1
|
Zhang S, Wang F, Peng Y, Gong X, Fan G, Lin Y, Yang L, Shen L, Niu S, Liu J, Yin Y, Yuan J, Lu H, Liu Y, Yang Y. Evolutionary trajectory and characteristics of Mpox virus in 2023 based on a large-scale genomic surveillance in Shenzhen, China. Nat Commun 2024; 15:7452. [PMID: 39198414 PMCID: PMC11358148 DOI: 10.1038/s41467-024-51737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
The global epidemic of Mpox virus (MPXV) continues, and a local outbreak has occurred in Shenzhen city since June 2023. Herein, the evolutionary trajectory and characteristics of MPXV in 2023 were analyzed using 92 MPXV sequences from the Shenzhen outbreak and the available genomes from GISAID and GenBank databases. Phylogenetic tracing of the 92 MPXVs suggests that MPXVs in Shenzhen may have multiple sources of importation, and two main transmission chains have been established. The combination of phylogenetic relationships, epidemiological features, and mutation characteristics supports the emergence of a new lineage C.1.1. Together with the B.1 lineage diverging from the A.1 lineage, C.1.1 lineage diverging from the C.1 lineage may serve as another significant evolutionary events of MPXV. Moreover, increasing apolipoprotein B mRNA-editing catalytic polypeptide-like 3 (APOBEC3) related mutations, higher rate of missense mutations, and less mutations in the non-coding regions have been shown during MPXV evolution. Host regulation proteins of MPXV have accumulated considerable amino acid mutations since the B.1 lineage, and a lineage-defining APOBEC3-related mutation that disrupts the N2L gene encoding a viral innate immune modulator has been identified in the C.1.1 lineage. In summary, our study provides compelling evidence for the ongoing evolution of MPXV with specific features.
Collapse
Affiliation(s)
- Shengjie Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Xiaohua Gong
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Guohao Fan
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Yuanlong Lin
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Liuqing Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Liang Shen
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Shiyu Niu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Jiexiang Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Yue Yin
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Hongzhou Lu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| |
Collapse
|
2
|
Diefenbacher M, Tan TJC, Bauer DLV, Stadtmueller BM, Wu NC, Brooke CB. Interactions between Influenza A Virus Nucleoprotein and Gene Segment Untranslated Regions Facilitate Selective Modulation of Viral Gene Expression. J Virol 2022; 96:e0020522. [PMID: 35467364 PMCID: PMC9131868 DOI: 10.1128/jvi.00205-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus (IAV) genome is divided into eight negative-sense, single-stranded RNA segments. Each segment exhibits a unique level and temporal pattern of expression; however, the exact mechanisms underlying the patterns of individual gene segment expression are poorly understood. We previously demonstrated that a single substitution in the viral nucleoprotein (NP:F346S) selectively modulates neuraminidase (NA) gene segment expression while leaving other segments largely unaffected. Given what is currently known about NP function, there is no obvious explanation for how changes in NP can selectively modulate the replication of individual gene segments. In this study, we found that the specificity of this effect for the NA segment is virus strain specific and depends on the untranslated region (UTR) sequences of the NA segment. While the NP:F346S substitution did not significantly alter the RNA binding or oligomerization activities of NP in vitro, it specifically decreased the ability of NP to promote NA segment viral RNA (vRNA) synthesis. In addition to NP residue F346, we identified two other adjacent aromatic residues in NP (Y385 and F479) capable of similarly regulating NA gene segment expression, suggesting a larger role for this domain in gene-segment specific regulation. Our findings reveal a novel role for NP in selective regulation of viral gene segment replication and provide a framework for understanding how the expression patterns of individual viral gene segments can be modulated during adaptation to new host environments. IMPORTANCE Influenza A virus (IAV) is a respiratory pathogen that remains a significant source of morbidity and mortality. Escape from host immunity or emergence into new host species often requires mutations that modulate the functional activities of the viral glycoproteins hemagglutinin (HA) and neuraminidase (NA), which are responsible for virus attachment to and release from host cells, respectively. Maintaining the functional balance between the activities of HA and NA is required for fitness across multiple host systems. Thus, selective modulation of viral gene expression patterns may be a key determinant of viral immune escape and cross-species transmission potential. We identified a novel mechanism by which the viral nucleoprotein (NP) gene can selectively modulate NA segment replication and gene expression through interactions with the segment UTRs. Our work highlights an unexpected role for NP in selective regulation of expression from the individual IAV gene segments.
