1
|
Tang H, Wang R, Pang S, Han W, Zhang Q, Fang Q, Chen X, Huang Q, Qiu D, Zhou R, Li L. Native ApxIIA secreted by Actinobacillus pleuropneumoniae induces apoptosis in porcine alveolar macrophages dependent on concentration and acylation. Vet Microbiol 2023; 287:109908. [PMID: 37952264 DOI: 10.1016/j.vetmic.2023.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Actinobacillus pleuropneumoniae is an important swine respiratory pathogen causing substantial economic losses to the global pig industry. The Apx toxins of A. pleuropneumoniae belong to the RTX toxin family and are major virulence factors. In addition to hemolysis and/or cytotoxicity via pore-forming activity, RTX toxins, such as ApxIA of A. pleuropneumoniae, have been reported to cause other effects on target cells, e.g., apoptosis. A. pleuropneumoniae ApxIIA is expressed by most serotypes and has moderate hemolytic and cytotoxic activities. In this study, porcine alveolar macrophages (3D4/21) were stimulated with different concentrations of purified native ApxIIA from the serotype 7 strain AP76 which only secretes ApxIIA. By observation of nuclear condensation via fluorescent staining and detection of apoptosis and necrosis by flow cytometry, it was found that high and low concentrations of native ApxIIA mainly caused necrosis or apoptosis of 3D4/21 cells, respectively. ApxIIA purified from an AP76 mutant with a deleted acetyltransferase gene (apxIIC) did not induce necrosis nor apoptosis. Western blot analysis using specific antibodies showed that a cleaved caspase 3 and activated capase 9 was detected after treatment of cells with a low concentration of native ApxIIA, while general or specific inhibitors of caspase 3, 8, 9 blocked these effects. ApxIIA-induced apoptosis of macrophages may be a mechanism of A. pleuropneumoniae to escape host immune clearance.
Collapse
Affiliation(s)
- Hao Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Rong Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Siqi Pang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Weiyao Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Qiuhong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Qiong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei 430070, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China
| | - Dexin Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Pathological Features and Genomic Characterization of an Actinobacillus equuli subsp. equuli Bearing Unique Virulence-Associated Genes from an Adult Horse with Pleuropneumonia. Pathogens 2023; 12:pathogens12020224. [PMID: 36839495 PMCID: PMC9962156 DOI: 10.3390/pathogens12020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Actinobacillus equuli subsp. equuli is the etiological agent of sleepy foal disease, an acute form of fatal septicemia in newborn foals. A. equuli is commonly found in the mucous membranes of healthy horses' respiratory and alimentary tracts and rarely causes disease in adult horses. In this study, we report a case of a 22-year-old American Paint gelding presenting clinical signs associated with an atypical pattern of pleuropneumonia subjected to necropsy. The gross and histopathological examinations revealed a unilateral fibrinosuppurative and hemorrhagic pleuropneumonia with an infrequent parenchymal distribution and heavy isolation of A. equuli. The whole genome sequence analysis indicated that the isolate shared 95.9% homology with the only other complete genome of A. equuli subsp. equuli available in GenBank. Seven virulence-associated genes specific to the isolate were identified and categorized as iron acquisition proteins, lipopolysaccharides (LPS), and capsule polysaccharides. Moreover, four genes (glf, wbaP, glycosyltransferase family 2 protein, and apxIB) shared higher amino acid similarity with the invasive Actinobacillus spp. than the reference A. equuli subsp. equuli genome. Availability of the whole genome sequence will allow a better characterization of virulence determinants of A. equuli subsp. equuli, which remain largely elusive.
Collapse
|
3
|
da Silva GC, Rossi CC, Rosa JN, Sanches NM, Cardoso DL, Li Y, Witney AA, Gould KA, Fontes PP, Callaghan AJ, Bossé JT, Langford PR, Bazzolli DMS. Identification of small RNAs associated with RNA chaperone Hfq reveals a new stress response regulator in Actinobacillus pleuropneumoniae. Front Microbiol 2022; 13:1017278. [PMID: 36267174 PMCID: PMC9577009 DOI: 10.3389/fmicb.2022.1017278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The RNA chaperone Hfq promotes the association of small RNAs (sRNAs) with cognate mRNAs, controlling the expression of bacterial phenotype. Actinobacillus pleuropneumoniae hfq mutants strains are attenuated for virulence in pigs, impaired in the ability to form biofilms, and more susceptible to stress, but knowledge of the extent of sRNA involvement is limited. Here, using A. pleuropneumoniae strain MIDG2331 (serovar 8), 14 sRNAs were identified by co-immunoprecipitation with Hfq and the expression of eight, identified as trans-acting sRNAs, were confirmed by Northern blotting. We focused on one of these sRNAs, named Rna01, containing a putative promoter for RpoE (stress regulon) recognition. Knockout mutants of rna01 and a double knockout mutant of rna01 and hfq, both had decreased biofilm formation and hemolytic activity, attenuation for virulence in Galleria mellonella, altered stress susceptibility, and an altered outer membrane protein profile. Rna01 affected extracellular vesicle production, size and toxicity in G. mellonella. qRT-PCR analysis of rna01 and putative cognate mRNA targets indicated that Rna01 is associated with the extracytoplasmic stress response. This work increases our understanding of the multilayered and complex nature of the influence of Hfq-dependent sRNAs on the physiology and virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ciro César Rossi
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jéssica Nogueira Rosa
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Newton Moreno Sanches
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Daniela Lopes Cardoso
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Yanwen Li
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Adam A. Witney
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Kate A. Gould
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | | | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Janine Thérèse Bossé
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul Richard Langford
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
4
|
Sasaki H, Ueshiba H, Yanagisawa N, Itoh Y, Ishikawa H, Shigenaga A, Benga L, Ike F. Genomic and pathogenic characterization of RTX toxin producing Rodentibacter sp. that is closely related to Rodentibacter haemolyticus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105314. [PMID: 35675867 DOI: 10.1016/j.meegid.2022.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Rodentibacter spp. are opportunistic pathogens that are often isolated from the upper respiratory tracts of laboratory rodents. In particular, R. pneumotropicus and R. heylii require considerable caution in rodent colonies, as they cause lethal pneumonia in rodents. A new species, R. haemolyticus, has recently been classified in the genus, and a very closely related strain, Rodentibacter sp. strain JRC, has been isolated in Japan. This study focused on strain JRC by performing genomic and pathogenic analyses. Draft genome sequencing of strain JRC identified several genes coding for putative virulent proteins, including hemolysin and adhesin. Furthermore, we found a new RTX (repeats-in-structural toxin) toxin gene in the genome, which was predicted to produce a critical virulence factor (RTXIA) similar to Enterobacteriaceae. The concentrated culture supernatant containing RTX toxin (RTXIA) showed cytotoxicity toward RAW264.7 cells. Pre-incubation with anti-CD11a attenuated the cytolysis, suggesting that the concentrated culture supernatant containing RTXIA is cell surface LFA-1 mediated cytolysin. Experimental infection of strain JRC intranasally with 5 female BALB/c-Rag2-/- mice showed 60% lethality and was not significantly different from those of R. pneumotropicus ATCC 35149T using the log-rank test. Combined with our finding that RTXIA has an almost identical amino acid sequence (98% identity) to that of R. haemolyticus 1625/19T, these results strongly suggest that RTXIA-producing strain JRC (and related R. haemolyticus) is pathogenic to immunodeficient rodents, and both agents should be excluded in laboratory rodent colonies.
