperature change), while females can only be induced to spawn through exposure to conspecific sperm, thus limiting development of targeted pairing, required for genetic research and management. The capacity for commercial production and improvement of genetic lines of pearl oysters could be greatly improved with access to a SIP. In this study, we prepared and sequenced crude and semi-purified P. maxima sperm extracts that were used in bioassays to localise the female SIP. We report that the P. maxima SIP is proteinaceous and extrinsically associated with the sperm membrane. Bioactivity from pooled RP-HPLC fractions, but not individual fractions, suggests that the SIP is multi-component. We conclude that crude sperm preparations, as described in this study, can be used as a sperm-free inducer of female P. maxima spawning, which enables for a more efficient approach to genetic breeding.
Collapse
Affiliation(s)
- A Taylor
- Darwin Aquaculture Centre, Channel Island, Darwin, Northern Territory, 0800, Australia
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - D Mills
- Darwin Aquaculture Centre, Channel Island, Darwin, Northern Territory, 0800, Australia
| | - T Wang
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - N Ntalamagka
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - S F Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - A Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia.
| |
Collapse
|
8
|
Solis N, Cain JA, Cordwell SJ. Comparative analysis of Staphylococcus epidermidis strains utilizing quantitative and cell surface shaving proteomics. J Proteomics 2016; 130:190-9. [DOI: 10.1016/j.jprot.2015.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
|
9
|
Zeinhom MMA, Abdel-Latef GK, Jordan K. The Use of Multiplex PCR to Determine the Prevalence of Enterotoxigenic Staphylococcus aureus Isolated from Raw Milk, Feta Cheese, and Hand Swabs. J Food Sci 2015; 80:M2932-6. [PMID: 26588209 DOI: 10.1111/1750-3841.13147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 10/12/2015] [Indexed: 11/27/2022]
Abstract
Staphylococcus aureus (S. aureus) can cause mastitis in cattle and, therefore, can be present in milk. This study was undertaken to determine the prevalence of coagulase positive S. aureus and its enterotoxin genes sea, seb, and sec in isolates recovered from raw milk, feta cheese, and human hand swabs of milk and cheese handlers in Beni-Suef province, Egypt. A total of 100 samples of raw milk and 50 samples of pasteurized-milk feta cheese were collected. In addition, 50 hand swabs from milk handlers and 25 hand swabs from cheese handlers were examined for the presence of coagulase positive S. aureus. The isolates were characterized by multiplex PCR for detection of sea, seb, and sec genes, and for resistance to 5 classes of commonly used antibiotics. Twelve (12/100), 12 (6/50), and 17% (13/75) of milk, cheese, and hand swab samples, respectively, were positive for coagulase positive S. aureus. One isolate was obtained from each positive sample (31 isolates), and none contained genes for SEA or SEC production. Twenty-five percent, 33%, and 31%, respectively, of the isolates contained the genes for SEB, resulting in 3%, 4%, and 5% of samples being positive for toxin producing coagulase positive S. aureus, respectively. At least one isolate was resistant to each of the antibiotics tested. Despite the low potential for SEB production shown, preventative measures, such as maintenance of the cold-chain and good hygienic practices should be implemented to further reduce the potential risk to public health from SEB, and to reduce the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Mohamed M A Zeinhom
- Food Hygiene & Control Dept., Faculty of Veterinary Medicine, Beni-Suef Univ, Beni-Suef, 62512, Egypt
| | - Gihan K Abdel-Latef
- Hygiene, Management and Zoonoses Dept., Faculty of Veterinary Medicine, BeniSuef Univ, Beni-Suef, 62512, Egypt
| | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| |
Collapse
|
10
|
Which are important targets in development of S. aureus mastitis vaccine? Res Vet Sci 2015; 100:88-99. [DOI: 10.1016/j.rvsc.2015.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/04/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
|
11
|
Almeida AM, Bassols A, Bendixen E, Bhide M, Ceciliani F, Cristobal S, Eckersall PD, Hollung K, Lisacek F, Mazzucchelli G, McLaughlin M, Miller I, Nally JE, Plowman J, Renaut J, Rodrigues P, Roncada P, Staric J, Turk R. Animal board invited review: advances in proteomics for animal and food sciences. Animal 2015; 9:1-17. [PMID: 25359324 PMCID: PMC4301196 DOI: 10.1017/s1751731114002602] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/27/2014] [Indexed: 01/15/2023] Open
Abstract
Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid - i.e. the proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002--Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps existing in the European farm animal research. Future activities of significance in the field of scientific research, involving members of the action, as well as others, will likely be established in the future.
