1
|
Li S, Jiang K, Wang T, Zhang W, Shi M, Chen B, Hua Z. Nanobody against PDL1. Biotechnol Lett 2020; 42:727-736. [PMID: 32006351 DOI: 10.1007/s10529-020-02823-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/26/2020] [Indexed: 01/01/2023]
Abstract
Programmed death ligand 1 (PDL1, CD274, B7-H1) has been identified as the ligand for the immune inhibitory receptor programmed death 1 protein (PD1/PDCD1). PDL1 is a member of B7 family of immune molecules and this protein together with PDL2, are two ligands for PD1 expressed on activated lymphoid cells. By binding to PD1 on activated T cells, PDL1 may inhibit T cell responses by inducing apoptosis. Accordingly, it leads to the immune evasion of cancers and contribute to tumor growth, thus PDL1 is regarded as therapeutic target for malignant cancers. We selected PDL1 specific nanobodies from a high quality dromedary camel immune library by phage display technology, three anti-PDL1-VHHs were developed.
Collapse
Affiliation(s)
- Shufeng Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, 210009, China.
| | - Kunpeng Jiang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, 210009, China
| | - Ting Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, 210009, China
| | - Minke Shi
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Baojun Chen
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, Jiangsu, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories,Inc., Changzhou, 213164, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Spiroplasma eriocheiris Enters Drosophila Schneider 2 Cells and Relies on Clathrin-Mediated Endocytosis and Macropinocytosis. Infect Immun 2019; 87:IAI.00233-19. [PMID: 31451616 DOI: 10.1128/iai.00233-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/15/2019] [Indexed: 11/20/2022] Open
Abstract
Spiroplasma eriocheiris causes great economic losses in the crustacean aquaculture industry. However, the mechanism of S. eriocheiris infecting host cells has been poorly studied. We established a Spiroplasma-infected Drosophila Schneider 2 (S2) cell model and investigated its pathogenic mechanism. First, S. eriocheiris induced S2 cell apoptosis and necrosis, seriously decreased cell viability, and increased the production of intracellular reactive oxygen species. Further research showed that S. eriocheiris can invade S2 cells, and the number of copies of intracellular spiroplasmas is sharply increased by 12 h postinfection. In addition, S. eriocheiris can cause S2 cells to form typical inclusion bodies and exhibit large vacuoles. Second, S. eriocheiris is internalized into S2 cells and strongly inhibited through blocking clathrin-mediated endocytosis using chlorpromazine and dynasore. Inhibitors of macropinocytosis, protein kinase C and myosin II, cause a significant reduction in S. eriocheiris in S2 cells. In contrast, disruption of cellular cholesterol by methyl-β-cyclodextrin and nystatin has no effect on S. eriocheiris infection. These results suggest that the entry of S. eriocheiris into S2 cells relies on clathrin-dependent endocytosis and macropinocytosis, but not via the caveola-mediated endocytic pathway. In addition, the intracellular numbers of S. eriocheiris are dramatically reduced after S2 cells are treated with cytoskeleton-depolymerizing agents, including nocodazole and cytochalasin B. Thus, cellular infection by S. eriocheiris is related to microtubules and actin filaments. This research successfully shows for the first time that S. eriocheiris can invade Drosophila S2 cells and provides a process for S. eriocheiris infection.
Collapse
|
3
|
Nanobody against the E7 oncoprotein of human papillomavirus 16. Mol Immunol 2019; 109:12-19. [PMID: 30849663 DOI: 10.1016/j.molimm.2019.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/27/2022]
Abstract
The persistent infection of high-risk human papillomavirus (HPV) is one of the most common causes of cervical cancer. It is well documented that expression of two oncogenes (E6/E7) plays a key role in tumor progression. HPV16E7 -targeting via nanobody (Nb) therefore could be beneficial for HPV16-associated cancer diagnosis and therapy. In this work, phage-display approach was employed to select the high affinity HPV16E7-specific Nb. Firstly; a high-quality immune library was constructed. After three round of biopanning, high-affinity HPV16 E7-specific nanobodies were retrieved. By phage ELISA and sequencing, four different sequences of anti- HPV16E7 nanobodies were selected. Then recombinant nanobody Nb2 was cloned and expressed in E. coli, and the specificity and thermal stability of purified Nb2 was evaluated. To examine the potential of Nb2 as an inhibitor of E7 function, Nb2 was expressed within HPV16 positive cells. Proliferation assay showed that the intracellular expressed Nb2 as an intrabody can decrease the growth of HPV16-positive cells. The results indicate that Nb2 as an intracellular antibody directed towards HPV oncoprotein E7 has great promise in applications for the therapy of HPV16-associated disease.