Collapse
Affiliation(s)
- Hiraku Sasaki
- Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.
| | - Hidehiro Ueshiba
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Shinjuku, Tokyo, Japan
| | - Naoko Yanagisawa
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yuta Itoh
- Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Ayako Shigenaga
- Institute of Health and Sports Science & Medicine, Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Laurentiu Benga
- Central Unit for Animal Research and Animal Welfare Affairs, University Hospital, Heinrich - Heine - University, Düsseldorf, Germany
| | - Fumio Ike
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Bacterial Morphotypes as Important Trait for Uropathogenic E. coli Diagnostic; a Virulence-Phenotype-Phylogeny Study. Microorganisms 2021; 9:microorganisms9112381. [PMID: 34835506 PMCID: PMC8621242 DOI: 10.3390/microorganisms9112381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022] Open
Abstract
Urinary tract infections (UTIs) belong to the most common pathologies in Mexico and are mainly caused by Uropathogenic Escherichia coli (UPEC). UPEC possesses a wide diversity of virulence factors that allow it to carry out its pathogenesis mechanism in the urinary tract (UT). The development of morphotypes in UT represents an important feature of UPEC because it is associated with complications in diagnosis of UTI. The aim of this study was to determine the presence of bacterial morphotypes, virulence genes, virulence phenotypes, antibiotic resistant, and phylogenetic groups in clinical isolates of UPEC obtained from women in Sonora, Mexico. Forty UPEC isolates were obtained, and urine morphotypes were observed in 65% of the urine samples from where E. coli was isolated. Phylogenetic group B2 was the most prevalent. The most frequent virulence genes were fimH (100%), fliCD (90%), and sfaD/focC (72%). Biofilm formation (100%) and motility (98%) were the most prevalent phenotypes. Clinical isolates showed high resistance to aminoglycosides and β-lactams antibiotics. These data suggest that the search for morphotypes in urine sediment must be incorporated in the urinalysis procedure and also that clinical isolates of UPEC in this study can cause upper, lower, and recurrent UTI.
Collapse
|
6
|
Crispim JS, da Silva TF, Sanches NM, da Silva GC, Pereira MF, Rossi CC, Li Y, Terra VS, Vohra P, Wren BW, Langford PR, Bossé JT, Bazzolli DMS. Serovar-dependent differences in Hfq-regulated phenotypes inActinobacillus pleuropneumoniae. Pathog Dis 2020; 78:5936557. [DOI: 10.1093/femspd/ftaa066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
ABSTRACTThe RNA chaperone Hfq regulates diverse processes in numerous bacteria. In this study, we compared phenotypes (growth rate, adherence, response to different stress conditions and virulence in Galleria mellonella) of wild-type (WT) and isogenic hfq mutants of three serovars (1, 8 and 15) of the porcine pathogen Actinobacillus pleuropneumoniae. Similar growth in rich broth was seen for all strains except Ap1∆hfq, which showed slightly reduced growth throughout the 24 h time course, and the complemented Ap8∆hfqC mutant had a prolonged lag phase. Differences were seen between the three serovar WT strains regarding adherence, stress response and virulence in G. mellonella, and deletion of hfq affected some, but not all of these phenotypes, depending on serovar. Complementation by expression of cloned hfq from an endogenous promoter only restored some WT phenotypes, indicating that complex regulatory networks may be involved, and that levels of Hfq may be as important as presence/absence of the protein regarding its contribution to gene regulation. Our results support that Hfq is a pleiotropic global regulator in A. pleuropneumoniae, but serovar-related differences exist. These results highlight the importance of testing multiple strains/serovars within a given species when determining contributions of global regulators, such as Hfq, to expression of complex phenotypes.
Collapse
Affiliation(s)
- Josicelli Souza Crispim
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| | - Thyara Ferreira da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| | - Newton Moreno Sanches
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| | - Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| | - Monalessa Fábia Pereira
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| | - Ciro César Rossi
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Vanessa Sofia Terra
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Prerna Vohra
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Janine T Bossé
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| |
Collapse
|
7
|
Dao HT, Truong QL, Do VT, Hahn TW. Construction and immunization with double mutant Δ apxIBD Δ pnp forms of Actinobacillus pleuropneumoniae serotypes 1 and 5. J Vet Sci 2020; 21:e20. [PMID: 32233129 PMCID: PMC7113565 DOI: 10.4142/jvs.2020.21.e20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Actinobacillus pleuropneumoniae (APP) causes a form of porcine pleuropneumonia that leads to significant economic losses in the swine industry worldwide. The apxIBD gene is responsible for the secretion of the ApxI and ApxII toxins and the pnp gene is responsible for the adaptation of bacteria to cold temperature and a virulence factor. The apxIBD and pnp genes were deleted successfully from APP serotype 1 and 5 by transconjugation and sucrose counter-selection. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants lost hemolytic activity and could not secrete ApxI and ApxII toxins outside the bacteria because both mutants lost the ApxI- and ApxII-secreting proteins by deletion of the apxIBD gene. Besides, the growth of these mutants was defective at low temperatures resulting from the deletion of pnp. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants were significantly attenuated compared with wild-type ones. However, mice vaccinated intraperitoneally with APP5ΔapxIBDΔpnp did not provide any protection when challenged with a 10-times 50% lethal dose of virulent homologous (APP5) and heterologous (APP1) bacterial strains, while mice vaccinated with APP1ΔapxIBDΔpnp offered 75% protection against a homologous challenge. The ΔapxIBDΔpnp mutants were significantly attenuated and gave different protection rate against homologous virulent wild-type APP challenging.
Collapse
Affiliation(s)
- Hoai Thu Dao
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Quang Lam Truong
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea.,Key Laboratory of Veterinary Medicine, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam
| | - Van Tan Do
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Tae Wook Hahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
8
|
Tang B, Bojesen AM. Immune Suppression Induced by Gallibacterium anatis GtxA During Interaction with Chicken Macrophage-Like HD11 Cells. Toxins (Basel) 2020; 12:toxins12090536. [PMID: 32825511 PMCID: PMC7551249 DOI: 10.3390/toxins12090536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The RTX toxin GtxA expressed by Gallibacterium anatis biovar haemolytica has been proposed a major virulence factor during disease manifestations in the natural host, the chicken. To better understand the role of GtxA in the pathogenesis of G. anatis, we compared the GtxA expressing wildtype strain with its isogenic ∆gtxA mutant that was unable to express GtxA during exposure to chicken macrophage-like HD11 cells. From adhesion and invasion assays, we showed that GtxA appears to promote adhesion and invasion of HD11 cells. By using quantitative RT-PCR, we also demonstrated that the G. anatis expressing GtxA induced a mainly anti-inflammatory (IL-10) host cell response as opposed to the pro-inflammatory (IL-1β, IL-6 and TNF-α) response induced by the GtxA deletion mutant. Interestingly, these results, at least partly, resemble recent responses observed from spleen tissue of chickens infected with the same two bacterial strains. The effect of the GtxA toxin on the type of cell death was less clear. While GtxA clearly induced cell death, our efforts to characterize whether this was due to primarily necrosis or apoptosis through expression analysis of a broad range of apoptosis genes did not reveal clear answers.
Collapse
|
9
|
Dao HT, Do VT, Truong QL, Hahn TW. Enhancement of Apx Toxin Production in Actinobacillus pleuropneumoniae Serotypes 1, 2, and 5 by Optimizing Culture Condition. J Microbiol Biotechnol 2020; 30:1037-1043. [PMID: 32238774 PMCID: PMC9745662 DOI: 10.4014/jmb.1912.12042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Abstract
Actinobacillus pleuropneumoniae (APP) is a causative agent of porcine pleuropneumonia. Therefore, the development of an effective vaccine for APP is necessary. Here, we optimized the culture medium and conditions to enhance the production yields of Apx toxins in APP serotype 1, 2, and 5 cultures. The use of Mycoplasma Broth Base (PPLO) medium improved both the quantity and quality of the harvested Apx toxins compared with Columbia Broth medium. Calcium chloride (CaCl2) was first demonstrated as a stimulation factor for the production of Apx toxins in APP serotype 2 cultures. Cultivation of APP serotype 2 in PPLO medium supplemented with 10 μg/ml of nicotinamide adenine dinucleotide (NAD) and 20 mM CaCl2 yielded the highest levels of Apx toxins. These findings suggest that the optimization of the culture medium and conditions increases the concentration of Apx toxins in the supernatants of APP serotype 1, 2, and 5 cultures and may be applied for the development of vaccines against APP infection.
