1
|
Activation of Dendritic Cells in Tonsils Is Associated with CD8 T Cell Responses following Vaccination with Live Attenuated Classical Swine Fever Virus. Int J Mol Sci 2021; 22:ijms22168795. [PMID: 34445493 PMCID: PMC8395915 DOI: 10.3390/ijms22168795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Classical swine fever (CSF) is a highly contagious disease caused by the classical swine fever virus (CSFV). The live attenuated C-strain vaccine is highly efficacious, initiating protection within several days of delivery. The vaccine strain is detected in the tonsil early after inoculation, yet little is known of the role that tonsillar immune cells might play in initiating protection. Comparing the C-strain vaccine with the pathogenic CSFV Alfort-187 strain, changes in the myeloid cell compartment of the tonsil were observed. CSFV infection led to the emergence of an additional CD163+CD14+ cell population, which showed the highest levels of Alfort-187 and C-strain infection. There was also an increase in both the frequency and activation status (as shown by increased MHC-II expression) of the tonsillar conventional dendritic cells 1 (cDC1) in pigs inoculated with the C-strain. Notably, the activation of cDC1 cells coincided in time with the induction of a local CSFV-specific IFN-γ+ CD8 T cell response in C-strain vaccinated pigs, but not in pigs that received Alfort-187. Moreover, the frequency of CSFV-specific IFN-γ+ CD8 T cells was inversely correlated to the viral load in the tonsils of individual animals. Accordingly, we hypothesise that the activation of cDC1 is key in initiating local CSFV-specific CD8 T cell responses which curtail early virus replication and dissemination.
Collapse
|
2
|
Coronado L, Perera CL, Rios L, Frías MT, Pérez LJ. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines (Basel) 2021; 9:154. [PMID: 33671909 PMCID: PMC7918945 DOI: 10.3390/vaccines9020154] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infectious diseases affecting the members of Suidae family, which causes a severe impact on the global economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this disease represents. The negative aspects related with the application of mass stamping out policies, including elevated costs and ethical issues, point out vaccination as the main control measure against future outbreaks. Hence, it is imperative for the scientific community to continue with the active investigations for more effective vaccines against CSFV. The current review pursues to gather all the available information about the vaccines in use or under developing stages against CSFV. From the perspective concerning the evolutionary viral process, this review also discusses the current problematic in CSF-endemic countries.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Carmen L. Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, NB E2L 4L5, Canada;
| | - María T. Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Lester J. Pérez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Champaign, IL 61802, USA
| |
Collapse
|
3
|
Te Kamp V, Freuling CM, Vos A, Schuster P, Kaiser C, Ortmann S, Kretzschmar A, Nemitz S, Eggerbauer E, Ulrich R, Schinköthe J, Nolden T, Müller T, Finke S. Responsiveness of various reservoir species to oral rabies vaccination correlates with differences in vaccine uptake of mucosa associated lymphoid tissues. Sci Rep 2020; 10:2919. [PMID: 32076025 PMCID: PMC7031338 DOI: 10.1038/s41598-020-59719-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Oral rabies vaccination (ORV) is highly effective in foxes and raccoon dogs, whereas for unknown reasons the efficacy of ORV in other reservoir species is less pronounced. To investigate possible variations in species-specific cell tropism and local replication of vaccine virus, different reservoir species including foxes, raccoon dogs, raccoons, mongooses, dogs and skunks were orally immunised with a highly attenuated, high-titred GFP-expressing rabies virus (RABV). Immunofluorescence and RT-qPCR screenings revealed clear differences among species suggesting host specific limitations to ORV. While for responsive species the palatine tonsils (tonsilla palatina) were identified as a main site of virus replication, less virus dissemination was observed in the tonsils of rather refractory species. While our comparison of vaccine virus tropism emphasizes the important role that the tonsilla palatina plays in eliciting an immune response to ORV, our data also indicate that other lymphoid tissues may have a more important role than originally anticipated. Overall, these data support a model in which the susceptibility to oral live RABV vaccine infection of lymphatic tissue is a major determinant in vaccination efficacy. The present results may help to direct future research for improving vaccine uptake and efficacy of oral rabies vaccines under field conditions.