Collapse
Affiliation(s)
- A. M. Almeida
- Instituto de Investigação Científica Tropical, CVZ – Centro de Veterinária e Zootecnia, Av. Univ. Técnica, 1300-477 Lisboa, Portugal
- CIISA – Centro Interdisciplinar de Investigação em Sanidade Animal, 1300-477 Lisboa, Portugal
- ITQB – Instituto de Tecnologia Química e Biológica da UNL, 2780-157 Oeiras, Portugal
- IBET – Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - A. Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona,08193 Cerdanyola del Vallès, Spain
| | - E. Bendixen
- Institute of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - M. Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho-73 Kosice, Slovakia
| | - F. Ceciliani
- Department of Veterinary Science and Public Health, Università di Milano, Via Celoria 10, 20133 Milano, Italy
| | - S. Cristobal
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Science, Linköping University, SE-581 85 Linköping, Sweden
- IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Dentistry, University of Basque Country,48940 Leioa, Bizkaia, Spain
| | - P. D. Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - K. Hollung
- Nofima AS, PO Box 210, NO-1431 Aas, Norway
| | - F. Lisacek
- Swiss Institute of Bioinformatics, CMU – Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - G. Mazzucchelli
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, 4000 Liège, Belgium
| | - M. McLaughlin
- Division of Veterinary Bioscience, School of Veterinary Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - I. Miller
- Institute of Medical Biochemistry, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - J. E. Nally
- National Animal Disease Center, Bacterial Diseases of Livestock Research Unit, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA
| | - J. Plowman
- Food & Bio-Based Products, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - J. Renaut
- Department of Environment and Agrobiotechnologies, Centre de Recherche Public – Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - P. Rodrigues
- CCMAR – Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - P. Roncada
- Department of Veterinary Science and Public Health, Istituto Sperimentale Italiano L. Spallanzani Milano, University of Milano, 20133 Milano, Italy
| | - J. Staric
- Clinic for Ruminants with Ambulatory Clinic, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - R. Turk
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Solis N, Parker BL, Kwong SM, Robinson G, Firth N, Cordwell SJ. Staphylococcus aureus surface proteins involved in adaptation to oxacillin identified using a novel cell shaving approach. J Proteome Res 2014; 13:2954-72. [PMID: 24708102 DOI: 10.1021/pr500107p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus is a Gram-positive pathogen responsible for a variety of infections, and some strains are resistant to virtually all classes of antibiotics. Cell shaving proteomics using a novel probability scoring algorithm to compare the surfaceomes of the methicillin-resistant, laboratory-adapted S. aureus COL strain with a COL strain in vitro adapted to high levels of oxacillin (APT). APT displayed altered cell morphology compared with COL and increased aggregation in biofilm assays. Increased resistance to β-lactam antibiotics was observed, but adaptation to oxacillin did not confer multidrug resistance. Analysis of the S. aureus COL and APT surfaceomes identified 150 proteins at a threshold determined by the scoring algorithm. Proteins unique to APT included the LytR-CpsA-Psr (LCP) domain-containing MsrR and SACOL2302. Quantitative RT-PCR showed increased expression of sacol2302 in APT grown with oxacillin (>6-fold compared with COL). Overexpression of sacol2302 in COL to levels consistent with APT (+ oxacillin) did not influence biofilm formation or β-lactam resistance. Proteomics using iTRAQ and LC-MS/MS identified 1323 proteins (∼50% of the theoretical S. aureus proteome), and cluster analysis demonstrated elevated APT abundances of LCP proteins, capsule and peptidoglycan biosynthesis proteins, and proteins involved in wall remodelling. Adaptation to oxacillin also induced urease proteins, which maintained culture pH compared to COL. These results show that S. aureus modifies surface architecture in response to antibiotic adaptation.