Collapse
Affiliation(s)
- Hoai Thu Dao
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Van Tan Do
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Tae-Wook Hahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea,Innovac Co., Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea,Corresponding author Phone: +82-33-2508671 Fax: +82-33-2595625 E-mail:
| |
Collapse
|
10
|
Shotgun Proteomics of Ascidians Tunic Gives New Insights on Host-Microbe Interactions by Revealing Diverse Antimicrobial Peptides. Mar Drugs 2020; 18:md18070362. [PMID: 32668814 PMCID: PMC7401272 DOI: 10.3390/md18070362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
Ascidians are marine invertebrates associated with diverse microbial communities, embedded in their tunic, conferring special ecological and biotechnological relevance to these model organisms used in evolutionary and developmental studies. Next-generation sequencing tools have increased the knowledge of ascidians’ associated organisms and their products, but proteomic studies are still scarce. Hence, we explored the tunic of three ascidian species using a shotgun proteomics approach. Proteins extracted from the tunic of Ciona sp., Molgula sp., and Microcosmus sp. were processed using a nano LC-MS/MS system (Ultimate 3000 liquid chromatography system coupled to a Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer). Raw data was searched against UniProtKB – the Universal Protein Resource Knowledgebase (Bacteria and Metazoa section) using Proteome Discoverer software. The resulting proteins were merged with a non-redundant Antimicrobial Peptides (AMPs) database and analysed with MaxQuant freeware. Overall, 337 metazoan and 106 bacterial proteins were identified being mainly involved in basal metabolism, cytoskeletal and catalytic functions. 37 AMPs were identified, most of them attributed to eukaryotic origin apart from bacteriocins. These results and the presence of “Biosynthesis of antibiotics” as one of the most highlighted pathways revealed the tunic as a very active tissue in terms of bioactive compounds production, giving insights on the interactions between host and associated organisms. Although the present work constitutes an exploratory study, the approach employed revealed high potential for high-throughput characterization and biodiscovery of the ascidians’ tunic and its microbiome.
Collapse
|
11
|
Tang B, Pors SE, Kristensen BM, Skjerning RBJ, Olsen RH, Bojesen AM. GtxA is a virulence factor that promotes a Th2-like response during Gallibacterium anatis infection in laying hens. Vet Res 2020; 51:40. [PMID: 32156313 PMCID: PMC7065373 DOI: 10.1186/s13567-020-00764-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 01/07/2023] Open
Abstract
GtxA, a leukotoxic RTX-toxin, has been proposed a main virulence factor of Gallibacterium anatis. To evaluate the impact of GtxA during infection, we experimentally infected laying hens with a G. anatis wild-type (WT) strain and its isogenic gtxA deletion mutant (ΔgtxA), respectively, and monitored the birds during a 6 day period. Birds inoculated with ΔgtxA had significantly reduced gross lesions and microscopic changes compared to the birds inoculated with the WT strain. To assess the host response further, we quantified the expression of pro-inflammatory cytokines and apoptosis genes by RT-qPCR. In the ovarian tissue, the expression levels of IL-4 and TNF-α were significantly lower in the ΔgtxA group compared to the WT group, while IL-6 and IL-10 levels appeared similar in the two groups. In the spleen tissue of ΔgtxA infected chickens, IL-4 expression was also lower compared to the WT infected chickens. The results indicated that GtxA plays a key role in an acute cytokine-mediated Th2-like response against G. anatis infection in the ovary tissue. The pro-inflammatory response in the ovary tissue of birds inoculated with ΔgtxA mutant was thus significantly lower than the wild-type response. This was, at least partly, supported by the apoptosis gene expression levels, which were significantly higher in the ΔgtxA mutant compared to the wild-type infected chickens. In conclusion, GtxA clearly plays an important role in the pathogenesis of G. anatis infections in laying hens. Further investigations into the specific factors regulating the host response is however needed to provide a more complete understanding of the bacteria-host interaction.
Collapse
Affiliation(s)
- Bo Tang
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Susanne E. Pors
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Bodil M. Kristensen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Ragnhild Bager J. Skjerning
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Rikke H. Olsen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Anders M. Bojesen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
12
|
Atack JM, Guo C, Yang L, Zhou Y, Jennings MP. DNA sequence repeats identify numerous Type I restriction-modification systems that are potential epigenetic regulators controlling phase-variable regulons; phasevarions. FASEB J 2019; 34:1038-1051. [PMID: 31914596 PMCID: PMC7383803 DOI: 10.1096/fj.201901536rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/27/2022]
Abstract
Over recent years several examples of randomly switching methyltransferases, associated with Type III restriction‐modification (R‐M) systems, have been described in pathogenic bacteria. In every case examined, changes in simple DNA sequence repeats result in variable methyltransferase expression and result in global changes in gene expression, and differentiation of the bacterial cell into distinct phenotypes. These epigenetic regulatory systems are called phasevarions, phase‐variable regulons, and are widespread in bacteria, with 17.4% of Type III R‐M system containing simple DNA sequence repeats. A distinct, recombination‐driven random switching system has also been described in Streptococci in Type I R‐M systems that also regulate gene expression. Here, we interrogate the most extensive and well‐curated database of R‐M systems, REBASE, by searching for all possible simple DNA sequence repeats in the hsdRMS genes that encode Type I R‐M systems. We report that 7.9% of hsdS, 2% of hsdM, and of 4.3% of hsdR genes contain simple sequence repeats that are capable of mediating phase variation. Phase variation of both hsdM and hsdS genes will lead to differential methyltransferase expression or specificity, and thereby the potential to control phasevarions. These data suggest that in addition to well characterized phasevarions controlled by Type III mod genes, and the previously described Streptococcal Type I R‐M systems that switch via recombination, approximately 10% of all Type I R‐M systems surveyed herein have independently evolved the ability to randomly switch expression via simple DNA sequence repeats.
Collapse
Affiliation(s)
- John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Chengying Guo
- College of Plant Protection, Shandong Agricultural University, Taian City, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Taian City, China
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
13
|
Mannheimia haemolytica in bovine respiratory disease: immunogens, potential immunogens, and vaccines. Anim Health Res Rev 2019; 19:79-99. [PMID: 30683173 DOI: 10.1017/s1466252318000142] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mannheimia haemolytica is the major cause of severe pneumonia in bovine respiratory disease (BRD). Early M. haemolytica bacterins were either ineffective or even enhanced disease in vaccinated cattle, which led to studies of the bacterium's virulence factors and potential immunogens to determine ways to improve vaccines. Studies have focused on the capsule, lipopolysaccharide, various adhesins, extracellular enzymes, outer membrane proteins, and leukotoxin (LKT) resulting in a strong database for understanding immune responses to the bacterium and production of more efficacious vaccines. The importance of immunity to LKT and to surface antigens in stimulating immunity led to studies of individual native or recombinant antigens, bacterial extracts, live-attenuated or mutant organisms, culture supernatants, combined bacterin-toxoids, outer membrane vesicles, and bacterial ghosts. Efficacy of several of these potential vaccines can be shown following experimental M. haemolytica challenge; however, efficacy in field trials is harder to determine due to the complexity of factors and etiologic agents involved in naturally occurring BRD. Studies of potential vaccines have led current commercial vaccines, which are composed primarily of culture supernatant, bacterin-toxoid, or live mutant bacteria. Several of those can be augmented experimentally by addition of recombinant LKT or outer membrane proteins.