Collapse
Affiliation(s)
- Verena Te Kamp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Greifswald-Insel Riems, Germany
- Thescon GmbH, 48653, Coesfeld, Germany
| | - Conrad M Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Greifswald-Insel Riems, Germany
| | - Ad Vos
- Ceva Innovation Center GmbH, 06861, Dessau-Rosslau, Germany
| | - Peter Schuster
- Ceva Innovation Center GmbH, 06861, Dessau-Rosslau, Germany
| | | | | | | | - Sabine Nemitz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Greifswald-Insel Riems, Germany
- BioNTech IMFS GmbH, 55743, Idar-Oberstein, Germany
| | - Elisa Eggerbauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Greifswald-Insel Riems, Germany
- Thüringer Landesamt für Verbraucherschutz, 99947, Bad Langensalza, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, 04103, Leipzig, Germany
| | - Jan Schinköthe
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, 04103, Leipzig, Germany
| | - Tobias Nolden
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Greifswald-Insel Riems, Germany
- ViraTherapeutics GmbH, 6020, Innsbruck, Austria
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Greifswald-Insel Riems, Germany.
| |
Collapse
|
4
|
Chen D, Liu X, Xu S, Chen D, Zhou L, Ge X, Han J, Guo X, Yang H. TNF-α induced by porcine reproductive and respiratory syndrome virus inhibits the replication of classical swine fever virus C-strain. Vet Microbiol 2019; 234:25-33. [PMID: 31213269 DOI: 10.1016/j.vetmic.2019.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022]
Abstract
Porcine productive and respiratory syndrome virus (PRRSV) and classical swine fever virus (CSFV) both are major pathogens of swine that pose a great threat to the Chinese pig industry. It has been found that PRRSV infection can lead to vaccination failure of CSFV C strain-derived modified live vaccine (CSFV-C) by interfering with the immune responses to the latter. To investigate whether PRRSV can suppress CSFV-C replication, we created a 3D4/21-based cell line PAM39 that is susceptible to both viruses by expressing PRRSV receptors CD163 and CD169, and then investigated their interplay under the condition of either sequential or simultaneous co-infection. The most significant suppressive effect came from the sequential infection when the cells were first infected by PRRSV and then followed by CSFV-C at an interval of 6 h. In addition, this effect was independent of PRRSV strains. Mechanistically, PRRSV induced an elevated level of a subset of pro-inflammatory cytokines, especially tumor necrosis factor (TNF-α), through the nuclear factor κB (NF-κB) signaling pathway to inhibit the replication of CSFV-C in vitro. Thus, our studies provide an alternative explanation on PRRSV-induced CSFV vaccination failure, and this has an important implication in CSF vaccination and control.
Collapse
Affiliation(s)
- Dongjie Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaowen Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shengkui Xu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Dengjin Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
5
|
Blome S, Wernike K, Reimann I, König P, Moß C, Beer M. A decade of research into classical swine fever marker vaccine CP7_E2alf (Suvaxyn ® CSF Marker): a review of vaccine properties. Vet Res 2017; 48:51. [PMID: 28915927 PMCID: PMC5603031 DOI: 10.1186/s13567-017-0457-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/04/2017] [Indexed: 11/29/2022] Open
Abstract
Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. However, until recently, the available live vaccines did not allow a serological marker concept that is essentially important to circumvent long-term trade restrictions. In 2014, a new live attenuated marker vaccine, Suvaxyn® CSF Marker (Zoetis), was licensed by the European Medicines Agency. This vaccine is based on pestivirus chimera “CP7_E2alf” that carries the main immunogen of CSF virus “Alfort/187”, glycoprotein E2, in a bovine viral diarrhea virus type 1 backbone (“CP7”). This review summarizes the available data on design, safety, efficacy, marker diagnostics, and its possible integration into control strategies.
