1
|
Madrigal-Valencia TL, Saavedra-Montañez M, Pérez-Torres A, Hernández J, Segalés J, Hernández YD, Candanosa-Aranda IE, Pérez-Guiot A, Ramírez-Mendoza H. First identification and characterization of ovine gammaherpesvirus type 2 in horses and artiodactyla from an outbreak of malignant catarrhal fever in Mexico. PLoS One 2023; 18:e0290309. [PMID: 37656696 PMCID: PMC10473478 DOI: 10.1371/journal.pone.0290309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/06/2023] [Indexed: 09/03/2023] Open
Abstract
Ovine gammaherpesvirus 2 (OvHV-2), a member of the genus Macavirus, causes sheep-associated malignant catarrhal fever (SA-MCF), a fatal lymphoproliferative disease affecting a wide variety of ungulates in addition to horses. This study described an outbreak of SA-MCF in Mexico and the identification of the OvHV-2 virus in primary rabbit testis cultures through the generation of intranuclear inclusion bodies, syncytia, immunofluorescence (IF), immunocytochemistry (ICC), immunohistochemistry (IHC), endpoint polymerase chain reaction (PCR), and partial sequencing of the ORF75 gene. The animals involved in this outbreak showed mucogingival ulcers in the vestibule of the mouth and tongue, hypersalivation, corneal opacity, reduced food consumption, and weight loss of variable severity. These clinical signs and the histopathological findings suggested the diagnosis of SA-MCF. Buffy coat fractions from the anticoagulated blood samples of ill animals were collected and analyzed by PCR. Positive buffy coats were used to inoculate the primary cell cultures of rabbit testis to identify the virus. Small clusters of refractile cytomegalic cells, characteristic of viral cytopathic effects, were observed between 48 and 72 h post-infection. Furthermore, intranuclear acidophilic inclusion bodies (IBs) were identified in the inoculated primary culture cells, and the cytoplasm showed immunoreactivity with hyperimmune rabbit serum against OvHV-2. Moreover, in the liver histological sections from sick deer, immunoreactive juxtanuclear IBs were identified with the same rabbit hyperimmune serum. The obtained sequences were aligned with the OvHV-2 sequences reported in GenBank and revealed a nucleotide identity higher than 98%. Based on the evidence provided in this study, we conclude that the outbreak of SA-MCF in the municipality of Tequisquiapan in the state of Queretaro, Mexico, was caused by OvHV-2. This is the second study reporting that horses are susceptible to OvHV-2 infection and can develop SA-MCF. We identified for the first time in Mexico, the presence of OvHV-2 in buffy coats from horses and Artiodactyla.
Collapse
Affiliation(s)
- Tania Lucia Madrigal-Valencia
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico City, Mexico
| | - Manuel Saavedra-Montañez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico City, Mexico
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora, Mexico
| | - Joaquim Segalés
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, España
- Department de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, España
| | - Yesmín Domínguez Hernández
- Centro de Enseñanza, investigación y Extensión en Producción Animal en Altiplano (CEIEPAA), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Tequisquiapan, Queretaro, Mexico
| | - Irma Eugenia Candanosa-Aranda
- Centro de Enseñanza, investigación y Extensión en Producción Animal en Altiplano (CEIEPAA), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Tequisquiapan, Queretaro, Mexico
| | - Alfredo Pérez-Guiot
- División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, ExHda El Copal, Irapuato, Guanajuato, Mexico
| | - Humberto Ramírez-Mendoza
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico City, Mexico
| |
Collapse
|
2
|
Evidence for a Novel Gammaherpesvirus as the Putative Agent of Malignant Catarrhal Fever Disease in Roan Antelopes (Hippotragus equinus). Viruses 2023; 15:v15030649. [PMID: 36992358 PMCID: PMC10051647 DOI: 10.3390/v15030649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Upon the sudden death of two captive roan antelopes (Hippotragus equinus) that had suffered from clinical signs reminiscent of malignant catarrhal fever (MCF) in a German zoo, next generation sequencing of organ samples provided evidence of the presence of a novel gammaherpesvirus species. It shares 82.40% nucleotide identity with its so far closest relative Alcelaphine herpesvirus 1 (AlHV-1) at the polymerase gene level. The main histopathological finding consisted of lympho-histiocytic vasculitis of the pituitary rete mirabile. The MCF-like clinical presentation and pathology, combined with the detection of a nucleotide sequence related to that of AlHV-1, indicates a spillover event of a novel member of the genus Macavirus of the Gammaherpesvirinae, probably from a contact species within the zoo. We propose the name Alcelaphine herpesvirus 3 (AlHV-3) for this newly identified virus.