Collapse
Affiliation(s)
- Nestor Solis
- School of Molecular Bioscience, ‡Discipline of Pathology, School of Medical Sciences, and §School of Biological Sciences, The University of Sydney , New South Wales 2006, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Hansenová Maňásková S, Bikker FJ, Veerman EC, van Belkum A, van Wamel WJ. Rapid detection and semi-quantification of IgG-accessible Staphylococcus aureus surface-associated antigens using a multiplex competitive Luminex assay. J Immunol Methods 2013; 397:18-27. [DOI: 10.1016/j.jim.2013.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 01/21/2023]
|
14
|
Abstract
Advancement in electrophoresis and mass spectrometry techniques along with the recent progresses in genomics, culminating in bovine and pig genome sequencing, widened the potential application of proteomics in the field of veterinary medicine. The aim of the present review is to provide an in-depth perspective about the application of proteomics to animal disease pathogenesis, as well as its utilization in veterinary diagnostics. After an overview on the various proteomic techniques that are currently applied to veterinary sciences, the article focuses on proteomic approaches to animal disease pathogenesis. Included as well are recent achievements in immunoproteomics (ie, the identifications through proteomic techniques of antigen involved in immune response) and histoproteomics (ie, the application of proteomics in tissue processed for immunohistochemistry). Finally, the article focuses on clinical proteomics (ie, the application of proteomics to the identification of new biomarkers of animal diseases).
Collapse
|
15
|
Enany S, Yoshida Y, Magdeldin S, Bo X, Zhang Y, Enany M, Yamamoto T. Two dimensional electrophoresis of the exo-proteome produced from community acquired methicillin resistant Staphylococcus aureus belonging to clonal complex 80. Microbiol Res 2013; 168:504-11. [PMID: 23566758 DOI: 10.1016/j.micres.2013.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/07/2013] [Accepted: 03/10/2013] [Indexed: 12/22/2022]
Abstract
Two-dimensional electrophoresis (2DE) combined with mass spectrometry was used to characterize the exo-proteome secreted by two strains (ER13 and ER21) representing community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) belonging to clonal complex 80 (CC80). Common spots were detected between the 2 gels using the Progenesis SameSpots software. Two hundred and fifty-one and 312 spots from the exo-proteome of ER13 and ER21 were resolved, respectively. 2DE overlap comparison showed that 59 spots were shared. LC-MS/MS analysis identified 57 proteins from these spots comprising about 21% extracellular, 48% cytoplasmic, 2% cytoplasmic membrane, 2% cell wall, and 26% with unknown localization. The identified proteins were classified with respect to their Gene Ontology (GO) annotation as ∼24% virulence determinants and toxins, ∼17% involved in carbohydrate metabolism, ∼14% involved in environmental stress, and ∼12% associated with cell division. The identification of the enterotoxin B from the exo-products of both strains used in our study, as belonging to CC80 was interesting.
Collapse
Affiliation(s)
- Shymaa Enany
- Department of Structural Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett 2013; 150:12-22. [PMID: 23376548 DOI: 10.1016/j.imlet.2013.01.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/09/2012] [Accepted: 01/08/2013] [Indexed: 01/04/2023]
Abstract
In the last decades, Staphylococcus aureus acquired a dramatic relevance in human and veterinary medicine for different reasons, one of them represented by the increasing prevalence of antibiotic resistant strains. However, antibiotic resistance is not the only weapon in the arsenal of S. aureus. Indeed, these bacteria have plenty of virulence factors, including a vast ability to evade host immune defenses. The innate immune system represents the first line of defense against invading pathogens. This system consists of three major effector mechanisms: antimicrobial peptides and enzymes, the complement system and phagocytes. In this review, we focused on S. aureus virulence factors involved in the immune evasion in the first phases of infection: TLR recognition avoidance, adhesins affecting immune response and resistance to host defenses peptides and polypeptides. Studies of innate immune defenses and their role against S. aureus are important in human and veterinary medicine given the problems related to S. aureus antimicrobial resistance. Moreover, due to the pathogen ability to manipulate the immune response, these data are needed to develop efficacious vaccines or molecules against S. aureus.