Collapse
Affiliation(s)
- Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Claudia Moß
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
6
|
Vos A, Freuling CM, Hundt B, Kaiser C, Nemitz S, Neubert A, Nolden T, Teifke JP, Te Kamp V, Ulrich R, Finke S, Müller T. Oral vaccination of wildlife against rabies: Differences among host species in vaccine uptake efficiency. Vaccine 2017. [PMID: 28641888 DOI: 10.1016/j.vaccine.2017.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oral vaccination using attenuated and recombinant rabies vaccines has been proven a powerful tool to combat rabies in wildlife. However, clear differences have been observed in vaccine titers needed to induce a protective immune response against rabies after oral vaccination in different reservoir species. The mechanisms contributing to the observed resistance against oral rabies vaccination in some species are not completely understood. Hence, the immunogenicity of the vaccine virus strain, SPBN GASGAS, was investigated in a species considered to be susceptible to oral rabies vaccination (red fox) and a species refractory to this route of administration (striped skunk). Additionally, the dissemination of the vaccine virus in the oral cavity was analyzed for these two species. It was shown that the palatine tonsils play a critical role in vaccine virus uptake. Main differences could be observed in palatine tonsil infection between both species, revealing a locally restricted dissemination of infected cells in foxes. The absence of virus infected cells in palatine tonsils of skunks suggests a less efficient uptake of or infection by vaccine virus which may lead to a reduced response to oral vaccination. Understanding the mechanisms of oral resistance to rabies virus vaccine absorption and primary replication may lead to the development of novel strategies to enhance vaccine efficacy in problematic species like the striped skunk.
Collapse
Affiliation(s)
- Ad Vos
- IDT Biologika GmbH, 06861 Dessau-Rosslau, Germany
| | - Conrad M Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany
| | - Boris Hundt
- IDT Biologika GmbH, 06861 Dessau-Rosslau, Germany
| | | | - Sabine Nemitz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany
| | | | - Tobias Nolden
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; ViraTherapeutics GmbH, Exlgasse 20a, 6020 Innsbruck, Austria(1)
| | - Jens P Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 174 93 Greifswald-Insel Riems, Germany
| | - Verena Te Kamp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 174 93 Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
7
|
Blome S, Moß C, Reimann I, König P, Beer M. Classical swine fever vaccines-State-of-the-art. Vet Microbiol 2017; 206:10-20. [PMID: 28069290 DOI: 10.1016/j.vetmic.2017.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/24/2016] [Accepted: 01/01/2017] [Indexed: 10/20/2022]
Abstract
Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. These vaccines have usually outstanding efficacy and safety but lack differentiability of infected from vaccinated animals (DIVA or marker strategy). In contrast, the first generation of E2 subunit marker vaccines shows constraints in efficacy, application, and production. To overcome these limitations, new generations of marker vaccines are developed. A wide range of approaches have been tried including recombinant vaccines, recombinant inactivated vaccines or subunit vaccines, vector vaccines, and DNA/RNA vaccines. During the last years, especially attenuated deletion vaccines or chimeric constructs have shown potential. At present, especially two new constructs have been intensively tested, the adenovirus-delivered, Semliki Forest virus replicon-vectored marker vaccine candidate "rAdV-SFV-E2" and the pestivirus chimera "CP7_E2alf". The later was recently licensed by the European Medicines Agency. Under field conditions, all marker vaccines have to be accompanied by a potent test system. Particularly this point shows still weaknesses and it is important to embed vaccination in a well-established vaccination strategy and a suitable diagnostic workflow. In summary, conventional vaccines are a standard in terms of efficacy. However, only vaccines with DIVA will allow improved eradication strategies e.g. also under emergency vaccination conditions in free regions. To answer this demand, new generations of marker vaccines have been developed and add now to the tool box of CSF control.
