1
|
Orłowska B, Majchrzak M, Didkowska A, Anusz K, Krajewska-Wędzina M, Zabost A, Brzezińska S, Kozińska M, Augustynowicz-Kopeć E, Urbańska K, Welz M, Parniewski P. Mycobacterial Interspersed Repeat Unit-Variable Number Tandem Repeat Typing of Mycobacterium avium Strains Isolated from the Lymph Nodes of Free-Living Carnivorous Animals in Poland. Pathogens 2023; 12:1184. [PMID: 37764992 PMCID: PMC10536629 DOI: 10.3390/pathogens12091184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Non-tuberculous mycobacteria (NTM) are ubiquitous organisms, of which some, especially those of the Mycobacterium avium complex (MAC), may be opportunistic animal and human pathogens. Infection with NTM can interfere with tuberculosis (TB) diagnosis and induce zoonoses, especially in immunocompromised individuals. Diseases caused by NTM have become more readily recognized; however, they are likely still underestimated. In this study, we identified and genotyped Mycobacterium avium strains that were isolated during TB monitoring among free-living carnivorous animals from southeastern Poland. In 2011-2020, lymph node samples from 192 such animals were tested for mycobacteria. A total of 41 isolates of M. avium strains were detected with the use of IS901, IS900, IS1245, and mycobacterial interspersed repeat unit-variable number tandem repeat (MIRU-VNTR) identification. Thirty-three were identified as M. avium subsp. avium. These strains were derived from 1 beech marten (Martes foina), 1 common buzzard (Buteo buteo), 2 European badgers (Meles meles), 3 wolves (Canis lupus), and 26 red foxes (Vulpes vulpes). One strain isolated from a wolf was identified as M. avium subsp. hominissuis. The results show the widespread occurrence of MAC bacilli in the studied environment and additionally comprise new data on the molecular characteristics of M. avium subspecies carried by free-living southeastern Polish carnivores.
Collapse
Affiliation(s)
- Blanka Orłowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; (A.D.); (K.A.)
| | - Marta Majchrzak
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; (A.D.); (K.A.)
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; (A.D.); (K.A.)
| | - Monika Krajewska-Wędzina
- Department of Microbiology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland;
| | - Anna Zabost
- Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.Z.); (S.B.); (M.K.); (E.A.-K.)
| | - Sywia Brzezińska
- Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.Z.); (S.B.); (M.K.); (E.A.-K.)
| | - Monika Kozińska
- Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.Z.); (S.B.); (M.K.); (E.A.-K.)
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.Z.); (S.B.); (M.K.); (E.A.-K.)
| | - Kaja Urbańska
- Department of Morphological Sciences, Division of Histology and Embryology, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Mirosław Welz
- Provincial Veterinary Inspectorate, Piotra Ścigiennego 6a, 38-400 Krosno, Poland;
| | - Paweł Parniewski
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| |
Collapse
|
2
|
A systematic review on the distribution of Mycobacterium bovis infection among wildlife in the Americas. Trop Anim Health Prod 2019; 51:1801-1805. [PMID: 31197725 DOI: 10.1007/s11250-019-01954-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
The occurrence of Mycobacterium bovis infection in wildlife places at risk livestock, public health, and ecosystems that house endangered species. However, data on wild species that may act as possible reservoirs in the Americas are scarce. This systematic review analyses the available data on wildlife in the Americas regarding the infection by M. bovis. We searched articles published in indexed journals using the keywords: "Mycobacterium bovis," "wild," and "animals". After applying the keywords using online databases, during March and August of 2018, we found 12 articles which encompassed 15 species of wild animals, of which three consisted of wild ruminants. The evidence showed that M. bovis is present among the wild animals in the Americas. The methodological limitations for diagnosing M. bovis in wild animals are many, demanding the development of new and more precise tools. Furthermore, new researches are needed to elucidate the role of the wild animals in the epidemiology of M. bovis and its possible impact on production animals and public health.