Collapse
Affiliation(s)
- Alfonso Zecconi
- Università degli Studi di Milano, Dip. Scienze Veterinarie e Sanità Pubblica, Via Celoria 10, 20133 Milano, Italy.
| | | |
Collapse
|
17
|
Allard M, Ster C, Jacob CL, Scholl D, Diarra MS, Lacasse P, Malouin F. The expression of a putative exotoxin and an ABC transporter during bovine intramammary infection contributes to the virulence of Staphylococcus aureus. Vet Microbiol 2012; 162:761-770. [PMID: 23116586 DOI: 10.1016/j.vetmic.2012.09.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/11/2012] [Accepted: 09/29/2012] [Indexed: 10/27/2022]
Abstract
Staphylococcus aureus is a leading cause of intramammary infections (IMI) and bovine mastitis is an important disease for the dairy industry. As this bacterium probably expresses specific genes for establishment of IMI, we studied the transcriptional profile of four S. aureus strains recovered from experimentally infected cows. Microbial RNA was extracted from bacteria isolated from milk, reverse-transcribed and labeled for hybridization to sub-genomic microarrays to detect candidate genes for further investigations. Several S. aureus genes were expressed during IMI; some were detected in samples from more than one strain, more than one cow and at more than one time point during infection. A selection of four genes showing strong expression and with putative functions in pathogenesis was further studied by qPCR. By comparing the expression in different media in vitro, we found that gene SACOL2171 was induced by iron restriction whereas the expression of the transcriptional regulator SACOL2325 and the ABC transporter SACOL0718-720 (vraFG) were induced by milk. In addition, the putative exotoxin SACOL0442 seemed to require the intramammary environment for expression. Gene-disrupted mutants for SACOL0720 and SACOL0442 showed no growth defect in vitro but were attenuated during bovine IMI, causing infections with significant reductions in bacterial and somatic cell counts. The milk from the mammary quarters infected with these mutants also showed better appearance and composition than milk from quarters infected with the wild type. In conclusion, we have identified genes that are most likely important for S. aureus IMI. These represent novel candidates to include in a vaccine.
Collapse
Affiliation(s)
- Marianne Allard
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Céline Ster
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Christian L Jacob
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Daniel Scholl
- Faculté de Médecine Vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe, QC, J2S 7C6, Canada
| | - Moussa S Diarra
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1000, Agassiz, BC, V0M 1A0, Canada
| | - Pierre Lacasse
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College, Sherbrooke, QC, J1M 0C8, Canada.
| | - François Malouin
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
18
|
Dosselli R, Millioni R, Puricelli L, Tessari P, Arrigoni G, Franchin C, Segalla A, Teardo E, Reddi E. Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach. J Proteomics 2012; 77:329-43. [PMID: 23000218 DOI: 10.1016/j.jprot.2012.09.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/19/2012] [Accepted: 09/08/2012] [Indexed: 12/24/2022]
Abstract
Antimicrobial photodynamic therapy (PDT) is a promising tool to combat antibiotic-resistant bacterial infections. During PDT, bacteria are killed by reactive oxygen species generated by a visible light absorbing photosensitizer (PS). We used a classical proteomic approach that included two-dimensional gel electrophoresis and mass spectrometry analysis, to identify some proteins of Staphylococcus aureus that are damaged during PDT with the cationic PS meso-tetra-4-N-methyl pyridyl porphine (T4). Suspensions of S. aureus cells were incubated with selected T4 concentrations and irradiated with doses of blue light that reduced the survival to about 60% or 1%. Proteomics analyses of a membrane proteins enriched fraction revealed that these sub-lethal PDT treatments affected the expression of several functional classes of proteins, and that this damage is selective. Most of these proteins were found to be involved in metabolic activities, in oxidative stress response, in cell division and in the uptake of sugar. Subsequent analyses revealed that PDT treatments delayed the growth and considerably reduced the glucose consumption capacity of S. aureus cells. This investigation provides new insights towards the characterization of PDT induced damage and mechanism of bacterial killing using, for the first time, a proteomic approach.