Collapse
Affiliation(s)
- Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Claudia Moß
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany.
| |
Collapse
|
8
|
Farsang A, Lévai R, Barna T, Fábián K, Blome S, Belák K, Bálint Á, Koenen F, Kulcsár G. Pre-registration efficacy study of a novel marker vaccine against classical swine fever on maternally derived antibody positive (MDA+) target animals. Biologicals 2017; 45:85-92. [DOI: 10.1016/j.biologicals.2016.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 07/13/2016] [Accepted: 09/19/2016] [Indexed: 01/24/2023] Open
|
9
|
Moennig V. The control of classical swine fever in wild boar. Front Microbiol 2015; 6:1211. [PMID: 26594202 PMCID: PMC4635204 DOI: 10.3389/fmicb.2015.01211] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
Abstract
Classical swine fever (CSF) is a viral disease with severe economic consequences for domestic pigs. Natural hosts for the CSF virus (CSFV) are members of the family Suidae, i.e., Eurasian wild boar (sus scrofa) are also susceptible. CSF in wild boar poses a serious threat to domestic pigs. CSFV is an enveloped RNA virus belonging to the pestivirus genus of the Flaviviridae family. Transmission of the infection is usually by direct contact or by feeding of contaminated meat products. In recent decades CSF has been successfully eradicated from Australia, North America, and the European Union. In areas with dense wild boar populations CSF tends to become endemic whereas it is often self-limiting in small, less dense populations. In recent decades eradication strategies of CSF in wild boar have been improved considerably. The reduction of the number of susceptible animals to a threshold level where the basic reproductive number is R 0 < 1 is the major goal of all control efforts. Depending on the epidemiological situation, hunting measures combined with strict hygiene may be effective in areas with a relatively low density of wild boar. Oral immunization was shown to be highly effective in endemic situations in areas with a high density of wild boar.
Collapse
Affiliation(s)
- Volker Moennig
- Department of Infectious Diseases, Institute for Virology, University of Veterinary Medicine Hannover, Germany
| |
Collapse
|
10
|
Goller KV, Dräger C, Höper D, Beer M, Blome S. Classical swine fever virus marker vaccine strain CP7_E2alf: genetic stability in vitro and in vivo. Arch Virol 2015; 160:3121-5. [PMID: 26392285 DOI: 10.1007/s00705-015-2611-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Recently, CP7_E2alf (SuvaxynCSF Marker), a live marker vaccine against classical swine fever virus, was licensed through the European Medicines Agency. For application of such a genetically engineered virus under field conditions, knowledge about its genetic stability is essential. Here, we report on stability studies that were conducted to assess and compare the mutation rate of CP7_E2alf in vitro and in vivo. Sequence analyses upon passaging confirmed the high stability of CP7_E2alf, and no recombination events were observed in the experimental setup. The data obtained in this study confirm the genetic stability of CP7_E2alf as an important safety component.
Collapse
Affiliation(s)
- Katja V Goller
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Carolin Dräger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
11
|
Everett HE, Crudgington BS, Sosan-Soulé O, Crooke HR. Differential detection of classical swine fever virus challenge strains in C-strain vaccinated pigs. BMC Vet Res 2014; 10:281. [PMID: 25495277 PMCID: PMC4280032 DOI: 10.1186/s12917-014-0281-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
Background Control of classical swine fever (CSF) by vaccination ideally requires that field strain infection can be detected irrespective of the vaccination status of the herd. To inform on the usefulness of molecular tests compatible with genetic Differentiation of Infected from Vaccinated Animals (DIVA) principles when using live-attenuated vaccines, tonsil homogenates from a vaccination-challenge experiment were analyzed using a differential real-time qRT-PCR for the C-strain vaccine or real-time qRT-PCR assays developed to specifically detect the challenge strains used. Results In animals with high or moderate levels of blood viraemia, which were not, or not fully, protected by vaccination, challenge virus RNA was readily detected in tonsil homogenates. In three out of the seven vaccinated animals that had high or moderate viraemia, the vaccine strain RNA also could be detected but at lower levels. Lower but varying levels of challenge and/or vaccine virus RNA were detected in tonsil homogenate samples from animals with no or low-level viraemia, and in groups solely consisting of such animals, no transmission of infection to naïve in-contact animals occurred. In one group of animals that were vaccinated 3 days prior to challenge, viraemia levels varied from high to absent and transmission of challenge virus to naïve in-contact animals occurred. The DIVA assay revealed challenge virus in all tonsil homogenates from this group, even in those animals that did not have viraemia and were protected from clinical disease by vaccination. Such animals, particularly in a low biosecurity/informal farm setting, could constitute a risk for disease control in the field. Conclusions Genetic DIVA testing is useful for detecting the presence of field virus infection especially in non-viraemic animals without overt clinical signs but which are incompletely protected by vaccination. Such tests could particularly be useful to inform decisions prior to and during cessation of a control strategy that employs vaccination.