Collapse
Affiliation(s)
- Meghan Diefenbacher
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Timothy J. C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David L. V. Bauer
- RNA Virus Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Beth M. Stadtmueller
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nicholas C. Wu
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Synergistic Effect between 3'-Terminal Noncoding and Adjacent Coding Regions of the Influenza A Virus Hemagglutinin Segment on Template Preference. J Virol 2021; 95:e0087821. [PMID: 34190596 DOI: 10.1128/jvi.00878-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus genome is comprised of eight single-stranded negative-sense viral RNA (vRNA) segments. Each of the eight vRNA segments contains segment-specific nonconserved noncoding regions (NCRs) of similar sequence and length in different influenza A virus strains. However, in the subtype-determinant segments, encoding hemagglutinin (HA) and neuraminidase (NA), the segment-specific noncoding regions are subtype specific, varying significantly in sequence and length at both the 3' and 5' termini among different subtypes. The significance of these subtype-specific noncoding regions (ssNCR) in the influenza virus replication cycle is not fully understood. In this study, we show that truncations of the 3'-end H1-subtype-specific noncoding region (H1-ssNCR) resulted in recombinant viruses with decreased HA vRNA replication and attenuated growth phenotype, although the vRNA replication was not affected in single-template RNP reconstitution assays. The attenuated viruses were unstable, and point mutations at nucleotide position 76 or 56 in the adjacent coding region of HA vRNA were found after serial passage. The mutations restored the HA vRNA replication and reversed the attenuated virus growth phenotype. We propose that the terminal noncoding and adjacent coding regions act synergistically to ensure optimal levels of HA vRNA replication in a multisegment environment. These results provide novel insights into the role of the 3'-end nonconserved noncoding regions and adjacent coding regions on template preference in multiple-segmented negative-strand RNA viruses. IMPORTANCE While most influenza A virus vRNA segments contain segment-specific nonconserved noncoding regions of similar length and sequence, these regions vary considerably both in length and sequence in the segments encoding HA and NA, the two major antigenic determinants of influenza A viruses. In this study, we investigated the function of the 3'-end H1-ssNCR and observed a synergistic effect between the 3'-end H1-ssNCR nucleotides and adjacent coding nucleotide(s) of the HA segment on template preference in a multisegment environment. The results unravel an additional level of complexity in the regulation of RNA replication in multiple-segmented negative-strand RNA viruses.
Collapse
|
4
|
Gao S, Zhang W, Lu C, Cao M, Cen S, Peng Y, Deng T. Identification of a Type-Specific Promoter Element That Differentiates between Influenza A and B Viruses. J Virol 2019; 93:e01164-19. [PMID: 31534045 PMCID: PMC6854497 DOI: 10.1128/jvi.01164-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/05/2019] [Indexed: 11/20/2022] Open
Abstract
Type A and type B influenza viruses (FluA and FluB viruses) are two major human pathogens that share common structural and functional features. FluA and FluB viruses can reassort within each type but never between the types. Here, we bioinformatically analyzed all promoter sequences of FluA and FluB viruses and confirmed the presence of the type-specific promoter elements. We then studied the promoter elements with cell-based in vivo assays and an in vitro replication initiation assay. Our results identified, for the first time, a type-specific promoter element-the nucleotide at position 5 in the 3' end of the viral RNA (vRNA)-that plays a key role(s) in modulating polymerase activity in a type-specific manner. Interestingly, swapping the promoter element between FluA and FluB recombinant viruses showed different tolerances: the replacement of FluA virus-specific U5 with FluB virus-specific C5 in influenza virus A/WSN/33 (H1N1) could be reverted to U5 after 2 to 3 passages, while the replacement of FluB virus-specific C5 with FluA virus-specific U5 in influenza virus B/Yamagata/88 could be maintained, but with significantly reduced replication efficiency. Therefore, our findings indicate that the nucleotide variation at position 5 in the 3' end of the vRNA promoter between FluA and FluB viruses contributes to their RNP incompatibility, which may shed new light on the mechanisms of intertypic exclusion of reassortment between FluA and FluB viruses.IMPORTANCE Genetic reassortment of influenza virus plays a key role in virus evolution and the emergence of pandemic strains. The reassortment occurs extensively within either FluA or FluB viruses but never between them. Here, we bioinformatically compared available promoter sequences of FluA and FluB viruses and confirmed the presence of the type-specific promoter elements. Our in vivo and in vitro mutagenesis studies showed that a type-specific promoter element-the nucleotide at position 5 in the 3' end of vRNA promoters-plays key roles in modulating polymerase activity. Interestingly, FluA and FluB viruses showed different tolerances upon key promoter element swapping in the context of virus infections. We concluded that the nucleotide at position 5 in the 3' end of the vRNA promoters of FluA and FluB viruses is a critical type-specific determinant. This work has implications for further elucidating the mechanisms of the intertypic exclusion of reassortment between FluA and FluB viruses.
Collapse
Affiliation(s)
- Shuman Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wenyu Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Congyu Lu
- College of Biology, Hunan University, Changsha, People's Republic of China
| | - Mengmeng Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, People's Republic of China
| | - Yousong Peng
- College of Biology, Hunan University, Changsha, People's Republic of China
| | - Tao Deng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
5
|
Du R, Cui Q, Rong L. Competitive Cooperation of Hemagglutinin and Neuraminidase during Influenza A Virus Entry. Viruses 2019; 11:v11050458. [PMID: 31137516 PMCID: PMC6563287 DOI: 10.3390/v11050458] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
The hemagglutinin (HA) and neuraminidase (NA) of influenza A virus possess antagonistic activities on interaction with sialic acid (SA), which is the receptor for virus attachment. HA binds SA through its receptor-binding sites, while NA is a receptor-destroying enzyme by removing SAs. The function of HA during virus entry has been extensively investigated, however, examination of NA has long been focused to its role in the exit of progeny virus from infected cells, and the role of NA in the entry process is still under-appreciated. This review summarizes the current understanding of the roles of HA and NA in relation to each other during virus entry.