Collapse
|
3
|
Salvador LCM, O'Brien DJ, Cosgrove MK, Stuber TP, Schooley AM, Crispell J, Church SV, Gröhn YT, Robbe-Austerman S, Kao RR. Disease management at the wildlife-livestock interface: Using whole-genome sequencing to study the role of elk in Mycobacterium bovis transmission in Michigan, USA. Mol Ecol 2019; 28:2192-2205. [PMID: 30807679 DOI: 10.1111/mec.15061] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 01/16/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022]
Abstract
The role of wildlife in the persistence and spread of livestock diseases is difficult to quantify and control. These difficulties are exacerbated when several wildlife species are potentially involved. Bovine tuberculosis (bTB), caused by Mycobacterium bovis, has experienced an ecological shift in Michigan, with spillover from cattle leading to an endemically infected white-tailed deer (deer) population. It has potentially substantial implications for the health and well-being of both wildlife and livestock and incurs a significant economic cost to industry and government. Deer are known to act as a reservoir of infection, with evidence of M. bovis transmission to sympatric elk and cattle populations. However, the role of elk in the circulation of M. bovis is uncertain; they are few in number, but range further than deer, so may enable long distance spread. Combining Whole Genome Sequences (WGS) for M. bovis isolates from exceptionally well-observed populations of elk, deer and cattle with spatiotemporal locations, we use spatial and Bayesian phylogenetic analyses to show strong spatiotemporal admixture of M. bovis isolates. Clustering of bTB in elk and cattle suggests either intraspecies transmission within the two populations, or exposure to a common source. However, there is no support for significant pathogen transfer amongst elk and cattle, and our data are in accordance with existing evidence that interspecies transmission in Michigan is likely only maintained by deer. This study demonstrates the value of whole genome population studies of M. bovis transmission at the wildlife-livestock interface, providing insights into bTB management in an endemic system.
Collapse
Affiliation(s)
- Liliana C M Salvador
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Ecology and Evolutionary Biology Department, Princeton University, Princeton, New Jersey.,Royal (Dick) Veterinary School of Veterinary Studies, University of Edinburgh, Midlothian, UK.,Department of Infectious Diseases, College of Veterinary Medicine, Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Daniel J O'Brien
- Wildlife Disease Laboratory, Michigan Department of Natural Resources, Lansing, Michigan
| | - Melinda K Cosgrove
- Wildlife Disease Laboratory, Michigan Department of Natural Resources, Lansing, Michigan
| | - Tod P Stuber
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa
| | - Angie M Schooley
- Mycobacteriology Laboratory, Infectious Disease Division, Michigan Department of Health and Human Services, Lansing, Michigan
| | - Joseph Crispell
- School of Veterinary Medicine, College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Steven V Church
- Mycobacteriology Laboratory, Infectious Disease Division, Michigan Department of Health and Human Services, Lansing, Michigan
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa
| | - Rowland R Kao
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Royal (Dick) Veterinary School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
4
|
Mycobacterium caprae transmission to free-living grey wolves (Canis lupus) in the Bieszczady Mountains in Southern Poland. EUR J WILDLIFE RES 2017. [DOI: 10.1007/s10344-017-1079-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Anderson DP, Ramsey DSL, de Lisle GW, Bosson M, Cross ML, Nugent G. Development of integrated surveillance systems for the management of tuberculosis in New Zealand wildlife. N Z Vet J 2015; 63 Suppl 1:89-97. [PMID: 25263814 PMCID: PMC4566888 DOI: 10.1080/00480169.2014.963830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Disease surveillance for the management of bovine tuberculosis (TB) in New Zealand has focussed, to a large extent, on the development of tools specific for monitoring Mycobacterium bovis infection in wildlife. Diagnostic techniques have been modified progressively over 30 years of surveillance of TB in wildlife, from initial characterisation of gross TB lesions in a variety of wildlife, through development of sensitive culture techniques to identify viable mycobacteria, to molecular identification of individual M. bovis strains. Of key importance in disease surveillance has been the elucidation of the roles that different wildlife species play in the transmission of infection, specifically defining brushtail possums (Trichosurus vulpecula) as true maintenance hosts compared to those that are predominantly spillover hosts, but which may serve as useful sentinel species to indicate TB persistence. Epidemiological modelling has played a major role in TB surveillance, initially providing the theoretical support for large-scale possum population control and setting targets at which control effort should be deployed to ensure disease eradication. As TB prevalence in livestock and wildlife declined throughout the 2000s, more varied field tools were developed to gather surveillance data from the diminishing possum populations, and to provide information on changing TB prevalence. Accordingly, ever more precise (but disparate) surveillance information began to be integrated into multi-faceted decision-assist models to support TB management decisions, particularly to provide informed parameters at which control effort could be halted, culminating in the Proof of Freedom modelling framework that now allows an area to be declared TB-free within chosen confidence limits. As New Zealand moves from large-scale TB control to regional eradication of disease in the coming years, further integrative models will need to be developed to support management decisions, based on combined field data of possum and TB prevalence, sentinel information, risk assessment in relation to financial benefits, and changing political and environmental needs.