Collapse
|
14
|
Antenucci F, Magnowska Z, Nimtz M, Roesch C, Jänsch L, Bojesen AM. Immunoproteomic characterization of outer membrane vesicles from hyper-vesiculating Actinobacillus pleuropneumoniae. Vet Microbiol 2019; 235:188-194. [PMID: 31383301 DOI: 10.1016/j.vetmic.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022]
Abstract
Outer membrane vesicles (OMVs) are produced and secreted virtually by every known Gram-negative bacterium. Despite their non-live nature, they share antigenic characteristics with the bacteria they originate from. This, together with their relative ease of purification, casts the OMVs as a very promising and flexible tool in both human and veterinary vaccinology. The aim of the current work was to get an insight into the antigenic pattern of OMVs from the pig pathogen Actinobacillus pleuropneumoniae in the context of vaccine development. Accordingly, we designed a protocol combining 2D Western Blotting and mass spectrometric identification to robustly characterize the antigenic protein pattern of the vesicles. Our analysis revealed that A. pleuropneumoniae OMVs carry several immunoreactive virulence factors. Some of these proteins, LpoA, OsmY and MIDG2331_02184, have never previously been documented as antigenic in A. pleuropneumoniae or other pathogenic bacteria. Additionally, we showed that despite their relative abundance, proteins such as FrpB and DegQ do not contribute to the antigenic profile of A. pleuropneumoniae OMVs.
Collapse
Affiliation(s)
- Fabio Antenucci
- Department of Veterinary and Animal Sciences, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, University of Copenhagen, Copenhagen, Denmark.
| | - Zofia Magnowska
- Department of Veterinary and Animal Sciences, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, University of Copenhagen, Copenhagen, Denmark.
| | - Manfred Nimtz
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| | - Camille Roesch
- Izon Science Ltd, Batiment Laennec, 60 Avenue Rockefeller, 69008, Lyon, France.
| | - Lothar Jänsch
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Li Y, Cao S, Zhang L, Yuan J, Zhao Q, Wen Y, Wu R, Huang X, Yan Q, Huang Y, Ma X, Han X, Miao C, Wen X. A requirement of TolC1 for effective survival, colonization and pathogenicity of Actinobacillus pleuropneumoniae. Microb Pathog 2019; 134:103596. [PMID: 31212036 DOI: 10.1016/j.micpath.2019.103596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 01/18/2023]
Abstract
To establish infection in the host, pathogens have evolved sophisticated systems to cope with environmental conditions and to protect cells against host immunity. TolC is the outer membrane channel component of type 1 secretion systems and multidrug efflux pumps that plays critical roles during the infection process in many pathogens. However, little is known about the exact roles of TolC1 in the pathogenicity of A. pleuropneumoniae, an etiological agent of the porcine contagious pleuropneumoniae that causes severe respiratory disease. In this study, deletion of tolC1 causes apparent ultrastructural defects in A. pleuropneumoniae cell examined by transmission electron microscopy. The tolC1 mutant is hypersensitivity to oxidative, osmotic and acid challenges by in vitro stress assays. Analysis on secreted proteins shows that the excretion of ApxIIA and an ApxIVA-like protein, ApxIVA-S, is abolished in the absence of TolC1. This result confirms the essential role of TolC1 in the secretion of Apx toxins and this is the first identification of an ApxIVA-like protein in in vitro culture of A. pleuropneumoniae. Besides, disruption of TolC1 leads to a significant attenuation of virulence in mice by an intraperitoneal route of A. pleuropneumoniae. The basis for the attenuation is further investigated using a mouse intranasal infection model, which reveals an impaired ability to colonize and induce lesions in the lungs for the loss of TolC1 of A. pleuropneumoniae. In conclusion, our findings demonstrate significant roles of TolC1 in facilitating bacterial survival in hostile conditions, maximum colonization as well as pathogenicity during the infection of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Ying Li
- Department of Immunology, School of Basic Medical Science, Southwest Medical University, No. 319 Zhongshan Road, Luzhou, Sichuan, China; Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Sanjie Cao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China.
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Science, Southwest Medical University, No. 319 Zhongshan Road, Luzhou, Sichuan, China
| | - Jianlin Yuan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Qin Zhao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Yiping Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Rui Wu
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Xiaobo Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Qigui Yan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Yong Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Xiaoping Ma
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Xinfeng Han
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Chang Miao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Xintian Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Oliveira Filho JXD, Morés MAZ, Rebellato R, Kich JD, Cantão ME, Klein CS, Guedes RMC, Coldebella A, Barcellos DESND, Morés N. Pathogenic variability among Pasteurella multocida type A isolates from Brazilian pig farms. BMC Vet Res 2018; 14:244. [PMID: 30134904 PMCID: PMC6103967 DOI: 10.1186/s12917-018-1565-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Pasteurella multocida type A (PmA) is considered a secondary agent of pneumonia in pigs. The role of PmA as a primary pathogen was investigated by challenging pigs with eight field strains isolated from pneumonia and serositis in six Brazilian states. Eight groups of eight pigs each were intranasally inoculated with different strains of PmA (1.5 mL/nostril of 10e7 CFU/mL). The control group (n = 12) received sterile PBS. The pigs were euthanized by electrocution and necropsied by 5 dpi. Macroscopic lesions were recorded, and swabs and fragments of thoracic and abdominal organs were analyzed by bacteriological and pathological assays. The PmA strains were analyzed for four virulence genes (toxA: toxin; pfhA: adhesion; tbpA and hgbB: iron acquisition) by PCR and sequencing and submitted to multilocus sequence typing (MLST). Results The eight PmA strains were classified as follows: five as highly pathogenic (HP) for causing necrotic bronchopneumonia and diffuse fibrinous pleuritis and pericarditis; one as low pathogenic for causing only focal bronchopneumonia; and two as nonpathogenic because they did not cause injury to any pig. PCR for the gene pfhA was positive for all five HP isolates. Sequencing demonstrated that the pfhA region of the HP strains comprised four genes: tpsB1, pfhA1, tpsB2 and pfhA2. The low and nonpathogenic strains did not contain the genes tpsB2 and pfhA2. A deletion of four bases was observed in the pfhA gene in the low pathogenic strain, and an insertion of 37 kb of phage DNA was observed in the nonpathogenic strains. MLST clustered the HP isolates in one group and the low and nonpathogenic isolates in another. Only the nonpathogenic isolates matched sequence type 10; the other isolates did not match any type available in the MLST database. Conclusions The hypothesis that some PmA strains are primary pathogens and cause disease in pigs without any co-factor was confirmed. The pfhA region, comprising the genes tpsB1, tpsB2, pfhA1 and pfhA2, is related to the pathogenicity of PmA. The HP strains can cause necrotic bronchopneumonia, fibrinous pleuritis and pericarditis in pigs and can be identified by PCR amplification of the gene pfhA2.