Collapse
Affiliation(s)
- Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
6
|
Lee CY, Kwon HJ, Nguyen TT, Kim I, Jang HK, Kim JH. Effect of the fourth nucleotide at the 3' end of neuraminidase and matrix viral genomic RNA on the pathogenicity of influenza virus A/PR/8/34. J Vet Sci 2018; 18:307-313. [PMID: 28859270 PMCID: PMC5583418 DOI: 10.4142/jvs.2017.18.s1.307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/10/2017] [Accepted: 07/26/2017] [Indexed: 11/20/2022] Open
Abstract
Twelve nucleotides located at the 3′ end of viral genomic RNA (vRNA) are conserved among influenza A viruses (IAV) and have a promoter function. Hoffmann's 8-plasmid reverse genetics vector system introduced mutations at position 4, C nucleotide (C4) to U nucleotide (U4), of the 3′ ends of neuraminidase (NA) and matrix (M) vRNAs of wild-type A/PR/8/34 (PR8). This resulted in a constellation of C4 and U4 vRNAs coding for low (polymerases) and relatively high (all others) copy number proteins, respectively. U4 has been reported to increase promoter activity in comparison to C4, but the constellation effect on the replication efficiency and pathogenicity of reverse genetics PR8 (rgPR8) has not been fully elucidated. In the present study, we generated 3 recombinant viruses with C4 in the NA and/or M vRNAs and rgPR8 by using reverse genetics and compared their pathobiological traits. The mutant viruses showed lower replication efficiency than rgPR8 due to the low transcription levels of NA and/or M genes. Furthermore, C4 in the NA and/or M vRNAs induced lower PR8 virus pathogenicity in BALB/c mice. The results suggest that the constellation of C4 and U4 among vRNAs may be one of the multigenic determinants of IAV pathogenicity.
Collapse
Affiliation(s)
- Chung-Young Lee
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Production Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Farm Animal Clinical Training and Research Center, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Thanh Trung Nguyen
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Ilhwan Kim
- Division of Antimicrobial Resistance, Center for Infectious Diseases, National Research Institute of Health, Korea Centers for Disease Control & Prevention (KCDC), Cheongju 28159, Korea
| | - Hyung-Kwan Jang
- Department of Infectious Diseases & Avian Diseases, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Chen W, Xu Q, Zhong Y, Yu H, Shu J, Ma T, Li Z. Genetic variation and co-evolutionary relationship of RNA polymerase complex segments in influenza A viruses. Virology 2017; 511:193-206. [PMID: 28866238 DOI: 10.1016/j.virol.2017.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/19/2022]
Abstract
The RNA polymerase complex (RNApc) in influenza A viruses (IVs) is composed of the PB2, PB1 and PA subunits, which are encoded by the three longest genome segments (Seg1-3) and are responsible for the replication of vRNAs and transcription of viral mRNAs. However, the co-evolutionary relationships of the three segments from the known 126 subtypes IVs are unclear. In this study, we performed a detailed analysis based on a total number of 121,191 nucleotide sequences. Three segment sequences were aligned before the repeated, incomplete and mixed sequences were removed for homologous and phylogenetic analyses. Subsequently, the estimated substitution rates and TMRCAs (Times for Most Recent Common Ancestor) were calculated by 175 representative IVs. Tracing the cladistic distribution of three segments from these IVs, co-evolutionary patterns and trajectories could be inferred. The further correlation analysis of six internal protein coding segments reflect the RNApc segments have the closer correlation than others during continuous reassortments. This global approach facilitates the establishment of a fast antiviral strategy and monitoring of viral variation.
Collapse
Affiliation(s)
- Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Qi Xu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
8
|
Panthu B, Terrier O, Carron C, Traversier A, Corbin A, Balvay L, Lina B, Rosa-Calatrava M, Ohlmann T. The NS1 Protein from Influenza Virus Stimulates Translation Initiation by Enhancing Ribosome Recruitment to mRNAs. J Mol Biol 2017; 429:3334-3352. [PMID: 28433538 DOI: 10.1016/j.jmb.2017.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022]
Abstract
The non-structural protein NS1 of influenza A viruses exerts pleiotropic functions during infection. Among these functions, NS1 was shown to be involved in the control of both viral and cellular translation; however, the mechanism by which this occurs remains to be determined. Thus, we have revisited the role of NS1 in translation by using a combination of influenza infection, mRNA reporter transfection, and in vitro functional and biochemical assays. Our data show that the NS1 protein is able to enhance the translation of virtually all tested mRNAs with the exception of constructs bearing the Dicistroviruses Internal ribosome entry segment (IRESes) (DCV and CrPV), suggesting a role at the level of translation initiation. The domain of NS1 required for translation stimulation was mapped to the RNA binding amino-terminal motif of the protein with residues R38 and K41 being critical for activity. Although we show that NS1 can bind directly to mRNAs, it does not correlate with its ability to stimulate translation. This activity rather relies on the property of NS1 to associate with ribosomes and to recruit them to target mRNAs.
Collapse
Affiliation(s)
- Baptiste Panthu
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France
| | - Olivier Terrier
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Coralie Carron
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Aurélien Traversier
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Antoine Corbin
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France
| | - Laurent Balvay
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France
| | - Bruno Lina
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France.