Collapse
Affiliation(s)
- D P Anderson
- a Landcare Research , Wildlife Ecology and Management , PO Box 69040, Lincoln 7640 , New Zealand
| | | | | | | | | | | |
Collapse
|
6
|
Tsao K, Robbe-Austerman S, Miller RS, Portacci K, Grear DA, Webb C. Sources of bovine tuberculosis in the United States. INFECTION GENETICS AND EVOLUTION 2014; 28:137-43. [DOI: 10.1016/j.meegid.2014.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022]
|
7
|
O'Brien DJ, Fierke JS, Cooley TM, Fitzgerald SD, Cosgrove MK, Schmitt SM. Performance of diagnostic tests for bovine tuberculosis in North American furbearers and implications for surveillance. Transbound Emerg Dis 2014; 60 Suppl 1:67-73. [PMID: 24171851 DOI: 10.1111/tbed.12093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Indexed: 11/26/2022]
Abstract
Risks of bovine tuberculosis (bTB) transmission from free-ranging wildlife to livestock remain a concern in the United States, in both known endemic areas and where spillover from recently-infected livestock herds occurs. Federal agriculture officials in the United States (US) have recommended surveillance of non-cervid furbearers to determine whether free-ranging wildlife in the vicinity of cattle herd breakdowns are bTB infected, yet the efficacy of common diagnostic tests in these species is largely unknown. We calculated the sensitivity, specificity, predictive values and positive likelihood ratios for bTB infection in carcasses of sixteen species of furbearers tested via: (i) the presence of gross lesions compatible with bTB; (ii) histopathology consistent with bTB; and (iii) the presence of acid-fast bacilli (AFB) on histopathology. The gold standard comparison test was mycobacterial culture of cranial ± visceral lymph nodes pooled for each animal. Forty-two animals distributed across six species cultured bTB positive from among 1522 furbearers tested over thirteen years. The sensitivity of all three tests was poor (10%, 22% and 24% for gross lesions, AFB and histopathology, respectively), while specificities (all ≥ 99%) and negative predictive values (all ≥ 97%) were high. Positive predictive values varied widely (31-75%). Likelihood ratios for culture positivity given a positive test result showed AFB on histopathology to be the most reliable test, and gross lesions the least, though confidence intervals were wide and overlapping. While non-cervid furbearers may prove useful in North American bTB surveillance, wildlife managers should be aware of factors that may abate their utility and complicate interpretation of surveillance.