Collapse
|
3
|
Milliron SM, Stranahan LW, Rivera-Velez AG, Nagy DW, Pesavento PA, Rech RR. Systemic proliferative arteriopathy and hypophysitis in a cow with chronic ovine herpesvirus 2-induced malignant catarrhal fever. J Vet Diagn Invest 2022; 34:905-908. [PMID: 35861226 PMCID: PMC9446292 DOI: 10.1177/10406387221112450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Malignant catarrhal fever (MCF) is a severe, systemic, lymphoproliferative disease affecting domestic ruminants, caused by a group of MCF viruses in the genus Macavirus. Infection of cattle and bison with ovine herpesvirus 2 (OvHV2) is economically significant in North America. Sheep are the reservoir host of the virus, and only rarely manifest disease. Cattle and bison, however, frequently have lymphoproliferation, mucosal ulceration, and systemic vasculitis. OvHV2-induced MCF in cattle and bison is often fatal, with clinical recovery reported only rarely. Chronic cases are uncommon, but vascular changes of variable severity and ocular lesions have been described. Here we present a case of chronic MCF in a cow with proliferative arteriopathy, systemic vasculitis, and OvHV2-associated hypophysitis. We demonstrated OvHV2 nucleic acid in affected tissues with in situ hybridization.
Collapse
Affiliation(s)
- Sarai M Milliron
- Departments of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX, USA
| | - Lauren W Stranahan
- Departments of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX, USA
| | - Andres G Rivera-Velez
- Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX, USA
| | - Dusty W Nagy
- Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX, USA
| | - Patricia A Pesavento
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Raquel R Rech
- Departments of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Saura-Martinez H, Al-Saadi M, Stewart JP, Kipar A. Sheep-Associated Malignant Catarrhal Fever: Role of Latent Virus and Macrophages in Vasculitis. Vet Pathol 2020; 58:332-345. [PMID: 33280543 DOI: 10.1177/0300985820978310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Malignant catarrhal fever (MCF) is a sporadic, generally fatal disease caused by gammaherpesviruses in susceptible dead-end hosts. A key pathological process is systemic vasculitis in which productively infected cytotoxic T cells play a major role. Nonetheless, the pathogenesis of MCF vasculitis is not yet clear. We hypothesized that it develops due to an interaction between virus-infected cells and immune cells, and we undertook a retrospective in situ study on the rete mirabile arteries of confirmed ovine gammaherpesvirus-2 (OvHV-2)-associated MCF cases in cattle, buffalo, and bison. Our results suggest that the arteritis develops from an adventitial infiltration of inflammatory cells from the vasa vasorum, and recruitment of leukocytes from the arterial lumen that leads to a superimposed infiltration of the intima and media that can result in chronic changes including neointimal proliferation. We found macrophages and T cells to be the dominant infiltrating cells, and both could proliferate locally. Using RNA in situ hybridization and immunohistology, we showed that the process is accompanied by widespread viral infection, not only in infiltrating leukocytes but also in vascular endothelial cells, medial smooth muscle cells, and adventitial fibroblasts. Our results suggest that OvHV-2-infected T cells, monocytes, and locally proliferating macrophages contribute to the vasculitis in MCF. The initial trigger or insult that leads to leukocyte recruitment and activation is not yet known, but there is evidence that latently infected, activated endothelial cells play a role in this. Activated macrophages might then release the necessary pro-inflammatory mediators and, eventually, induce the characteristic vascular changes.