| |
Collapse
|
9
|
Gíria M, Santos L, Louro J, Rebelo de Andrade H. Reverse genetics vaccine seeds for influenza: Proof of concept in the source of PB1 as a determinant factor in virus growth and antigen yield. Virology 2016; 496:21-27. [PMID: 27240145 DOI: 10.1016/j.virol.2016.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/28/2022]
|
10
|
Cloning the Horse RNA Polymerase I Promoter and Its Application to Studying Influenza Virus Polymerase Activity. Viruses 2016; 8:v8060119. [PMID: 27258298 PMCID: PMC4926170 DOI: 10.3390/v8060119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
An influenza virus polymerase reconstitution assay based on the human, dog, or chicken RNA polymerase I (PolI) promoter has been developed and widely used to study the polymerase activity of the influenza virus in corresponding cell types. Although it is an important member of the influenza virus family and has been known for sixty years, no studies have been performed to clone the horse PolI promoter or to study the polymerase activity of equine influenza virus (EIV) in horse cells. In our study, the horse RNA PolI promoter was cloned from fetal equine lung cells. Using the luciferase assay, it was found that a 500 bp horse RNA PolI promoter sequence was required for efficient transcription. Then, using the developed polymerase reconstitution assay based on the horse RNA PolI promoter, the polymerase activity of two EIV strains was compared, and equine myxovirus resistance A protein was identified as having the inhibiting EIV polymerase activity function in horse cells. Our study enriches our knowledge of the RNA PolI promoter of eukaryotic species and provides a useful tool for the study of influenza virus polymerase activity in horse cells.
Collapse
|
11
|
Kibenge F, Kibenge M. Orthomyxoviruses of Fish. AQUACULTURE VIROLOGY 2016. [PMCID: PMC7173593 DOI: 10.1016/b978-0-12-801573-5.00019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The family Orthomyxoviridae is well known for containing influenza viruses with a segmented RNA genome that is prone to gene reassortment in mixed infections (known as antigenic shift) resulting in new virus subtypes that cause pandemics, and cumulative mutations (known as antigenic drift), resulting in new virus strains that cause epidemics. This family also contains infectious salmon anemia virus (ISAV) and tilapia lake virus (TiLV), which are a unique orthomyxoviruses that infect fish and is unable to replicate above room temperature (24°C). This chapter describes the comparative virology of members in the family Orthomyxoviridae in general, helping to understand the emergent teleost orthomyxoviruses, ISAV and TiLV. The most current information on virus–host interactions of the fish orthomyxoviruses, particularly ISAV, as they relate to variations in virus structure, virulence, persistence, host range and immunological aspects is presented in detail.
Collapse
|
12
|
Souto S, Mérour E, Biacchesi S, Brémont M, Olveira JG, Bandín I. In vitro and in vivo characterization of molecular determinants of virulence in reassortant betanodavirus. J Gen Virol 2015; 96:1287-1296. [PMID: 25626678 DOI: 10.1099/vir.0.000064] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/19/2015] [Indexed: 01/25/2023] Open
Abstract
We previously reported that betanodavirus reassortant strains [redspotted grouper nervous necrosis virus/striped jack nervous necrosis virus (SJNNV)] isolated from Senegalese sole (Solea senegalensis) exhibited a modified SJNNV capsid amino acid sequence, with changes at aa 247 and 270. In the current study, we investigated the possible role of both residues as putative virulence determinants. Three recombinant viruses harbouring site-specific mutations in the capsid protein sequence, rSs160.03247 (S247A), rSs160.03270 (S270N) and rSs160.03247+270 (S247A/S270N), were generated using a reverse genetics system. These recombinant viruses were studied in cell culture and in vivo in the natural fish host. The three mutant viruses were shown to be infectious and able to replicate in E-11 cells, reaching final titres similar to the WT virus, although with a somewhat slower kinetics of replication. When the effect of the amino acid substitutions on virus pathogenicity was evaluated in Senegalese sole, typical clinical signs of betanodavirus infection were observed in all groups. However, fish mortality induced by all three mutant viruses was clearly affected. Roughly 40 % of the fish survived in these three groups in contrast with the WT virus which killed 100 % of the fish. These data demonstrated that aa 247 and 270 play a major role in betanodavirus virulence although when both mutated aa 247 and 270 are present, corresponding recombinant virus was not further attenuated.
Collapse
Affiliation(s)
- Sandra Souto
- Instituto de Acuicultura, Universidad de Santiago de Compostela, A Coruña, Spain
| | - Emilie Mérour
- Unité de Virologie et Immunologie Moléculaires, INRA, Jouy en Josas, France
| | - Stéphane Biacchesi
- Unité de Virologie et Immunologie Moléculaires, INRA, Jouy en Josas, France
| | - Michel Brémont
- Unité de Virologie et Immunologie Moléculaires, INRA, Jouy en Josas, France
| | - José G Olveira
- Instituto de Acuicultura, Universidad de Santiago de Compostela, A Coruña, Spain
| | - Isabel Bandín
- Instituto de Acuicultura, Universidad de Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
13
|
Wang J, Peng Y, Zhao L, Cao M, Hung T, Deng T. Influenza A virus utilizes a suboptimal Kozak sequence to fine-tune virus replication and host response. J Gen Virol 2014; 96:756-766. [PMID: 25519170 DOI: 10.1099/vir.0.000030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The segment-specific non-coding regions (NCRs) of influenza A virus RNA genome play important roles in controlling viral RNA transcription, replication and genome packaging. In this report, we present, for the first time to our knowledge, a full view of the segment-specific NCRs of all influenza A viruses by bioinformatics analysis. Our systematic functional analysis revealed that the eight segment-specific NCRs identified could differentially regulate viral RNA synthesis and protein expression at both transcription and translation levels. Interestingly, a highly conserved suboptimal nucleotide at -3 position of the Kozak sequence, which downregulated protein expression at the translation level, was only present in the segment-specific NCR of PB1. By reverse genetics, we demonstrate that recombinant viruses with an optimized Kozak sequence at the -3 position in PB1 resulted in a significant multiple-cycle replication reduction that was independent of PB1-F2 expression. Our detailed dynamic analysis of virus infection revealed that the mutant virus displays slightly altered dynamics from the wild-type virus on both viral RNA synthesis and protein production. Furthermore, we demonstrated that the level of PB1 expression is involved in regulating type I IFN production. Together, these data reveal a novel strategy exploited by influenza A virus to fine-tune virus replication dynamics and host antiviral response through regulating PB1 protein expression.