Collapse
Affiliation(s)
- João Xavier de Oliveira Filho
- Department of Animal Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Agronomia, Av Bento Gonçalves, 9090, Porto Alegre, Rio Grande do Sul, 91540-000, Brazil
| | | | - Raquel Rebellato
- Embrapa Suinos e Aves, P.O. Box 121, Concórdia, Santa Catarina, 89700-000, Brazil
| | - Jalusa Deon Kich
- Embrapa Suinos e Aves, P.O. Box 121, Concórdia, Santa Catarina, 89700-000, Brazil.
| | | | - Catia Silene Klein
- Embrapa Suinos e Aves, P.O. Box 121, Concórdia, Santa Catarina, 89700-000, Brazil
| | | | - Arlei Coldebella
- Embrapa Suinos e Aves, P.O. Box 121, Concórdia, Santa Catarina, 89700-000, Brazil
| | - David Emílio Santos Neves de Barcellos
- Department of Animal Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Agronomia, Av Bento Gonçalves, 9090, Porto Alegre, Rio Grande do Sul, 91540-000, Brazil
| | - Nelson Morés
- Embrapa Suinos e Aves, P.O. Box 121, Concórdia, Santa Catarina, 89700-000, Brazil
| |
Collapse
|
17
|
Antenucci F, Fougeroux C, Deeney A, Ørskov C, Rycroft A, Holst PJ, Bojesen AM. In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae. Vet Res 2018; 49:4. [PMID: 29316978 PMCID: PMC5761136 DOI: 10.1186/s13567-017-0502-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/18/2017] [Indexed: 02/05/2023] Open
Abstract
Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a Gram-negative bacterium that represents the main cause of porcine pleuropneumonia in pigs, causing significant economic losses to the livestock industry worldwide. A. pleuropneumoniae, as the majority of Gram-negative bacteria, excrete vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine formulations significantly increased the specific IgG titer against both ApfA and VacJ in the immunized animals, confirming the previously postulated potential of the OMVs as adjuvant. Unfortunately, the antibody response raised did not translate into an effective protection against A. pleuropneumoniae infection, as none of the immunized groups following challenge showed a significantly lower degree of lesions than the controls. Interestingly, quite the opposite was true, as the animals with the highest IgG titers were also the ones bearing the most extensive lesions in their lungs. These results shed new light on A. pleuropneumoniae pathogenicity, suggesting that antibody-mediated cytotoxicity from the host immune response may play a central role in the development of the lesions typically associated with A. pleuropneumoniae infections.
Collapse
Affiliation(s)
- Fabio Antenucci
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, Copenhagen, Denmark
| | - Cyrielle Fougeroux
- Department of International Health, Immunology and Microbiology ISIM, University of Copenhagen, Øster Farigmagsgade 5, Bldg 22/23, 1014 København K, Copenhagen, Denmark
| | - Alannah Deeney
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Cathrine Ørskov
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 København N, 12.3, Building: 32, Copenhagen, Denmark
| | - Andrew Rycroft
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Peter Johannes Holst
- Department of International Health, Immunology and Microbiology ISIM, University of Copenhagen, Øster Farigmagsgade 5, Bldg 22/23, 1014 København K, Copenhagen, Denmark
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, Copenhagen, Denmark.
| |
Collapse
|
18
|
Arteaga Blanco LA, Crispim JS, Fernandes KM, de Oliveira LL, Pereira MF, Bazzolli DMS, Martins GF. Differential cellular immune response of Galleria mellonella to Actinobacillus pleuropneumoniae. Cell Tissue Res 2017; 370:153-168. [DOI: 10.1007/s00441-017-2653-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/30/2017] [Indexed: 11/25/2022]
|
19
|
Hsu CW, Li SC, Chang NY, Chen ZW, Liao JW, Chen TH, Wang JP, Lin JH, Hsuan SL. Involvement of NF-κB in regulation of Actinobacillus pleuropneumoniae exotoxin ApxI-induced proinflammatory cytokine production in porcine alveolar macrophages. Vet Microbiol 2016; 195:128-135. [PMID: 27771058 DOI: 10.1016/j.vetmic.2016.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Actinobacillus pleuropneumoniae is a crucial respiratory pathogen that causes fibrinous, hemorrhagic, necrotizing pleuropneumonia in pigs. A. pleuropneumoniae exotoxins (ApxI to IV) are the major virulence factors contributing to A. pleuropneumoniae pathogenesis. Previously, we demonstrated that ApxI induces the expression of proinflammatory cytokines in porcine alveolar macrophages (PAMs) via the mitogen-activated protein kinases (MAPKs) p38 and cJun NH2-terminal kinase (JNK). Nonetheless, the role of nuclear factor (NF)-κB-a transcription factor widely implicated in immune and inflammatory responses-in ApxI-elicited cytokine production has yet to be defined. In the present study, we examined the involvement of NF-κB in ApxI-elicited production of interleukin (IL)-1β, IL-8, and tumor necrosis factor (TNF)-α in PAMs and investigated the correlation between NF-κB and MAPK (p38 and JNK) pathways in this event. The results of Western blot analysis, confocal microscopy, and a DNA binding activity assay revealed that the classical NF-κB pathway was activated by ApxI, as evidenced by the decreased levels of IκB and subsequent NF-κB translocation and activation in ApxI-stimulated PAMs. Moreover, the blocking of ApxI-induced NF-κB activation significantly attenuated the levels of mRNA and protein secretion of IL-1β, IL-8, and TNF-α in PAMs. Notably, the attenuation of JNK activation by a specific inhibitor (SP600125) reduced ApxI-induced NF-κB activation, whereas a p38 blocker (SB203580) had no effect on the NF-κB pathway. Further examination revealed that the level of phosphorylation at serine 536 on the NF-κB p65 subunit was dependent on JNK activity. Collectively, this study, for the first time, demonstrates a pivotal role of NF-κB in ApxI-induced IL-1β, IL-8, and TNF-α production; JNK, but not p38, may positively affect the activation of the classical NF-κB pathway.
Collapse
Affiliation(s)
- Chiung-Wen Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC; Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Siou-Cen Li
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC; Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Nai-Yun Chang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Zeng-Weng Chen
- Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Jyh-Perng Wang
- Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Jiunn-Horng Lin
- Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Shih-Ling Hsuan
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC.
| |
Collapse
|
20
|
Rossi CC, Bossé JT, Li Y, Witney AA, Gould KA, Langford PR, Bazzolli DMS. A computational strategy for the search of regulatory small RNAs in Actinobacillus pleuropneumoniae. RNA (NEW YORK, N.Y.) 2016; 22:1373-85. [PMID: 27402897 PMCID: PMC4986893 DOI: 10.1261/rna.055129.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/24/2016] [Indexed: 05/26/2023]
Abstract
Bacterial regulatory small RNAs (sRNAs) play important roles in gene regulation and are frequently connected to the expression of virulence factors in diverse bacteria. Only a few sRNAs have been described for Pasteurellaceae pathogens and no in-depth analysis of sRNAs has been described for Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, responsible for considerable losses in the swine industry. To search for sRNAs in A. pleuropneumoniae, we developed a strategy for the computational analysis of the bacterial genome by using four algorithms with different approaches, followed by experimental validation. The coding strand and expression of 17 out of 23 RNA candidates were confirmed by Northern blotting, RT-PCR, and RNA sequencing. Among them, two are likely riboswitches, three are housekeeping regulatory RNAs, two are the widely studied GcvB and 6S sRNAs, and 10 are putative novel trans-acting sRNAs, never before described for any bacteria. The latter group has several potential mRNA targets, many of which are involved with virulence, stress resistance, or metabolism, and connect the sRNAs in a complex gene regulatory network. The sRNAs identified are well conserved among the Pasteurellaceae that are evolutionarily closer to A. pleuropneumoniae and/or share the same host. Our results show that the combination of newly developed computational programs can be successfully utilized for the discovery of novel sRNAs and indicate an intricate system of gene regulation through sRNAs in A. pleuropneumoniae and in other Pasteurellaceae, thus providing clues for novel aspects of virulence that will be explored in further studies.