Collapse
Affiliation(s)
- Helen E Everett
- Virology Department, APHA, New Haw, Addlestone, KT15 3NB, UK.
| | | | | | - Helen R Crooke
- Virology Department, APHA, New Haw, Addlestone, KT15 3NB, UK.
| |
Collapse
|
12
|
Differentiation of classical swine fever virus infection from CP7_E2alf marker vaccination by a multiplex microsphere immunoassay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:65-71. [PMID: 25378351 DOI: 10.1128/cvi.00271-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Classical swine fever (CSF) is a highly contagious viral disease of pigs that has a tremendous socioeconomic impact. Vaccines are available for disease control. However, most industrialized countries are implementing stamping-out strategies to eliminate the disease and avoid trade restrictions. These restrictions can be avoided through the use of marker vaccines such as CP7_E2alf. Marker vaccines have to be accompanied by reliable and robust discriminatory assays. In this context, a multiplex microsphere immunoassay for serological differentiation of infected from vaccinated animals (DIVA) was developed to distinguish CSF virus (CSFV)-infected animals from CP7_E2alf-vaccinated animals. To this end, three viral proteins, namely, CSFV E2, CSFV E(rns), and bovine viral diarrhea virus (BVDV) E2, were produced in insect cells using a baculovirus expression system; they were used as antigens in a microsphere immunoassay, which was further evaluated by testing a large panel of pig sera and compared to a well-characterized commercial CSFV E2 antibody enzyme-linked immunosorbent assays (ELISAs) and a test version of an improved CSFV E(rns) antibody ELISA. Under a cutoff median fluorescence intensity value of 5,522, the multiplex microsphere immunoassay had a sensitivity of 98.5% and a specificity of 98.9% for the detection of antibodies against CSFV E2. The microsphere immunoassay and the CSFV E(rns) ELISA gave the same results for 155 out of 187 samples (82.8%) for the presence of CSFV E(rns) antibodies. This novel multiplex immunoassay is a valuable tool for measuring and differentiating immune responses to vaccination and/or infection in animals.
Collapse
|
13
|
Eblé PL, Quak S, Geurts Y, Moonen-Leusen HWM, Loeffen WLA. Efficacy of CSF vaccine CP7_E2alf in piglets with maternally derived antibodies. Vet Microbiol 2014; 174:27-38. [PMID: 25265929 DOI: 10.1016/j.vetmic.2014.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/06/2014] [Accepted: 08/26/2014] [Indexed: 11/25/2022]
Abstract
There is a need for live DIVA (differentiating infected from vaccinated animals) vaccines against classical swine fever (CSF). The aim of this study was to investigate whether vaccination with the chimeric pestivirus vaccine CP7_E2alf is efficacious to protect young piglets born from vaccinated sows, thus with maternally derived antibodies (MDAs). Groups of 10 piglets each, with or without MDAs, were vaccinated either intramuscularly (IM), at an age of 3 or 6 weeks, or orally (OR), at an age of 6 weeks. Five piglets of each group were challenged with CSFV strain Koslov and protection against clinical disease, virus shedding and transmission were studied. Vaccination with CP7_E2alf, both in the presence of MDA's and in piglets without MDA's, protected against severe clinical signs, but virus shedding from most inoculated piglets and transmission to contact pigs was observed. However, virus transmission in the vaccinated piglets was significantly reduced as compared to non-vaccinated piglets, although the reproduction ratio's R calculated from the results in the vaccinated pigs from our study were not yet significantly below 1. The efficacy of vaccination with CP7_E2alf in the presence of MDAs (R IMvac=0.8, R ORvac=0.4) seemed to be slightly less as compared to vaccination in the absence of MDAs (R IMvac=0.2, R ORvac=0). On a population level, the results suggest that the CP7_E2alf vaccine is an effective tool in the control and eradication of CSF and, moreover, can be applied for both IM and oral use for young age groups, with MDAs having a limited effect on the efficacy.