Collapse
Affiliation(s)
- Jingfeng Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Yousong Peng
- College of Information Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Lili Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Mengmeng Cao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Tao Hung
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Tao Deng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
14
|
Complete Genome Sequences of H3N2 Canine Influenza Virus with the Matrix Gene from the Pandemic A/H1N1 Virus. GENOME ANNOUNCEMENTS 2014; 2:2/5/e01010-14. [PMID: 25278543 PMCID: PMC4183887 DOI: 10.1128/genomea.01010-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We analyzed the complete genome sequence containing the 3' and 5' noncoding regions (NCRs) of H3N2 canine influenza virus (CIV) with the matrix gene from the pandemic A/H1N1 virus, which will provide a better understanding of the pathogenesis, transmission, and evolution of variant CIV.
Collapse
|
15
|
Díaz A, García K, Navarrete A, Higuera G, Romero J. Virtual screening of gene expression regulatory sites in non-coding regions of the infectious salmon anemia virus. BMC Res Notes 2014; 7:477. [PMID: 25069483 PMCID: PMC4132239 DOI: 10.1186/1756-0500-7-477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the Orthomyxoviridae family, which contains an important fish pathogen called the infectious salmon anemia virus (ISAV), have a genome consisting of eight segments of single-stranded RNA that encode different viral proteins. Each of these segments is flanked by non-coding regions (NCRs). In other Orthomyxoviruses, sequences have been shown within these NCRs that regulate gene expression and virulence; however, only the sequences of these regions are known in ISAV, and a biological role has not yet been attributed to these regions. This study aims to determine possible functions of the NCRs of ISAV. RESULTS The results suggested an association between the molecular architecture of NCR regions and their role in the viral life cycle. The available NCR sequences from ISAV isolates were compiled, alignments were performed to obtain a consensus sequence, and conserved regions were identified in this consensus sequence. To determine the molecular structure adopted by these NCRs, various bioinformatics tools, including RNAfold, RNAstructure, Sfold, and Mfold, were used. This hypothetical structure, together with a comparison with influenza, yielded reliable secondary structure models that lead to the identification of conserved nucleotide positions on an intergenus level. These models determined which nucleotide positions are involved in the recognition of the vRNA/cRNA by RNA-dependent RNA polymerase (RdRp) or mRNA by the ribosome. CONCLUSIONS The information obtained in this work allowed the proposal of previously unknown sites that are involved in the regulation of different stages of the viral cycle, leading to the identification of new viral targets that may assist future antiviral strategies.
Collapse
Affiliation(s)
| | | | | | | | - Jaime Romero
- Instituto de Nutrición y Tecnología de los Alimentos, INTA, Universidad de Chile, Avenida El Líbano #5524, Macul, Santiago, Chile.
| |
Collapse
|
16
|
New insights into the nonconserved noncoding region of the subtype-determinant hemagglutinin and neuraminidase segments of influenza A viruses. J Virol 2014; 88:11493-503. [PMID: 25056889 DOI: 10.1128/jvi.01337-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The noncoding regions (NCRs) of the eight-segmented viral RNAs (vRNAs) of influenza A virus consist of the highly conserved promoter region and the nonconserved segment-specific NCRs at both the 3' and 5' ends. The roles of the segment-specific NCRs of the eight segments have been extensively studied. However, the diversities in the same region of the two subtype-determinant hemagglutinin (HA) and neuraminidase (NA) segments have received little attention. In this study, we bioinformatically analyzed all available NCRs of HA and NA vRNAs of influenza A viruses and found that nucleotides in the segment-specific NCRs of HA and NA vRNAs are subtype specific and vary significantly in sequence and length at both the 3' and 5' ends among different subtypes. We then systematically studied the biological significance of the HA subtype-specific NCRs (HA ssNCRs) of the common HA subtypes (H1 to H7 and H9) in the context of the WSN (H1N1) reverse genetics system. We found that the HA ssNCRs play a critical role in HA vRNA virion incorporation. Upon HA vRNA incorporation, the 3'-end HA ssNCR plays a more critical role than the 5'-end HA ssNCR, and no stringent compatibility between the two ends is required. Furthermore, our data imply that, in addition to a particular nucleotide(s), the length of the HA ssNCR is involved in regulating HA vRNA incorporation efficiency. These results provide new insights into the HA segment virion incorporation that is critical for the emergence of epidemic and pandemic influenza A virus strains. IMPORTANCE The nonconserved noncoding regions (NCRs) of the vRNAs of influenza A virus have been extensively studied, whereas the diversities in the nonconserved NCRs of the two subtype-determinant segments hemagglutinin (HA) and neuraminidase (NA) have received little attention. In this study, we bioinformatically analyzed all available NCRs of HA and NA vRNAs and discovered that the HA and NA vRNAs contain key subtype signatures in the NCRs. Our functional studies of the HA subtype-specific NCRs (HA ssNCRs) of the common HA subtypes in the context of WSN virus (H1N1) demonstrated that the HA ssNCR modulates virus replication efficiency by influencing HA segment virion incorporation. Moreover, we revealed important features of the HA ssNCR in determining HA vRNA incorporation efficiency. These data not only show new genetic characteristics of influenza A viruses, but also provide further evidence for understanding the selective genome packaging of influenza virus required for the emergence of epidemic and pandemic influenza virus strains.