Collapse
Affiliation(s)
| | - Mohammed Al-Saadi
- 223914University of Liverpool, Liverpool, UK.,Current address: 362928University of Al-Qadisiya, Iraq
| | | | - Anja Kipar
- 27217University of Zurich, Zurich, Switzerland.,223914University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Ovine Herpesvirus 2 Encodes a Previously Unrecognized Protein, pOv8.25, That Targets Mitochondria and Triggers Apoptotic Cell Death. J Virol 2020; 94:JVI.01536-19. [PMID: 32024777 PMCID: PMC7108854 DOI: 10.1128/jvi.01536-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/22/2020] [Indexed: 11/20/2022] Open
Abstract
Ovine herpesvirus 2 (OvHV-2) circulates among sheep without causing disease. However, upon transmission to cattle, the same virus instigates a frequently lethal disease, malignant catarrhal fever (MCF). While the cause of death and pathogenesis of tissue lesions are still poorly understood, MCF is characterized by the accumulation of lymphocytes in various tissues, associated with vasculitis and cell death. As infectious virus is hardly present in these lesions, the cause of cell death cannot be explained simply by viral replication. The significance of our research is in identifying and characterizing a previously overlooked gene of OvHV-2 (Ov8.25), which is highly expressed in animals with MCF. Its encoded protein targets mitochondria, causing apoptosis and necrosis, thus contributing to an understanding of the source and nature of cell death. As the corresponding genetic locus is also active in the context of MCF due to a different macavirus, we may have detected a common denominator of the disease phenotype. Malignant catarrhal fever (MCF) is a rare but frequently lethal disease of certain cloven-hoofed animals. At least 10 different viruses, all members of the Macavirus genus in the subfamily Gammaherpesvirinae, are known as causative agents of MCF. Among these, ovine herpesvirus 2 (OvHV-2) is the most frequent and economically most important MCF agent. Phenotypically, MCF is characterized by severe lymphocytic arteritis-periarteritis, which leads to the accumulation of activated lymphocytes accompanied by apoptosis and necrosis in a broad range of tissues. However, a viral factor that might be responsible for tissue damage has not yet been identified. We have studied a seemingly intergenic locus on the OvHV-2 genome, which was previously shown to be transcriptionally highly active in MCF-affected tissue. We identified by 5′ and 3′ rapid amplification of cDNA ends (RACE) a conserved, double-spliced transcript that encoded a 9.9-kDa hydrophobic protein. The newly detected gene, Ov8.25, and its splicing pattern were conserved among OvHV-2 strains of different origins. Upon transient expression of synthetic variants of this gene in various cell types, including bovine lymphocytes, the protein (pOv8.25) was shown to target mitochondria, followed by caspase-dependent apoptosis and necrosis. Notably, a deletion mutant of the same protein lost these abilities. Finally, we detected pOv8.25 in brain-infiltrating lymphocytes of cattle with MCF. Thus, the cell death-causing properties of pOv8.25 in affected cells may be involved in the emergence of typical MCF-associated apoptosis and necrosis. Thus, we have identified a novel OvHV-2 protein, which might contribute to the phenotype of MCF-related lesions. IMPORTANCE Ovine herpesvirus 2 (OvHV-2) circulates among sheep without causing disease. However, upon transmission to cattle, the same virus instigates a frequently lethal disease, malignant catarrhal fever (MCF). While the cause of death and pathogenesis of tissue lesions are still poorly understood, MCF is characterized by the accumulation of lymphocytes in various tissues, associated with vasculitis and cell death. As infectious virus is hardly present in these lesions, the cause of cell death cannot be explained simply by viral replication. The significance of our research is in identifying and characterizing a previously overlooked gene of OvHV-2 (Ov8.25), which is highly expressed in animals with MCF. Its encoded protein targets mitochondria, causing apoptosis and necrosis, thus contributing to an understanding of the source and nature of cell death. As the corresponding genetic locus is also active in the context of MCF due to a different macavirus, we may have detected a common denominator of the disease phenotype.