Collapse
Affiliation(s)
- Ciro C Rossi
- Laboratório de Genética Molecular de Micro-organismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Janine T Bossé
- Section of Paediatrics, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatrics, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Adam A Witney
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, United Kingdom
| | - Kate A Gould
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, United Kingdom
| | - Paul R Langford
- Section of Paediatrics, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Denise M S Bazzolli
- Laboratório de Genética Molecular de Micro-organismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| |
Collapse
|
21
|
Production and immunogenicity of Actinobacillus pleuropneumoniae ApxIIA protein in transgenic rice callus. Protein Expr Purif 2016; 132:116-123. [PMID: 27215671 DOI: 10.1016/j.pep.2016.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 01/02/2023]
Abstract
Actinobacillus pleuropneumoniae is a major etiological agent that is responsible for swine pleuropneumonia, a highly contagious respiratory infection that causes severe economic losses in the swine production industry. ApxIIA is one of the virulence factors in A. pleuropneumoniae and has been considered as a candidate for developing a vaccine against the bacterial infection. A gene encoding an ApxIIA fragment (amino acids 439-801) was modified based on a plant-optimized codon and constructed into a plant expression vector under the control of a promoter and the 3' UTR of the rice amylase 3D gene. The plant expression vector was introduced into rice embryogenic callus (Oryza sativa L. cv. Dongjin) via particle bombardment-mediated transformation. The integration and transcription of the ApxIIA439-801 gene were confirmed by using genomic DNA PCR amplification and Northern blot analysis, respectively. The synthesis of ApxIIA439-801 antigen protein in transgenic rice callus was confirmed by western blot analysis. The concentration of antigen protein in lyophilized samples of transgenic rice callus was 250 μg/g. Immunizing mice with protein extracts from transgenic plants intranasally elicited secretory IgA. These results demonstrate the feasibility of using a transgenic plant to elicit immune responses against A. pleuropneumoniae.
Collapse
|
22
|
Oliveira Filho JXD, Morés MA, Rebelatto R, Agnol AM, Plieski CL, Klein CS, Barcellos DE, Morés N. Pasteurella multocida type A as the primary agent of pneumonia and septicaemia in pigs. PESQUISA VETERINARIA BRASILEIRA 2015. [DOI: 10.1590/s0100-736x2015000800003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: In order to understand better the pathological aspects and spread of Pasteurella multocida type A as the primary cause of pneumonia in pigs, was made an experiment with intranasal inoculation of different concentrations of inocula [Group (G1): 108 Colony Forming Units (CFU)/ml; G2: 107 CFU/ml; G3: 106 CFU/ml and G4: 105 CFU/ml], using two pigs per group. The pigs were obtained from a high health status herd. Pigs were monitored clinically for 4 days and subsequently necropsied. All pigs had clinical signs and lesions associated with respiratory disease. Dyspnoea and hyperthermia were the main clinical signs observed. Suppurative cranioventral bronchopneumonia, in some cases associated with necrosuppurative pleuropneumonia, fibrinous pericarditis and pleuritic, were the most frequent types of lesion found. The disease evolved with septicaemia, characterized by septic infarctions in the liver and spleen, with the detection of P. multocida type A. In this study, P. multocida type A strain #11246 was the primary agent of fibrinous pleuritis and suppurative cranioventral bronchopneumonia, pericarditis and septicaemia in the pigs. All concentrations of inoculum used (105-108 CFU/ml) were able to produce clinical and pathological changes of pneumonia, pleuritis, pericarditis and septicemia in challenged animals.
Collapse
|
23
|
Farias LD, Maboni G, Matter LB, Scherer CFC, Libardoni F, de Vargas AC. Phylogenetic analysis and genetic diversity of 3' region of rtxA gene from geographically diverse strains of Moraxella bovis, Moraxella bovoculi and Moraxella ovis. Vet Microbiol 2015; 178:283-7. [PMID: 26036790 DOI: 10.1016/j.vetmic.2015.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 11/18/2022]
Abstract
The cytotoxin A (MbxA) is one of the main virulence factors of Moraxella bovis involved in the pathogenesis of infectious bovine keratoconjunctivitis (IBK). Moraxella ovis and Moraxella bovoculi, suspected to be associated with infectious keratitis in sheep and cattle respectively, also have a gene that encodes the cytotoxin A (movA and mbvA, respectively). The aim of this study was to determine the molecular sequence of the 3' region of the cytotoxin gene of Moraxella spp. strains isolated from clinical cases to establish phylogenetic and evolutionary comparisons. PCR amplification, nucleotide sequencing (nt) and amino acid (aa) sequence prediction were performed, followed by the sequences comparison, identity level calculation and selective pressure analysis. The phylogenetic reconstruction based on nt and aa sequences clearly differentiate M. bovis (n=15), M. bovoculi (n=11) and M. ovis (n=7) and their respective reference strains. An alignment of 843nt revealed high similarity within bacterial species (MbxA=99.9% nt and aa; MbvA=99.3% nt and 98.8% aa; MovA=99.5% nt and 99.3% aa). The similarity of partial sequences (nt 1807-2649) of MbxA in relation to MbvA and MovA ranged from 76.3 to 78.5%; similarity between MbvA and MovA ranged from 95.7 to 97.5%. A negative selection on mbvA and movA sequences was revealed by the molecular evolution analysis. The phylogenetic analysis of movA and mbvA allowed different strains of Moraxella spp. to be grouped according to the period of isolation. Sequence analysis of cytotoxin may provide insights into genetic and evolutionary relationships and into the genetic/molecular basis of Moraxella spp.
Collapse
Affiliation(s)
- Luana D'Avila Farias
- Setor de Bacteriologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Camobi, Santa Maria, Rio Grande do Sul (RS) CEP 97105-900, Brazil.
| | - Grazieli Maboni
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Letícia Beatriz Matter
- Departamento de Ciências da Saúde, Curso de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, Campus Santo Ângelo, RS CEP 98802-470, Brazil
| | | | - Felipe Libardoni
- Setor de Bacteriologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Camobi, Santa Maria, Rio Grande do Sul (RS) CEP 97105-900, Brazil
| | - Agueda Castagna de Vargas
- Setor de Bacteriologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Camobi, Santa Maria, Rio Grande do Sul (RS) CEP 97105-900, Brazil.
| |
Collapse
|
24
|
Kurehong C, Kanchanawarin C, Powthongchin B, Katzenmeier G, Angsuthanasombat C. Membrane-Pore Forming Characteristics of the Bordetella pertussis CyaA-Hemolysin Domain. Toxins (Basel) 2015; 7:1486-96. [PMID: 25941766 PMCID: PMC4448159 DOI: 10.3390/toxins7051486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 11/23/2022] Open
Abstract
Previously, the 126-kDa Bordetella pertussis CyaA pore-forming/hemolysin (CyaA-Hly) domain was shown to retain its hemolytic activity causing lysis of susceptible erythrocytes. Here, we have succeeded in producing, at large quantity and high purity, the His-tagged CyaA-Hly domain over-expressed in Escherichia coli as a soluble hemolytically-active form. Quantitative assays of hemolysis against sheep erythrocytes revealed that the purified CyaA-Hly domain could function cooperatively by forming an oligomeric pore in the target cell membrane with a Hill coefficient of ~3. When the CyaA-Hly toxin was incorporated into planar lipid bilayers (PLBs) under symmetrical conditions at 1.0 M KCl, 10 mM HEPES buffer (pH 7.4), it produced a clearly resolved single channel with a maximum conductance of ~35 pS. PLB results also revealed that the CyaA-Hly induced channel was unidirectional and opened more frequently at higher negative membrane potentials. Altogether, our results first provide more insights into pore-forming characteristics of the CyaA-Hly domain as being the major pore-forming determinant of which the ability to induce such ion channels in receptor-free membranes could account for its cooperative hemolytic action on the target erythrocytes.
Collapse
Affiliation(s)
- Chattip Kurehong
- Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand.
| | - Chalermpol Kanchanawarin
- Laboratory of Theoretical and Computational Biophysics, Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Busaba Powthongchin
- Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakornpathom 73000, Thailand.
| | - Gerd Katzenmeier
- Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand.
| | - Chanan Angsuthanasombat
- Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand.