Collapse
|
17
|
Suarez DL, Chester N, Hatfield J. Sequencing artifacts in the type A influenza databases and attempts to correct them. Influenza Other Respir Viruses 2014; 8:499-505. [PMID: 24512607 PMCID: PMC4181811 DOI: 10.1111/irv.12239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND There are over 276 000 influenza gene sequences in public databases, with the quality of the sequences determined by the contributor. OBJECTIVE As part of a high school class project, influenza sequences with possible errors were identified in the public databases based on the size of the gene being longer than expected, with the hypothesis that these sequences would have an error. Students contacted sequence submitters alerting them of the possible sequence issue(s) and requested they the suspect sequence(s) be correct as appropriate. METHODS Type A influenza viruses were screened, and gene segments longer than the accepted size were identified for further analysis. Attention was placed on sequences with additional nucleotides upstream or downstream of the highly conserved non-coding ends of the viral segments. RESULTS AND CONCLUSIONS A total of 1081 sequences were identified that met this criterion. Three types of errors were commonly observed: non-influenza primer sequence wasn't removed from the sequence; PCR product was cloned and plasmid sequence was included in the sequence; and Taq polymerase added an adenine at the end of the PCR product. Internal insertions of nucleotide sequence were also commonly observed, but in many cases it was unclear if the sequence was correct or actually contained an error. A total of 215 sequences, or 22.8% of the suspect sequences, were corrected in the public databases in the first year of the student project. Unfortunately 138 additional sequences with possible errors were added to the databases in the second year. Additional awareness of the need for data integrity of sequences submitted to public databases is needed to fully reap the benefits of these large data sets.
Collapse
Affiliation(s)
- David L Suarez
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA, USA
| | | | | |
Collapse
|
18
|
Abstract
Reverse genetics is the creation of a virus from a full-length cDNA copy of the viral genome, referred to as an "infectious clone," and is one of the most powerful genetic tools in modern virology. Since its development in 1999, plasmid-based reverse genetics has been effectively applied to numerous aspects of influenza studies which include revolutionizing the production of seasonal and pandemic influenza vaccine seed strains. Although continual improvement in reverse genetics system is being made in different laboratories for the efficient rescue of the influenza virus, the basic concept of synthesizing viral RNA using RNA polymerase I remains the same. Coupled with in vitro mutagenesis, reverse genetics can be applied widely to accelerate progress in understanding the influenza virus life cycle, the generation of customized vaccine seed strains, development of live-attenuated vaccines, and the use of influenza virus as vaccine and gene delivery vectors.
Collapse
Affiliation(s)
- Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691-4096, USA,
| |
Collapse
|
19
|
Impact of the segment-specific region of the 3'-untranslated region of the influenza A virus PB1 segment on protein expression. Virus Genes 2013; 47:429-38. [PMID: 23949786 DOI: 10.1007/s11262-013-0969-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
The 12 and 13 terminal nucleotides in the 3'- and 5'-untranslated regions (UTRs) of the influenza A virus genome, respectively, are important for the transcription of the viral RNA and the translation of mRNA. However, the functions of the segment-specific regions of the UTRs are not well known. We utilized an enhanced green fluorescent protein (eGFP) flanked at both ends by different UTRs (from the eight segments of H1N1 PR8/34) as a reporter gene to evaluate the effects of these UTRs on protein expression in vitro. The results showed that the protein expression levels of NP-eGFP, NS-eGFP, and HA-eGFP were higher than those of the other reporters and that the protein level of PB1-eGFP remained at a relatively low amount 48-h post-transfection. The results revealed that the UTRs of all segments differently affected the protein expression levels and that the effect of the UTRs of PB1 segment on protein expression was significant. The deletion of "UAAA" and "UAAACU" motifs in the PB1-3'-UTR significantly increased the protein expression level by 49.8 and 142.6%, respectively. This finding suggests that the "UAAACU" motif in the PB1-3'-UTR is at least partly responsible for the low protein expression level. By introducing the "UAAACU" motif into other 3'-UTRs (PA, NS, NP, and HA) at similar locations, the eGFP expression was reduced as expected by 56, 61, 22, and 22%, respectively. This result further confirmed that the "UAAACU" motif of the PB1-3'-UTR can inhibit protein expression. Our findings suggest that the segment-specific regions in the UTRs and not just the conserved regions of the UTRs play an important role in the viral protein expression. Additionally, the reported findings may also shed light on novel regulatory mechanism for the influenza A virus genome.
Collapse
|
20
|
Complete genome sequence of a mammalian species-infectious and -pathogenic H6N5 avian influenza virus without evidence of adaptation. J Virol 2013; 86:12459-60. [PMID: 23087119 DOI: 10.1128/jvi.02301-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An H6N5 avian influenza virus (AIV) strain, designated A/aquatic bird/Korea/CN5/2009 (H6N5), was isolated from fecal swabs of aquatic birds in 2009, and surprisingly, it showed infectivity and pathogenicity in mammalian species without evidence of adaptation. In this study, we report the first complete genome sequence containing 3' and 5' noncoding regions (NCRs) of a mammalian species-infectious and pathogenic H6N5 AIV, which will help provide important insights into the molecular basis of pathogenesis, transmission, and evolution of AIV.