Collapse
Affiliation(s)
- P L Eblé
- Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - S Quak
- Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - Y Geurts
- Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - H W M Moonen-Leusen
- Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - W L A Loeffen
- Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| |
Collapse
|
14
|
DIVA vaccine properties of the live chimeric pestivirus strain CP7_E2gif. Vet Microbiol 2014; 170:224-31. [DOI: 10.1016/j.vetmic.2014.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 11/20/2022]
|
15
|
Renson P, Le Dimna M, Gabriel C, Levai R, Blome S, Kulcsar G, Koenen F, Le Potier M. Cytokine and immunoglobulin isotype profiles during CP7_E2alf vaccination against a challenge with the highly virulent Koslov strain of classical swine fever virus. Res Vet Sci 2014; 96:389-95. [DOI: 10.1016/j.rvsc.2014.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 11/27/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
|
16
|
First assessment of classical swine fever marker vaccine candidate CP7_E2alf for oral immunization of wild boar under field conditions. Vaccine 2014; 32:2050-5. [DOI: 10.1016/j.vaccine.2014.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 11/21/2022]
|
17
|
Blome S, Gabriel C, Schmeiser S, Meyer D, Meindl-Böhmer A, Koenen F, Beer M. Efficacy of marker vaccine candidate CP7_E2alf against challenge with classical swine fever virus isolates of different genotypes. Vet Microbiol 2013; 169:8-17. [PMID: 24411658 DOI: 10.1016/j.vetmic.2013.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
Classical swine fever (CSF) is among the most important viral disease of domestic and feral pigs and has a serious impact on animal health and pig industry. In most countries with industrialized pig production, prophylactic vaccination against CSF is banned, and all efforts are directed towards eradication of the disease, e.g. by culling of infected herds and animal movement restrictions. Nevertheless, emergency vaccination remains an option to minimize the socio-economic impact of outbreaks. For this application, potent vaccines are needed that allow differentiation of infected from vaccinated animals. Among the promising candidates for next generation marker vaccines is the chimeric pestivirus CP7_E2alf. Efficacy studies are usually carried out using highly virulent CSFV strains of genotype 1 that do not mirror the current field situation where strains of genotype 2 predominate. To prove that CP7_E2alf also protects against these strains, efficacy was assessed after single oral vaccination of wild boar and single intramuscular vaccination of domestic pigs using challenge models with recent CSFV strains and the highly virulent strain "Koslov" (genotype 1.1). It could be demonstrated that CP7_E2alf pilot vaccine batches for intramuscular and oral use were able to protect pigs from challenge infection with a highly virulent CSFV. Moreover, solid protection was also achieved in case of challenge infection with recent field strains of genotypes 2.1 and 2.3. Thus, broad applicability under field conditions can be assumed.
Collapse
Affiliation(s)
- Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany.