Collapse
Affiliation(s)
- Ryan Dosselli
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35128 Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Enany S, Yoshida Y, Magdeldin S, Zhang Y, Bo X, Yamamoto T. Extensive proteomic profiling of the secretome of European community acquired methicillin resistant Staphylococcus aureus clone. Peptides 2012; 37:128-37. [PMID: 22750914 DOI: 10.1016/j.peptides.2012.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 02/02/2023]
Abstract
European community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) clone remains a striking pathogenic clone spreading in European and Mediterranean countries. Since analysis of the secretome produced from this clone by proteomics could provide a comprehensive picture of both core exoproteins as well as virulence factors, we applied two proteomic approaches, pre-fractionation of proteins on SDS-PAGE followed by in-gel trypsin digestion, and in-solution trypsin-digestion followed by off-line SCX fractionation, both of which were coupled with LC-MS/MS analyses. A total of 174 distinct proteins were identified with a high-confidence. Functional classification of these identified proteins resulted in16.09% of protein synthesis, 13.79% of virulence, 6.89% of toxin, and 17.24% of unknown function. Prediction of their cellular localizations revealed 18.39% in extracellular space, 36.20% in cytoplasm, 5.17% in cytoplasmic membranes, 6.89% in cell wall, 1.14% in multiple localizations, and 32.18% in unknown localization. Among them, 52% proteins were predicted to be secreted through signal peptide-independent pathways. Most notably, the expression of some proteins such as enterotoxins U and B were identified for the first time in this clone.
Collapse
Affiliation(s)
- Shymaa Enany
- Department of Structural Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Ahmady M, Kazemi S. Detection of the enterotoxigenic genes ( sei,sej) in Staphylococcus aureus isolates from bovine mastitis milk in the West Azerbaijan of Iran. ACTA ACUST UNITED AC 2012; 22:649-654. [PMID: 23864850 PMCID: PMC3702959 DOI: 10.1007/s00580-012-1460-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/28/2012] [Indexed: 02/05/2023]
Abstract
Staphylococcus aureus is a major causative pathogen of clinical and subclinical mastitis of dairy domestic ruminants. This organism produces a variety of extracellular toxins and virulence factors such as enterotoxin SEI and SEJ that contribute to its pathogenic potential. In this study 25 S. aureus isolates obtained from four dairy herds of Urmia region which is located in West Azerbaijan province in Iran. The tested isolates were identified on the basis of the cultural and biochemical properties, as well as amplification of the aroA gene which is specific for S. aureus. All isolates were also analyzed for the presence of the SEI (sei) and SEJ (sej) encoding genes using polymerase chain reaction (PCR). Seven positive isolates were detected for sei, but sej gene was not detected in any of the total number of 25 isolates. The present study revealed that the PCR amplification of the aroA gene could be used as a powerful tool for identification of S. aureus from the cases of bovine mastitis. Results of the present study also showed that the strains of S. aureus which cause mastitis can potentially produce enterotoxin SEI. Overall, our results suggest that it is of special importance to follow the presence of enterotoxin-producing S. aureus in other dairy products, especially for protecting the consumers from staphylococcal food poisoning.
Collapse
Affiliation(s)
- Malahat Ahmady
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, P.O. Box 1177, Urmia, Iran
| | | |
Collapse
|
21
|
Boehmer JL. Proteomic analyses of host and pathogen responses during bovine mastitis. J Mammary Gland Biol Neoplasia 2011; 16:323-38. [PMID: 21892748 PMCID: PMC3208817 DOI: 10.1007/s10911-011-9229-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/22/2011] [Indexed: 01/07/2023] Open
Abstract
The pursuit of biomarkers for use as clinical screening tools, measures for early detection, disease monitoring, and as a means for assessing therapeutic responses has steadily evolved in human and veterinary medicine over the past two decades. Concurrently, advances in mass spectrometry have markedly expanded proteomic capabilities for biomarker discovery. While initial mass spectrometric biomarker discovery endeavors focused primarily on the detection of modulated proteins in human tissues and fluids, recent efforts have shifted to include proteomic analyses of biological samples from food animal species. Mastitis continues to garner attention in veterinary research due mainly to affiliated financial losses and food safety concerns over antimicrobial use, but also because there are only a limited number of efficacious mastitis treatment options. Accordingly, comparative proteomic analyses of bovine milk have emerged in recent years. Efforts to prevent agricultural-related food-borne illness have likewise fueled an interest in the proteomic evaluation of several prominent strains of bacteria, including common mastitis pathogens. The interest in establishing biomarkers of the host and pathogen responses during bovine mastitis stems largely from the need to better characterize mechanisms of the disease, to identify reliable biomarkers for use as measures of early detection and drug efficacy, and to uncover potentially novel targets for the development of alternative therapeutics. The following review focuses primarily on comparative proteomic analyses conducted on healthy versus mastitic bovine milk. However, a comparison of the host defense proteome of human and bovine milk and the proteomic analysis of common veterinary pathogens are likewise introduced.