- Laboratory of Molecular Biophysics and Structural Biochemistry, Biophysics Institute for Research and Development (BIRD), Bangkok 10160, Thailand.
| |
Collapse
|
25
|
Pérez Márquez VM, Ochoa JL, Cruz CV, Alonso PS, Olmedo-Alvarez G, Vaca S, Abascal EN. Isolation of Actinobacillus pleuropneumoniae from layer hens showing clinical signs of infectious coryza. Avian Dis 2015; 58:638-41. [PMID: 25619011 DOI: 10.1637/10798-021314-case.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Actinobacillus pleuropneumoniae is the causal agent of porcine pleuropneumonia, which is a highly contagious respiratory disease that affects swine nearly exclusively. An isolate with characteristics of some Pasteurellaceae family members (Gram-negative bacterium, pleomorphic, and NAD-dependent) was isolated from layer hens showing clinical signs of infectious coryza. This bacterium presented hemolysis on rabbit red blood cell agar plates, and PCR amplification and sequencing of its 16S rDNA gene indicated 99% identity with A. pleuropneumoniae serotypes 3 and 7. The presence of a putative apxIIA gene was also determined by PCR. A single, smooth colony of this bacterium inoculated in five, 7-day-old chicken embryos via the yolk sac route induced 100% mortality. However, inoculation into 10-wk-old, specific-pathogen-free chickens induced only light facial swelling, and reisolation of the inoculated bacterium was negative.
Collapse
|
26
|
Park J, Seo KW, Kim SH, Lee HY, Kim B, Lim CW, Kim JH, Yoo HS, Jang YS. Nasal immunization with M cell-targeting ligand-conjugated ApxIIA toxin fragment induces protective immunity against Actinobacillus pleuropneumoniae infection in a murine model. Vet Microbiol 2015; 177:142-53. [PMID: 25818577 DOI: 10.1016/j.vetmic.2015.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 01/23/2023]
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia and severe economic loss in the swine industry has been caused by the infection. Therefore, the development of an effective vaccine against the bacteria is necessary. ApxII toxin, among several virulence factors expressed by the bacteria, is considered to be a promising vaccine candidate because ApxII toxin not only accompanies cytotoxic and hemolytic activities, but is also expressed in all 15 serotypes of bacteria except serotypes 10 and 14. In this study, we identified the peptide ligand capable of targeting the ligand-conjugated ApxIIA #5 fragment antigen to nasopharynx-associated lymphoid tissue. It was found that nasal immunization with ligand-conjugated ApxIIA #5 induced efficient mucosal and systemic immune responses measured at the levels of antigen-specific antibodies, cytokine-secreting cells after antigen exposure, and antigen-specific lymphocyte proliferation. More importantly, the nasal immunization induced protective immunity against nasal challenge infection of the bacteria, which was confirmed by histopathological studies and bacterial clearance after challenge infection. Collectively, we confirmed that the ligand capable of targeting the ligand-conjugated antigen to nasopharynx-associated lymphoid tissue can be used as an effective nasal vaccine adjuvant to induce protective immunity against A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Jisang Park
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Ki-Weon Seo
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Sae-Hae Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Ha-Yan Lee
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Bumseok Kim
- Department of Pathology, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chae Woong Lim
- Department of Pathology, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jin-Hee Kim
- Jeonbuk Provincial Office, National Agricultural Products Quality Management Service, Jeonju 561-202, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
27
|
Draft Genome Sequence of Chelonobacter oris Strain 1662T, Associated with Respiratory Disease in Hermann's Tortoises. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01322-14. [PMID: 25523777 PMCID: PMC4271167 DOI: 10.1128/genomea.01322-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chelonobacter oris 1662T is a type strain of the recently described species of the Pasteurellaceae family. The strain was isolated from the choanae of a captive tortoise with signs of respiratory tract infection. The genome reported here is approximately 2.6 Mb in size and has a G+C content of 47.1%.
Collapse
|
28
|
Pereira MF, Rossi CC, Vieira de Queiroz M, Martins GF, Isaac C, Bossé JT, Li Y, Wren BW, Terra VS, Cuccui J, Langford PR, Bazzolli DMS. Galleria mellonella is an effective model to study Actinobacillus pleuropneumoniae infection. MICROBIOLOGY-SGM 2014; 161:387-400. [PMID: 25414045 DOI: 10.1099/mic.0.083923-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Actinobacillus pleuropneumoniae is responsible for swine pleuropneumonia, a respiratory disease that causes significant global economic loss. Its virulence depends on many factors, such as capsular polysaccharides, RTX toxins and iron-acquisition systems. Analysis of virulence may require easy-to-use models that approximate mammalian infection and avoid ethical issues. Here, we investigate the potential use of the wax moth Galleria mellonella as an informative model for A. pleuropneumoniae infection. Genotypically distinct A. pleuropneumoniae clinical isolates were able to kill larvae at 37 °C but had different LD50 values, ranging from 10(4) to 10(7) c.f.u. per larva. The most virulent isolate (1022) was able to persist and replicate within the insect, while the least virulent (780) was rapidly cleared. We observed a decrease in haemocyte concentration, aggregation and DNA damage post-infection with isolate 1022. Melanization points around bacterial cells were observed in the fat body and pericardial tissues of infected G. mellonella, indicating vigorous cell and humoral immune responses close to the larval dorsal vessel. As found in pigs, an A. pleuropneumoniae hfq mutant was significantly attenuated for infection in the G. mellonella model. Additionally, the model could be used to assess the effectiveness of several antimicrobial agents against A. pleuropneumoniae in vivo. G. mellonella is a suitable inexpensive alternative infection model that can be used to study the virulence of A. pleuropneumoniae, as well as assess the effectiveness of antimicrobial agents against this pathogen.
Collapse
Affiliation(s)
- Monalessa Fábia Pereira
- Laboratório de Genética Molecular de Micro-organismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ciro César Rossi
- Laboratório de Genética Molecular de Micro-organismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Micro-organismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Gustavo Ferreira Martins
- Laboratório de Biologia Molecular de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Clement Isaac
- Department of Zoology, Ambrose Alli University, Akpoma, Nigeria.,Laboratório de Biologia Molecular de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Janine T Bossé
- Section of Paediatrics, Imperial College London, London, UK
| | - Yanwen Li
- Section of Paediatrics, Imperial College London, London, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Vanessa Sofia Terra
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Jon Cuccui
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Micro-organismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
29
|
Monoclonal antibodies against Vibrio vulnificus RtxA1 elicit protective immunity through distinct mechanisms. Infect Immun 2014; 82:4813-23. [PMID: 25156730 DOI: 10.1128/iai.02130-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vibrio vulnificus causes rapidly progressing septicemia with an extremely high mortality rate (≥50%), even with aggressive antibiotic treatment. The bacteria secrete multifunctional autoprocessing repeats-in-toxin (MARTX) toxins, which are involved in the pathogenesis of Gram-negative Vibrio species. Recently, we reported that immunization with the C-terminal region of V. vulnificus RtxA1/MARTXVv, RtxA1-C, elicits a protective immune response against V. vulnificus through a poorly defined mechanism. In this study, we generated a panel of new monoclonal antibodies (MAbs) against V. vulnificus RtxA1-C and investigated their protective efficacies and mechanisms in a mouse model of infection. Prophylactic administration of seven MAbs strongly protected mice against lethal V. vulnificus infection (more than 90% survival). Moreover, three of these MAbs (21RA, 24RA, and 47RA) demonstrated marked efficacy as postexposure therapy. Notably, 21RA was therapeutically effective against lethal V. vulnificus infection by a variety of routes. Using Fab fragments and a neutropenic mouse model, we showed that 21RA and 24RA mediate protection from V. vulnificus infection through an Fc-independent and/or neutrophil-independent pathway. In contrast, 47RA-mediated protection was dependent on its Fc region and was reduced to 50% in neutropenic mice compared with 21RA-mediated and 24RA-mediated protection. Bacteriological study indicated that 21RA appears to enhance the clearance of V. vulnificus from the blood. Overall, these studies suggest that humoral immunity controls V. vulnificus infection through at least two different mechanisms. Furthermore, our panel of MAbs could provide attractive candidates for the further development of immunoprophylaxis/therapeutics and other therapies against V. vulnificus that target the MARTX toxin.