| | - Claudia Gabriel
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Stefanie Schmeiser
- European Union Reference Laboratory for CSF, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Denise Meyer
- European Union Reference Laboratory for CSF, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Alexandra Meindl-Böhmer
- European Union Reference Laboratory for CSF, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Frank Koenen
- CODA-CERVA, Groeselenberg 99, 1180 Ukkel, Belgium
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
18
|
Newcomer BW, Givens MD. Approved and experimental countermeasures against pestiviral diseases: Bovine viral diarrhea, classical swine fever and border disease. Antiviral Res 2013; 100:133-50. [DOI: 10.1016/j.antiviral.2013.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/01/2013] [Accepted: 07/27/2013] [Indexed: 01/13/2023]
|
19
|
Renson P, Le Dimna M, Keranflech A, Cariolet R, Koenen F, Le Potier MF. CP7_E2alf oral vaccination confers partial protection against early classical swine fever virus challenge and interferes with pathogeny-related cytokine responses. Vet Res 2013; 44:9. [PMID: 23398967 PMCID: PMC3599443 DOI: 10.1186/1297-9716-44-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/19/2012] [Indexed: 02/02/2023] Open
Abstract
The conventional C-strain vaccine induces early protection against classical swine fever (CSF), but infected animals cannot be distinguished from vaccinated animals. The CP7_E2alf marker vaccine, a pestivirus chimera, could be a suitable substitute for C-strain vaccine to control CSF outbreaks. In this study, single oral applications of CP7_E2alf and C-strain vaccines were compared for their efficacy to induce protection against a CSF virus (CSFV) challenge with the moderately virulent Bas-Rhin isolate, in pigs as early as two days post-immunization. This work emphasizes the powerful potential of CP7_E2alf vaccine administered orally by a rapid onset of partial protection similar to that induced by the C-strain vaccine. Furthermore, our results revealed that both vaccinations attenuated the effects induced by CSFV on production of the pig major acute phase protein (PigMAP), IFN-α, IL-12, IL-10, and TGF-β1 cytokines. By this interference, several cytokines that may play a role in the pathogeny induced by moderately virulent CSFV strains were revealed. New hypotheses concerning the role of each of these cytokines in CSFV pathogeny are discussed. Our results also show that oral vaccination with either vaccine (CP7_E2alf or C-strain) enhanced CSFV-specific IgG2 production, compared to infection alone. Interestingly, despite the similar antibody profiles displayed by both vaccines post-challenge, the production of CSFV-specific IgG1 and neutralizing antibodies without challenge was lower with CP7_E2alf vaccination than with C-strain vaccination, suggesting a slight difference in the balance of adaptive immune responses between these vaccines.
Collapse
Affiliation(s)
- Patricia Renson
- Anses, Ploufragan/Plouzané laboratory, Swine Virology and Immunology Unit, BP53, 22440, Ploufragan, France.
| | | | | | | | | | | |
Collapse
|
20
|
Rangelova D, Nielsen J, Strandbygaard B, Koenen F, Blome S, Uttenthal Å. Efficacy of marker vaccine candidate CP7_E2alf in piglets with maternally derived C-strain antibodies. Vaccine 2012; 30:6376-81. [DOI: 10.1016/j.vaccine.2012.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/13/2012] [Accepted: 08/16/2012] [Indexed: 11/30/2022]
|
21
|
Gabriel C, Blome S, Urniza A, Juanola S, Koenen F, Beer M. Towards licensing of CP7_E2alf as marker vaccine against classical swine fever-Duration of immunity. Vaccine 2012; 30:2928-36. [PMID: 22406108 DOI: 10.1016/j.vaccine.2012.02.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/19/2012] [Accepted: 02/25/2012] [Indexed: 11/24/2022]
Abstract
Classical swine fever (CSF) marker vaccine candidate CP7_E2alf was tested in a "duration of immunity" trial according to the World Organisation for Animal Heath (OIE) guidelines. To this means, 15 weaner pigs were either orally or intramuscularly vaccinated with a single dose of CP7_E2alf vaccine produced under Good Laboratory Practice (GLP) conditions. Ten additional pigs were included as controls. Six months later, all animals were oronasally challenged with highly virulent CSF virus (CSFV) strain "Koslov". Upon vaccination, all but one orally and all intramuscularly vaccinated pigs developed rising and later on stable CSFV glycoprotein E2-specific antibodies. In contrast, no CSFV E(rns)-specific "marker" antibodies were detectable prior to challenge infection. None of the co-housed control animals seroconverted. Upon challenge infection, all seropositive animals were protected from lethal challenge, whereas all control animals and the non-responder developed severe signs of CSF. One control animal recovered, the others had to be euthanised due to animal welfare reasons between days 4 and 7 post challenge infection. All protected animals showed quickly rising neutralizing antibodies reaching high titres by the end of the trial. At the end of the trial, the marker ELISA was positive for most challenged animals that survived the CSFV infection (27 out of 30). Using reverse transcription polymerase chain reaction, low level genome detection was seen in all vaccinated animals between days 4 and 10 post challenge infection, but no virus could be isolated from any samples of these animals. The OIE guidelines require seroconversion in at least 8 out of 10 vaccinated animals. This requirement was fulfilled. Moreover, only control animals should die. With this requirement, only the intramuscular vaccination fully complied as one orally vaccinated pig did not respond. Concluding, CP7_E2alf induced stable antibodies that led to protection from lethal challenge with highly virulent CSFV strain "Koslov" six months after vaccination, with the exception of one non-responder after oral vaccination.