Collapse
|
21
|
Kim IH, Kwon HJ, Choi JG, Kang HM, Lee YJ, Kim JH. Characterization of mutations associated with the adaptation of a low-pathogenic H5N1 avian influenza virus to chicken embryos. Vet Microbiol 2012; 162:471-478. [PMID: 23211427 DOI: 10.1016/j.vetmic.2012.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/21/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
Migratory waterfowls are the most common reservoir for avian influenza virus (AIV), thus viral adaptation is required for efficient replication in land fowls. To date, low pathogenic (LP) H5 subtype AIVs have been isolated from migratory waterfowls, and the adaptation of these viruses to land fowls might lead to the generation of highly pathogenic AIVs. Thus, A/wild duck/Korea/50-5/2009 (H5N1) LPAIV was passaged 20 times through embryonated chicken eggs (ECEs), and the resulting genetic and phenotypic changes were investigated. The pathogenicities of the early (50-5-E2) and final passage (50-5-E20) strains to chicken embryos were similarly high, but the 50-5-E20 titer was 100 times higher than that of 50-5-E2. 50-5-E20 showed 8 amino acid changes in PA (1), HA (4), NA (1), M1 (1) and M2 (1), with different frequencies among influenza A viruses (0-99.6%). The relevance of these changes, except H103Y in HA, to viral replication remains unknown. To investigate the roles of internal genes and mutations in HA and NA in viral replication, four recombinant viruses possessing combinations of HA and NA genes of 50-5-E2 and 50-5-E20 with 6 internal genes of PR8 were generated through reverse genetics. The embryo pathogenicities of the H5N1 recombinant viruses carrying internal PR8 genes were reduced, and the titers of the recombinant viruses with 50-5-E20 HA were higher than those with 50-5-E2 HA. Therefore, the identified mutations might be useful as chicken adaptation markers for the generation of high growth H5N1 recombinant viruses in ECEs.
Collapse
Affiliation(s)
- Il-Hwan Kim
- Laboratory of Avian Diseases, Seoul National University, Seoul 151-742, Republic of Korea; College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyuk-Joon Kwon
- Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Jun-Gu Choi
- Avian Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Anyangsi, Gyeonggido 430-757, Republic of Korea
| | - Hyun-Mi Kang
- Avian Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Anyangsi, Gyeonggido 430-757, Republic of Korea
| | - Youn-Jeong Lee
- Avian Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Anyangsi, Gyeonggido 430-757, Republic of Korea
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, Seoul National University, Seoul 151-742, Republic of Korea; College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
22
|
Complete genome sequence of an avian-origin H3N2 canine influenza virus isolated from dogs in South Korea. J Virol 2012; 86:9548-9. [PMID: 22879618 DOI: 10.1128/jvi.01485-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An avian-origin Korean H3N2 canine influenza virus (CIV) strain, designated A/canine/Korea/01/2007 (H3N2), was isolated from nasal swabs of pet dogs exhibiting severe respiratory syndrome in 2007. In the present study, we report the first complete genome sequence containing 3' and 5' noncoding regions (NCRs) of H3N2 CIV, which will provide important insights into the molecular basis of pathogenesis, transmission, and evolution of CIV.
Collapse
|
23
|
Characterization and comparison of the full 3' and 5' untranslated genomic regions of diverse isolates of infectious salmon anaemia virus by using a rapid and universal method. J Virol Methods 2011; 174:136-43. [PMID: 21458495 DOI: 10.1016/j.jviromet.2011.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/07/2011] [Accepted: 03/23/2011] [Indexed: 01/22/2023]
Abstract
The 3' and 5' untranslated regions (UTRs) of the gene segments of orthomyxoviruses interact closely with the polymerase complex and are important for viral replication and transcription regulation. Despite this, the 3' and 5' RNA UTRs of the infectious salmon anaemia virus (ISAV) genome have only been partially characterized and little is known about the level of conservation between different virus subtypes. This report details for the first time, the adaptation of a rapid method for the simultaneous characterization of the 3' and 5' UTRs of each viral segment of ISAV. This was achieved through self circularization of segments using T4 RNA ligase, followed by PCR and sequencing. Dephosphorylation of 5' ends using tobacco acid pyrophosphatase (TAP) proved to be a specific requirement for ligation of ISAV ends which was not essential for characterization of influenza virus in a similar manner. The development of universal primers facilitated the characterization of 4 genetically distinct ISAV isolates from Canada, Norway and Scotland. Comparison of the UTR regions revealed a similarity in organization and presence of conserved terminal sequences as reported for other orthomyxoviruses. Interestingly, the 3' ends of ISAV segments including segments 1, 5 and 6, were shorter and 5' UTRs generally longer than in their influenza counterparts.