Collapse
Affiliation(s)
- D J O'Brien
- Michigan Department of Natural Resources, Wildlife Disease Laboratory, Lansing, MI, USA
| | | | | | | | | | | |
Collapse
|
8
|
Assessing the Effectiveness of Tuberculosis Management in Brushtail Possums (Trichosurus vulpecula), through Indirect Surveillance of Mycobacterium bovis Infection Using Released Sentinel Pigs. Vet Med Int 2014; 2014:361634. [PMID: 24804148 PMCID: PMC3996883 DOI: 10.1155/2014/361634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/23/2014] [Indexed: 11/17/2022] Open
Abstract
In New Zealand, wild pigs acquire Mycobacterium bovis infection by scavenging tuberculous carrion, primarily carcasses of the main disease maintenance host, the brushtail possum (Trichosurus vulpecula). We investigated the utility of captive-reared, purpose-released pigs as sentinels for tuberculosis (TB) following lethal possum control and subsequent population recovery. Within 2-3 years of possum control by intensive poisoning, TB prevalence and the incidence rate of M. bovis infection in released sentinel pigs were lower than in an adjacent area where possums had not been poisoned. Unexpectedly, TB did not decline to near zero levels among pigs in the poisoned area, a fact which reflected an unanticipated rapid increase in the apparent abundance of possums. Monitoring infection levels among resident wild pigs confirmed that TB prevalence, while reduced due to possum control, persisted in the poisoned area at >20% among pigs born 2-3 years after poisoning, while remaining >60% among resident wild pigs in the nonpoisoned area. When fitted with radio-tracking devices, purpose-released pigs provided precise spatial TB surveillance information and facilitated effective killing of wild pigs when employed as “Judas” animals to help locate residents. Sentinel pigs offer value for monitoring disease trends in New Zealand, as TB levels in possums decline nationally due to large-scale possum control.
Collapse
|
9
|
YOCKNEY IJ, NUGENT G, LATHAM MC, PERRY M, CROSS ML, BYROM AE. Comparison of ranging behaviour in a multi-species complex of free-ranging hosts of bovine tuberculosis in relation to their use as disease sentinels. Epidemiol Infect 2013; 141:1407-16. [PMID: 23433406 PMCID: PMC9151598 DOI: 10.1017/s0950268813000289] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/14/2013] [Accepted: 01/26/2013] [Indexed: 11/07/2022] Open
Abstract
Sentinel species are increasingly used by disease managers to detect and monitor the prevalence of zoonotic diseases in wildlife populations. Characterizing home-range movements of sentinel hosts is thus important for developing improved disease surveillance methods, especially in systems where multiple host species co-exist. We studied ranging activity of major hosts of bovine tuberculosis (TB) in an upland habitat of New Zealand: we compared home-range coverage by ferrets (Mustela furo), wild deer (Cervus elaphus), feral pigs (Sus scrofa), brushtail possums (Trichosurus vulpecula) and free-ranging farmed cattle (Bos taurus). We also report in detail the proportional utilization of a seasonal (4-monthly) range area for the latter four species. Possums covered the smallest home range (<30 ha), ferrets covered ~100 ha, pigs ~4 km(2), deer and cattle both >30 km2. For any given weekly period, cattle, deer and pigs were shown to utilize 37–45% of their estimated 4-month range, while possums utilized 62% during any weekly period and 85% during any monthly period of their estimated 4-month range. We suggest that present means for estimating TB detection kernels, based on long-term range size estimates for possums and sentinel species, probably overstate the true local surveillance coverage per individual.
Collapse
Affiliation(s)
| | - G. NUGENT
- Landcare Research, Lincoln, New Zealand
| | | | - M. PERRY
- Landcare Research, Lincoln, New Zealand
| | | | | |
Collapse
|
10
|
Mycobacterium bovis (bovine tuberculosis) infection in North American wildlife: current status and opportunities for mitigation of risks of further infection in wildlife populations. Epidemiol Infect 2013; 141:1357-70. [PMID: 23657134 PMCID: PMC3684113 DOI: 10.1017/s0950268813000976] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium bovis (M. bovis), the causative agent of bovine tuberculosis, has been identified in nine geographically distinct wildlife populations in North America and Hawaii and is endemic in at least three populations, including members of the Bovidae, Cervidae, and Suidae families. The emergence of M. bovis in North American wildlife poses a serious and growing risk for livestock and human health and for the recreational hunting industry. Experience in many countries, including the USA and Canada, has shown that while M. bovis can be controlled when restricted to livestock species, it is almost impossible to eradicate once it has spread into ecosystems with free-ranging maintenance hosts. Therefore, preventing transmission of M. bovis to wildlife may be the most effective way to mitigate economic and health costs of this bacterial pathogen. Here we review the status of M. bovis infection in wildlife of North America and identify risks for its establishment in uninfected North American wildlife populations where eradication or control would be difficult and costly. We identified four common risk factors associated with establishment of M. bovis in uninfected wildlife populations in North America, (1) commingling of infected cattle with susceptible wildlife, (2) supplemental feeding of wildlife, (3) inadequate surveillance of at-risk wildlife, and (4) unrecognized emergence of alternate wildlife species as successful maintenance hosts. We then propose the use of integrated and adaptive disease management to mitigate these risk factors to prevent establishment of M. bovis in susceptible North American wildlife species.