Collapse
Affiliation(s)
- Claudia Gabriel
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
König P, Blome S, Gabriel C, Reimann I, Beer M. Innocuousness and safety of classical swine fever marker vaccine candidate CP7_E2alf in non-target and target species. Vaccine 2011; 30:5-8. [PMID: 22064266 DOI: 10.1016/j.vaccine.2011.10.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/17/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
Abstract
Chimeric pestivirus CP7_E2alf is a promising live marker vaccine candidate against classical swine fever. Prior to a possible application in the field, several safety aspects have to be addressed. Due to the fact that CP7_E2alf is based on a bovine viral diarrhea virus backbone, its behavior in ruminants is of particular interest. In the framework of this study, its innocuousness in non-target species was addressed by inoculation of calves, young goats, lambs, and rabbits. To this means, high titres of CP7_E2alf were applied orally to three animals of each species. Additional animals were left as unvaccinated contact controls. During the study, all animals remained clinically healthy, and neither fever nor leukopenia were observed. Virus could not be isolated from purified white blood cells or from nasal or faecal excretions. Moreover, none of the animals (inoculated or contact control) seroconverted. In the target species, innocuousness, shedding and transmission of vaccine virus was addressed in different animal trials that were carried out primarily for the purpose of efficacy, potency or duration of immunity studies. In all experiments, CP7_E2alf proved to be completely safe for the vaccinees and unvaccinated contact controls. Furthermore, no shedding or transmission was detected in any of the experiments. Even after parental vaccination, vaccine virus genome was barely detectable in blood or organ samples of vaccinated animals. Thus, CP7_E2alf can be regarded as completely safe for both target and non-target species.
Collapse
Affiliation(s)
- Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | | | | | | | | |
Collapse
|
23
|
Suter R, Summerfield A, Thomann-Harwood LJ, McCullough KC, Tratschin JD, Ruggli N. Immunogenic and replicative properties of classical swine fever virus replicon particles modified to induce IFN-α/β and carry foreign genes. Vaccine 2010; 29:1491-503. [PMID: 21184857 DOI: 10.1016/j.vaccine.2010.12.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 11/25/2022]
Abstract
Virus replicon particles (VRP) are genetically engineered infectious virions incapable of generating progeny virus due to partial or complete deletion of at least one structural gene. VRP fulfil the criteria of a safe vaccine and gene delivery system. With VRP derived from classical swine fever virus (CSF-VRP), a single intradermal vaccination protects from disease. Spreading of the challenge virus in the host is however not completely abolished. Parameters that are critical for immunogenicity of CSF-VRP are not well characterized. Considering the importance of type I interferon (IFN-α/β) to immune defence development, we generated IFN-α/β-inducing VRP to determine how this would influence vaccine efficacy. We also evaluated the effect of co-expressing granulocyte macrophage colony-stimulating factor (GM-CSF) in the vaccine context. The VRP were capable of long-term replication in cell culture despite the presence of IFN-α/β. In vivo, RNA replication was essential for the induction of an immune response. IFN-α/β-inducing and GM-CSF-expressing CSF-VRP were similar to unmodified VRP in terms of antibody and peripheral T-cell responses, and in reducing the blood levels of challenge virus RNA. Importantly, the IFN-α/β-inducing VRP did show increased efficacy over the unmodified VRP in terms of B-cell and T-cell responses, when tested with secondary immune responses by in vitro restimulation assay.
Collapse
Affiliation(s)
- Rolf Suter
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland
| | | | | | | | | | | |
Collapse
|