Collapse
|
24
|
Kulshreshtha V, Kibenge M, Salonius K, Simard N, Riveroll A, Kibenge F. Identification of the 3' and 5' terminal sequences of the 8 rna genome segments of European and North American genotypes of infectious salmon anemia virus (an orthomyxovirus) and evidence for quasispecies based on the non-coding sequences of transcripts. Virol J 2010; 7:338. [PMID: 21092282 PMCID: PMC3003268 DOI: 10.1186/1743-422x-7-338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/23/2010] [Indexed: 01/18/2023] Open
Abstract
Background Infectious salmon anemia (ISA) virus (ISAV) is a pathogen of marine-farmed Atlantic salmon (Salmo salar); a disease first diagnosed in Norway in 1984. This virus, which was first characterized following its isolation in cell culture in 1995, belongs to the family Orthomyxoviridae, genus, Isavirus. The Isavirus genome consists of eight single-stranded RNA segments of negative sense, each with one to three open reading frames flanked by 3' and 5' non-coding regions (NCRs). Although the terminal sequences of other members of the family Orthomyxoviridae such as Influenzavirus A have been extensively analyzed, those of Isavirus remain largely unknown, and the few reported are from different ISAV strains and on different ends of the different RNA segments. This paper describes a comprehensive analysis of the 3' and 5' end sequences of the eight RNA segments of ISAV of both European and North American genotypes, and evidence of quasispecies of ISAV based on sequence variation in the untranslated regions (UTRs) of transcripts. Results Two different ISAV strains and two different RNA preparations were used in this study. ISAV strain ADL-PM 3205 ISAV-07 (ADL-ISAV-07) of European genotype was the source of total RNA extracted from ISAV-infected TO cells, which contained both viral mRNA and cRNA. ISAV strain NBISA01 of North American genotype was the source of vRNA extracted from purified virus. The NCRs of each segment were identified by sequencing cDNA prepared by three different methods, 5' RACE (Rapid amplification of cDNA ends), 3' RACE, and RNA ligation mediated PCR. Sequence analysis of five clones each derived from one RT-PCR product from each NCR of ISAV transcripts of segments 1 to 8 revealed significant heterogeneity among the clones of the same segment end, providing unequivocal evidence for presence of intra-segment ISAV quasispecies. Both RNA preparations (mRNA/cRNA and vRNA) yielded complementary sequence information, allowing the simultaneous identification and confirmation of the 3' and 5' NCR sequences of the 8 RNA genome segments of both genotypes of ISAV. The 3' sequences of the mRNA transcripts of ADL-ISAV-07 terminated 13-18 nucleotides from the full 3' terminus of cRNA, continuing as a poly(A) tail, which corresponded with the location of the polyadenylation signal. The lengths of the 3' and 5' NCRs of the vRNA were variable in the different genome segments, but the terminal 7 and 11 nucleotides of the 3' and 5' ends, respectively, were highly conserved among the eight genomic segments of ISAV. The first three nucleotides at the 3' end are GCU-3' (except in segment 5 with ACU-3'), whereas at the 5' end are 5'-AGU with the polyadenylation signal of 3-5 uridines 13-15 nucleotides downstream of the 5' end terminus of the vRNA. Exactly the same features were found in the respective complementary 5' and 3' end NCR sequences of the cRNA transcripts of ADL-ISAV-07, indicating that the terminal sequences of the 8 RNA genome segments are highly conserved among the two ISAV genotypes. The 5' NCR sequences of segments 1, 2, 3, 5, and 7, and the 3' NCR sequences of segments 3 and 4 cRNA were 100% identical in the two genotypes, and the 3' NCR sequences of segment 5 cRNA was the most divergent, with a sequence identity of 77.2%. Conclusions We report for the first time, the presence of intra-segment ISAV quasispecies, based on sequence variation in the NCR sequences of transcripts. In addition, this is the first report of a comprehensive unambiguous analysis of the 3' and 5' NCR sequences of all 8 RNA genome segments from two strains of ISAV representing the two genotypes of ISAV. Because most ISAV sequences are of cDNA to mRNA, they do not contain the 3' end sequences, which are removed during polyadenylation of the mRNA transcripts. We report for the first time the ISAV consensus sequence CAT/ATTTTTACT-3' (in the message sense 5'-3') in all segments of both ISAV genotypes.
Collapse
Affiliation(s)
- Vikas Kulshreshtha
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Krammer F, Pontiller J, Tauer C, Palmberger D, Maccani A, Baumann M, Grabherr R. Evaluation of the influenza A replicon for transient expression of recombinant proteins in mammalian cells. PLoS One 2010; 5:e13265. [PMID: 20949004 PMCID: PMC2952591 DOI: 10.1371/journal.pone.0013265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/14/2010] [Indexed: 12/30/2022] Open
Abstract
Recombinant protein expression in mammalian cells has become a very important technique over the last twenty years. It is mainly used for production of complex proteins for biopharmaceutical applications. Transient recombinant protein expression is a possible strategy to produce high quality material for preclinical trials within days. Viral replicon based expression systems have been established over the years and are ideal for transient protein expression. In this study we describe the evaluation of an influenza A replicon for the expression of recombinant proteins. We investigated transfection and expression levels in HEK-293 cells with EGFP and firefly luciferase as reporter proteins. Furthermore, we studied the influence of different influenza non-coding regions and temperature optima for protein expression as well. Additionally, we exploited the viral replication machinery for the expression of an antiviral protein, the human monoclonal anti-HIV-gp41 antibody 3D6. Finally we could demonstrate that the expression of a single secreted protein, an antibody light chain, by the influenza replicon, resulted in fivefold higher expression levels compared to the usually used CMV promoter based expression. We emphasize that the influenza A replicon system is feasible for high level expression of complex proteins in mammalian cells.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Jens Pontiller
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Christopher Tauer
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Dieter Palmberger
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Andreas Maccani
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Martina Baumann
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| |
Collapse
|