Collapse
|
11
|
Maas M, Michel AL, Rutten VPMG. Facts and dilemmas in diagnosis of tuberculosis in wildlife. Comp Immunol Microbiol Infect Dis 2012; 36:269-85. [PMID: 23218541 DOI: 10.1016/j.cimid.2012.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 11/16/2022]
Abstract
Mycobacterium bovis, causing bovine tuberculosis (BTB), has been recognized as a global threat at the wildlife-livestock-human interface, a clear "One Health" issue. Several wildlife species have been identified as maintenance hosts. Spillover of infection from these species to livestock or other wildlife species may have economic and conservation implications and infection of humans causes public health concerns, especially in developing countries. Most BTB management strategies rely on BTB testing, which can be performed for a range of purposes, from disease surveillance to diagnosing individual infected animals. New diagnostic assays are being developed for selected wildlife species. This review investigates the most frequent objectives and associated requirements for testing wildlife for tuberculosis at the level of individual animals as well as small and large populations. By aligning those with the available (immunological) ante mortem diagnostic assays, the practical challenges and limitations wildlife managers and researchers are currently faced with are highlighted.
Collapse
Affiliation(s)
- M Maas
- Division of Epidemiology, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, The Netherlands
| | | | | |
Collapse
|
12
|
Walter WD, Anderson CW, Smith R, Vanderklok M, Averill JJ, VerCauteren KC. On-farm mitigation of transmission of tuberculosis from white-tailed deer to cattle: literature review and recommendations. Vet Med Int 2012; 2012:616318. [PMID: 22991687 PMCID: PMC3444046 DOI: 10.1155/2012/616318] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 11/17/2022] Open
Abstract
The Animal Industry Division of the Michigan Department of Agriculture and Rural Development (MDARD) has been challenged with assisting farmers with modifying farm practices to reduce potential for exposure to Mycobacterium bovis from wildlife to cattle. The MDARD recommendations for on-farm risk mitigation practices were developed from experiences in the US, UK and Ireland and a review of the scientific literature. The objectives of our study were to review the present state of knowledge on M. bovis excretion, transmission, and survival in the environment and the interactions of wildlife and cattle with the intention of determining if the current recommendations by MDARD on farm practices are adequate and to identify additional changes to farm practices that may help to mitigate the risk of transmission. This review will provide agencies with a comprehensive summary of the scientific literature on mitigation of disease transmission between wildlife and cattle and to identify lacunae in published research.
Collapse
Affiliation(s)
- W. David Walter
- National Wildlife Research Center, Animal and Plant Health Inspection Services, United States Department of Agriculture, 4101 LaPorte Ave, Fort Collins, CO 80521, USA
- US Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 403 Forest Resources Building, University Park, PA 16802, USA
| | - Charles W. Anderson
- National Wildlife Research Center, Animal and Plant Health Inspection Services, United States Department of Agriculture, 4101 LaPorte Ave, Fort Collins, CO 80521, USA
- Missouri Department of Conservation, Resource Science Division, 551 Joe Jones Boulevard, West Plains, MO 65775, USA
| | - Rick Smith
- Animal Industry Division, Michigan Department of Agriculture and Rural Development, Lansing, MI 48909, USA
| | - Mike Vanderklok
- Animal Industry Division, Michigan Department of Agriculture and Rural Development, Lansing, MI 48909, USA
| | - James J. Averill
- Animal Industry Division, Michigan Department of Agriculture and Rural Development, Lansing, MI 48909, USA
| | - Kurt C. VerCauteren
- National Wildlife Research Center, Animal and Plant Health Inspection Services, United States Department of Agriculture, 4101 LaPorte Ave, Fort Collins, CO 80521, USA
| |
Collapse
|