Collapse
Affiliation(s)
- Jamie L Boehmer
- US Food and Drug Administration Center for Veterinary Medicine, Laurel, MD 20708, USA.
| |
Collapse
|
22
|
Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I. Farm animal proteomics — A review. J Proteomics 2011; 74:282-93. [DOI: 10.1016/j.jprot.2010.11.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 11/28/2022]
|
23
|
Ventura CL, Malachowa N, Hammer CH, Nardone GA, Robinson MA, Kobayashi SD, DeLeo FR. Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics. PLoS One 2010; 5:e11634. [PMID: 20661294 PMCID: PMC2905442 DOI: 10.1371/journal.pone.0011634] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/23/2010] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus is a prominent human pathogen and leading
cause of bacterial infection in hospitals and the community.
Community-associated methicillin-resistant S. aureus (CA-MRSA)
strains such as USA300 are highly virulent and, unlike hospital strains, often
cause disease in otherwise healthy individuals. The enhanced virulence of
CA-MRSA is based in part on increased ability to produce high levels of secreted
molecules that facilitate evasion of the innate immune response. Although
progress has been made, the factors that contribute to CA-MRSA virulence are
incompletely defined. We analyzed the cell surface proteome (surfome) of USA300
strain LAC to better understand extracellular factors that contribute to the
enhanced virulence phenotype. A total of 113 identified proteins were associated
with the surface of USA300 during the late-exponential phase of growth
in vitro. Protein A was the most abundant surface molecule
of USA300, as indicated by combined Mascot score following analysis of peptides
by tandem mass spectrometry. Unexpectedly, we identified a previously
uncharacterized two-component leukotoxin–herein named LukS-H and
LukF-G (LukGH)-as two of the most abundant surface-associated proteins of
USA300. Rabbit antibody specific for LukG indicated it was also freely secreted
by USA300 into culture media. We used wild-type and isogenic
lukGH deletion strains of USA300 in combination with human
PMN pore formation and lysis assays to identify this molecule as a leukotoxin.
Moreover, LukGH synergized with PVL to enhance lysis of human PMNs in
vitro, and contributed to lysis of PMNs after phagocytosis. We
conclude LukGH is a novel two-component leukotoxin with cytolytic activity
toward neutrophils, and thus potentially contributes to S.
aureus virulence.
Collapse
Affiliation(s)
- Christy L. Ventura
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Hamilton, Montana, United States of America
| | - Natalia Malachowa
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Hamilton, Montana, United States of America
| | - Carl H. Hammer
- Research Technologies Branch, National Institute of Allergy and
Infectious Diseases, National Institutes of Health, Rockville, Maryland, United
States of America
| | - Glenn A. Nardone
- Research Technologies Branch, National Institute of Allergy and
Infectious Diseases, National Institutes of Health, Rockville, Maryland, United
States of America
| | - Mary Ann Robinson
- Research Technologies Branch, National Institute of Allergy and
Infectious Diseases, National Institutes of Health, Rockville, Maryland, United
States of America
| | - Scott D. Kobayashi
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Hamilton, Montana, United States of America
| | - Frank R. DeLeo
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
24
|
Egan SA, Kurian D, Ward PN, Hunt L, Leigh JA. Identification of sortase A (SrtA) substrates in Streptococcus uberis: evidence for an additional hexapeptide (LPXXXD) sorting motif. J Proteome Res 2010; 9:1088-95. [PMID: 20038184 DOI: 10.1021/pr901025w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sortase (a transamidase) has been shown to be responsible for the covalent attachment of proteins to the bacterial cell wall. Anchoring is effected on secreted proteins containing a specific cell wall motif toward their C-terminus; that for sortase A (SrtA) in Gram-positive bacteria often incorporates the sequence LPXTG. Such surface proteins are often characterized as virulence determinants and play important roles during the establishment and persistence of infection. Intramammary infection with Streptococcus uberis is a common cause of bovine mastitis, which impacts on animal health and welfare and the economics of milk production. Comparison of stringently produced cell wall fractions from S. uberis and an isogenic mutant strain lacking SrtA permitted identification of 9 proteins likely to be covalently anchored at the cell surface. Analysis of these sequences implied the presence of two anchoring motifs for S. uberis, the classical LPXTG motif and an additional LPXXXD motif.