Collapse
|
30
|
Luna-Castro S, Aguilar-Romero F, Samaniego-Barrón L, Godínez-Vargas D, de la Garza M. Effect of bovine apo-lactoferrin on the growth and virulence of Actinobacillus pleuropneumoniae. Biometals 2014; 27:891-903. [DOI: 10.1007/s10534-014-9752-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/15/2014] [Indexed: 01/01/2023]
|
31
|
Layman QD, Rezabek GB, Ramachandran A, Love BC, Confer AW. A retrospective study of equine actinobacillosis cases: 1999-2011. J Vet Diagn Invest 2014; 26:365-375. [PMID: 24742921 DOI: 10.1177/1040638714531766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Several Actinobacillus spp. are common commensal bacteria of the oral cavity, gastrointestinal tract, and reproductive tract of horses and can cause disease in both foals and adults. The current retrospective study was designed to review Actinobacillus spp. isolated from clinical samples or necropsies of 99 horses during 1999-2011. The cases consisted of 43 foals (<6 months of age), 4 young adults (6 months-2 years), 39 adults (>2 years of age), 2 aborted fetuses, and 11 with unspecified ages. Clinical history, signs, bacterial species isolated, and associated lesions were documented. Actinobacillus spp. were isolated 111 times. The most common isolates were Actinobacillus equuli subsp. equuli (38.7%) and hemolytic Actinobacillus spp. (24.3%). Other isolates were Actinobacillus lignieresii (5.4%), Actinobacillus pleuropneumoniae (1.8%), and unclassified Actinobacillus spp. (28.8%). Actinobacillus equuli subsp. equuli was most commonly isolated from clinical and necropsy cases of septicemia and respiratory disease in both foals and adults. Embolic nephritis, the classical septicemic lesion of equine neonatal actinobacillosis, was also present in several adult septicemic actinobacillosis cases. Predisposing factors such as failure of passive transfer of colostral antibodies as well as concurrent pathogenic bacterial or viral infections were present in numerous actinobacillosis cases. There were many cases, however, for which a predisposing factor or concurrent infection was not documented or apparent, suggesting that Actinobacillus spp. can be primary pathogens under the right circumstances and in the right location.
Collapse
Affiliation(s)
- Quinci D Layman
- Oklahoma State University, Center of Veterinary Health Sciences, Department of Veterinary Pathobiology (Layman, Confer), Stillwater, OKOklahoma Animal Disease Diagnostic Laboratory (Rezabek, Ramachandran, Love), Stillwater, OK
| | - Grant B Rezabek
- Oklahoma State University, Center of Veterinary Health Sciences, Department of Veterinary Pathobiology (Layman, Confer), Stillwater, OKOklahoma Animal Disease Diagnostic Laboratory (Rezabek, Ramachandran, Love), Stillwater, OK
| | - Akhilesh Ramachandran
- Oklahoma State University, Center of Veterinary Health Sciences, Department of Veterinary Pathobiology (Layman, Confer), Stillwater, OKOklahoma Animal Disease Diagnostic Laboratory (Rezabek, Ramachandran, Love), Stillwater, OK
| | - Brenda C Love
- Oklahoma State University, Center of Veterinary Health Sciences, Department of Veterinary Pathobiology (Layman, Confer), Stillwater, OKOklahoma Animal Disease Diagnostic Laboratory (Rezabek, Ramachandran, Love), Stillwater, OK
| | - Anthony W Confer
- Oklahoma State University, Center of Veterinary Health Sciences, Department of Veterinary Pathobiology (Layman, Confer), Stillwater, OKOklahoma Animal Disease Diagnostic Laboratory (Rezabek, Ramachandran, Love), Stillwater, OK
| |
Collapse
|
32
|
Abstract
Most pathogens are able to infect multiple hosts but some are highly adapted to a single-host species. A detailed understanding of the basis of host specificity can provide important insights into molecular pathogenesis, the evolution of pathogenic microbes, and the potential for pathogens to cross the species barrier to infect new hosts. Comparative genomics and the development of humanized mouse models have provided important new tools with which to explore the basis of generalism and specialism. This review will examine host specificity of bacterial pathogens with a focus on generalist and specialist serovars of Salmonella enterica.
Collapse
Affiliation(s)
- Andreas Bäumler
- Department of Medical Microbiology and Immunology, University of California, Davis School of Medicine, Davis, California 95616
| | | |
Collapse
|
33
|
Wiles TJ, Mulvey MA. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: progress and perspectives. Future Microbiol 2013; 8:73-84. [PMID: 23252494 DOI: 10.2217/fmb.12.131] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Members of the RTX family of protein toxins are functionally conserved among an assortment of bacterial pathogens. By disrupting host cell integrity through their pore-forming and cytolytic activities, this class of toxins allows pathogens to effectively tamper with normal host cell processes, promoting pathogenesis. Here, we focus on the biology of RTX toxins by describing salient properties of a prototype member, α-hemolysin, which is often encoded by strains of uropathogenic Escherichia coli. It has long been appreciated that RTX toxins can have distinct effects on host cells aside from outright lysis. Recently, advances in modeling and analysis of host-pathogen interactions have led to novel findings concerning the consequences of pore formation during host-pathogen interactions. We discuss current progress on longstanding questions concerning cell specificity and pore formation, new areas of investigation that involve toxin-mediated perturbations of host cell signaling cascades and perspectives on the future of RTX toxin investigation.
Collapse
Affiliation(s)
- Travis J Wiles
- Division of Microbiology & Immunology, Pathology Department, University of Utah, 15 North Medical Drive East #2100, Salt Lake City, UT 84112-0565, USA
| | | |
Collapse
|
34
|
Küng E, Frey J. AvxA, a composite serine-protease-RTX toxin of Avibacterium paragallinarum. Vet Microbiol 2013; 163:290-8. [DOI: 10.1016/j.vetmic.2012.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/27/2022]
|
35
|
Hunt B, Bidewell C, Koylass MS, Whatmore AM. A novel taxon within the genus Actinobacillus isolated from alpaca (Vicugna pacos) in the United Kingdom. Vet Microbiol 2013; 163:383-7. [PMID: 23375653 DOI: 10.1016/j.vetmic.2012.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
Abstract
Members of the genus Actinobacillus comprise a diverse group of bacteria associated with mammals and birds including both pathogens and commensals. Here we describe the isolation of a previously undescribed Actinobacillus-like organism from seven epidemiologically unrelated infections of alpaca. The isolates are phenotypically and genotypically distinct from any previously described Actinobacillus species but 16S rRNA analysis unequivocally places the isolates as a novel lineage within the Actinobacillus sensu stricto. The clinical relevance of the organism requires further study however isolation in pure culture from organs of some cases suggests it may be associated with septicaemia in juvenile alpaca.
Collapse
Affiliation(s)
- Brian Hunt
- AHVLA Bury St. Edmunds, Rougham Hill, Bury St Edmunds, Suffolk IP33 2RX, United Kingdom
| | | | | | | |
Collapse
|
36
|
Pan YC, Tan DH, Shien JH, Liu CC, He YS, Shen PC, Chang PC. Identification and Characterization of an RTX Toxin–Like Gene and Its Operon from Avibacterium paragallinarum. Avian Dis 2012; 56:537-44. [DOI: 10.1637/10047-122211-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|