Collapse
|
4
|
Malaei F, Rasaee MJ, Paknejad M, Latifi AM, Rahbarizadeh F. Production and Characterization of Monoclonal and Polyclonal Antibodies Against Truncated Recombinant Dickkopf-1 as a Candidate Biomarker. Monoclon Antib Immunodiagn Immunother 2018; 37:257-264. [PMID: 30592704 DOI: 10.1089/mab.2018.0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several studies have reported an increased serum level of Dickkopf (DKK-1) protein in a variety of cancers, including multiple myeloma, lung, colorectal, bone loss, and Alzheimer's disease. This protein has potential to be used as a biomarker for the diagnosis of some cancers, especially bone loss in multiple myeloma. In the present study, to measure the concentration level of DKK-1 protein, rabbit polyclonal antibody (pAb) and mouse monoclonal antibodies (mAbs) were produced against this protein. New Zealand white rabbits and BALB/c mice were immunized with the chimeric recombinant DKK-1 antigen. Immunized mouse spleen cells were fused with SP2/0 cells to generate anti-rDKK-1 antibody-producing hybridoma cells. Antibodies were purified by protein A affinity chromatography and assessed using sodium dodecyl sulfate polyacrylamide gel, western blotting and enzyme-linked immunosorbent assay. These results implied that the pAb and mAb were produced against the DKK-1 protein. The Kd value of 5 × 10-9 M was recorded for the mAb MR6F3 toward native DKK-1, and the Ig isotype was identified as IgG2b. No cross-reactivity was shown with DKK-2 by MR6F3. Collectively, our results revealed that the produced pAb and mAb could be used in the measurement of DKK-1 protein.
Collapse
Affiliation(s)
- Fatemeh Malaei
- 1 Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Mohammad Javad Rasaee
- 1 Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Maliheh Paknejad
- 2 Department of Medical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Ali Mohammad Latifi
- 3 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran, Iran
| | - Fatemeh Rahbarizadeh
- 1 Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| |
Collapse
|
5
|
Cheng SF, Wu XC, Zhang M. Production a monoclonal antibody specific to granulocytes of swimming crab (Portunus trituberculatus) and its cross reactivity with other crustaceans. Vet Immunol Immunopathol 2016; 178:79-87. [PMID: 27496746 DOI: 10.1016/j.vetimm.2016.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/15/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
In this study, a monoclonal antibody (mAb) 3F4 specific to granulocytes of swimming crab, Portunus trituberculatus, was obtained by immunizing mice with whole haemocytes. mAb 3F4 showed strong immunofluorescent reaction with granulocytes, but no reaction with hyalinocytes. The positive cell percentage of granulocytes was 86.3% detected by Flow cytometry (FCM). A special antigen with molecular weight of about 26kDa was further recognized by mAb 3F4 in haemocytes of P. trituberculatus. mAb 3F4 also showed strong cross-reactivity with haemocytes of Eriocheir sinensis and Petalomera japonica, but no reaction with other crustaceans tested. In E. sinensis, the positive cell percentage was 73.4% for granulocytes and 59.8% for hyalinocytes; while in P. japonica, the positive cell percentage was 81.2% for granulocytes and 7.1% for hyalinocytes. There was also a special antigen with molecular weight of about 31kDa identified by mAb 3F4 in haemocytes of E.sinensis, but no corresponding protein band in P. japonica haemocytes. These results demonstrated that mAb 3F4 can be used as a marker for granulocytes of crabs.
Collapse
Affiliation(s)
- Shun-Feng Cheng
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xiao-Chun Wu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
6
|
Chen Q, Tao T, Bie X, Lu F, Li Y, Lu Z. Characterization of a single-chain variable fragment specific to Cronobacter spp. from hybridoma based on outer membrane protein A. J Microbiol Methods 2016; 129:136-143. [DOI: 10.1016/j.mimet.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/23/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022]
|
7
|
Zhang Y, Bao H, Miao F, Peng Y, Shen Y, Gu W, Meng Q, Wang W, Zhang J. Production and application of polyclonal and monoclonal antibodies against Spiroplasma eriocheiris. Sci Rep 2015; 5:17871. [PMID: 26639364 PMCID: PMC4671143 DOI: 10.1038/srep17871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/06/2015] [Indexed: 11/09/2022] Open
Abstract
A new species of spiroplasma, Spiroplasma eriocheiris (S. eriocheiris), was identified as a lethal pathogen of tremor disease (TD) in Chinese mitten crab recently. In order to acquire appropriate biological and diagnostic tools for characterizing this newly discovered pathogen, 5 monoclonal antibodies (mAbs) and a polyclonal antibody (pAb) against S. eriocheiris were produced. Among the mAbs, 6F5, 7C8 and 12H5 lead to the deformation of S. eriocheiris. A peptide sequence, YMRDMQSGLPRY was identified as a mimic motif of MreB that is the cell shape determining protein of S. eriocheiris interacting with 3 mAbs. Furthermore, a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for detection of S. eriocheiris was established using the mAb and pAb we prepared. It detected as low as 0.1 μg/mL of S. eriocheiris. No cross-reaction was observed with three other common bacteria (Pseudomonas aeruginosa, Escherichia coli, and Bacillus subtilis) and the hemolymph samples of healthy Eriocheir sinensis. Collectively, our results indicated that the mAbs and pAb we prepared could be used in the analysis of S. eriocheiris membrane proteins mimotope and development of a diagnostic kit for S. eriocheiris infections.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Haixun Bao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Fengqin Miao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yaqin Peng
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuqing Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| |
Collapse
|
8
|
Gu W, Yao W, zhao Y, Pei S, Jiang C, Meng Q, Wang W. Establishment of spiroplasma-infected hemocytes as an in vitro laboratory culture model of Chinese mitten crab Eriocheir sinensis. Vet Microbiol 2014; 171:215-20. [DOI: 10.1016/j.vetmic.2014.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/28/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022]
|