Collapse
Affiliation(s)
- Sharon A Egan
- The School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Solis N, Larsen MR, Cordwell SJ. Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus
using a false-positive control. Proteomics 2010; 10:2037-49. [DOI: 10.1002/pmic.200900564] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Mastitis detection: current trends and future perspectives. Trends Biotechnol 2009; 27:486-93. [PMID: 19616330 DOI: 10.1016/j.tibtech.2009.05.004] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/08/2009] [Accepted: 05/18/2009] [Indexed: 01/31/2023]
Abstract
Bovine mastitis, the most significant disease of dairy herds, has huge effects on farm economics due to reduction in milk production and treatment costs. Traditionally, methods of detection have included estimation of somatic cell counts, an indication of inflammation, measurement of biomarkers associated with the onset of the disease (e.g. the enzymes N-acetyl-beta-D-glucosaminidase and lactate dehydrogenase) and identification of the causative microorganisms, which often involves culturing methods. These methods have their limitations and there is a need for new rapid, sensitive and reliable assays. Recently, significant advances in the identification of nucleic acid markers and other novel biomarkers and the development of sensor-based platforms have taken place. These novel strategies have shown promise, and their advantages over the conventional tests are discussed.
Collapse
|
27
|
Abstract
The global dairy industry, the predominant pathogens causing mastitis, our understanding of mastitis pathogens and the host response to intramammary infection are changing rapidly. This paper aims to discuss changes in each of these aspects. Globalisation, energy demands, human population growth and climate change all affect the dairy industry. In many western countries, control programs for contagious mastitis have been in place for decades, resulting in a decrease in occurrence of Streptococcus agalactiae and Staphylococcus aureus mastitis and an increase in the relative impact of Streptococcus uberis and Escherichia coli mastitis. In some countries, Klebsiella spp. or Streptococcus dysgalactiae are appearing as important causes of mastitis. Differences between countries in legislation, veterinary and laboratory services and farmers' management practices affect the distribution and impact of mastitis pathogens. For pathogens that have traditionally been categorised as contagious, strain adaptation to human and bovine hosts has been recognised. For pathogens that are often categorised as environmental, strains causing transient and chronic infections are distinguished. The genetic basis underlying host adaptation and mechanisms of infection is being unravelled. Genomic information on pathogens and their hosts and improved knowledge of the host's innate and acquired immune responses to intramammary infections provide opportunities to expand our understanding of bovine mastitis. These developments will undoubtedly contribute to novel approaches to mastitis diagnostics and control.
Collapse
Affiliation(s)
- Rn Zadoks
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ Scotland, UK.
| | | |
Collapse
|
28
|
Murphy BP, O’Mahony E, Buckley JF, O’Brien S, Fanning S. Characterization of Staphylococcus aureus Isolated from Dairy Animals in Ireland. Zoonoses Public Health 2009; 57:249-57. [DOI: 10.1111/j.1863-2378.2008.01220.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Knaust A, Weber MVR, Hammerschmidt S, Bergmann S, Frosch M, Kurzai O. Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis. J Bacteriol 2007; 189:3246-55. [PMID: 17307854 PMCID: PMC1855851 DOI: 10.1128/jb.01966-06] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plasminogen recruitment is a common strategy of pathogenic bacteria and results in a broad-spectrum surface-associated protease activity. Neisseria meningitidis has previously been shown to bind plasminogen. In this study, we show by several complementary approaches that endolase, DnaK, and peroxiredoxin, which are usually intracellular proteins, can also be located in the outer membrane and act as plasminogen receptors. Internal binding motifs, rather than C-terminal lysine residues, are responsible for plasminogen binding of the N. meningitidis receptors. Recombinant receptor proteins inhibit plasminogen association with N. meningitidis in a concentration-dependent manner. Besides binding purified plasminogen, N. meningitidis can also acquire plasminogen from human serum. Activation of N. meningitidis-associated plasminogen by urokinase results in functional activity and allows the bacteria to degrade fibrinogen. Furthermore, plasmin bound to N. meningitidis is protected against inactivation by alpha(2)-antiplasmin.
Collapse
Affiliation(s)
- Andreas Knaust
- Institute of Hygiene and Environmental Medicine, University of Giessen, Friedrichsstrasse 16, 35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|