Collapse
|
6
|
Headley SA, Oliveira TES, Li H, Lisbôa JAN, Queiroz GR, Fritzen JTT, Flores EF, Alfieri AA, Cunha CW. Immunohistochemical Detection of Intralesional Antigens of Ovine Gammaherpesvirus-2 in Cattle with Sheep-associated Malignant Catarrhal Fever. J Comp Pathol 2019; 174:86-98. [PMID: 31955809 DOI: 10.1016/j.jcpa.2019.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
Abstract
Sheep-associated malignant catarrhal fever (SA-MCF) is a severe lymphoproliferative disease of ruminants caused by ovine gammaherpesvirus-2 (OvHV-2). Since the initial identification of SA-MCF there has been extensive research related to the pathogenesis of OvHV-2, based primarily on serological and molecular assays associated with typical histopathological findings. The monoclonal antibody (MAb-15A) binds to a common epitope in MCF viruses and is used frequently in serological investigations. However, the utilization of this antibody to detect antigens of OvHV-2 in tissues has not been examined. Accordingly, this study standardized an immunohistochemical assay using MAb-15A to identify antigens of OvHV-2 in tissues of cattle (n = 5) with SA-MCF. All animals developed acute neurological signs, without ocular and nasal manifestations, and had nucleic acids of OvHV-2 in brain tissue detected by polymerase chain reaction. The principal histopathological findings were lymphocytic nephritis (n = 5), widespread arterial proliferation and vasculitis (n = 5), lymphocytic portal hepatitis (n = 3), non-suppurative meningoencephalitis (n = 2) and atrophic enteritis with cryptal necrosis and dilation (n = 2). Intralesional intracytoplasmic antigens of OvHV-2 were identified within multiple epithelial cells of the kidneys of all animals, the intestines of animals with and without atrophic enteritis, and within epithelial cells of bile ducts in animals with lymphocytic hepatitis. Additionally, there was positive intracytoplasmic immunoreactivity within histiocytes and lymphocytes in several tissues. These findings suggest that the MAb-15A detects antigens of OvHV-2 within epithelial cells and leucocytes in several organs. Moreover, this assay would contribute significantly towards understanding of the pathogenesis of SA-MCF and may be used for retrospective studies. Additionally, angiopathy in SA-MCF may be a progressive lesion, which may terminate in luminal occlusion and probably occurs irrespectively of the eye and head form of MCF.
Collapse
Affiliation(s)
- S A Headley
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Paraná, Brazil; Faculty of Veterinary Medicine, Universidade do Norte do Paraná, Arapongas, Paraná, Brazil; Programa de Pós-Graduação em Biociência Animal, Universidade de Cuiabá, Mato Grosso, Brazil.
| | - T E S Oliveira
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Paraná, Brazil
| | - H Li
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, Washington, USA
| | - J A N Lisbôa
- Large Animal Internal Medicine, Department of Veterinary Clinics, Universidade Estadual de Londrina, Paraná, Brazil
| | - G R Queiroz
- Large Animal Internal Medicine, Department of Veterinary Clinics, Universidade Estadual de Londrina, Paraná, Brazil; Faculty of Veterinary Medicine, Universidade do Norte do Paraná, Arapongas, Paraná, Brazil
| | - J T T Fritzen
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Paraná, Brazil
| | - E F Flores
- Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - A A Alfieri
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Paraná, Brazil
| | - C W Cunha
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, Washington, USA
| |
Collapse
|
7
|
Pesavento PA, Cunha CW, Li H, Jackson K, O'Toole D. In Situ Hybridization for Localization of Ovine Herpesvirus 2, the Agent of Sheep-Associated Malignant Catarrhal Fever, in Formalin-Fixed Tissues. Vet Pathol 2018; 56:78-86. [PMID: 30222071 DOI: 10.1177/0300985818798085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A constraint on understanding the pathogenesis of malignant catarrhal fever (MCF) is the limited number of tools to localize infected cells. The amount of detectable virus, visualized in the past either by immunohistochemistry or in situ hybridization (ISH), has been modest in fixed or frozen tissues. This complicates our understanding of the widespread lymphoid proliferation, epithelial necrosis/apoptosis, and arteritis-phlebitis that characterize MCF. In this work, we developed a probe-based in situ hybridization assay targeting 2 ovine herpesvirus 2 (OvHV-2) genes, as well as their respective transcripts, in formalin-fixed tissues. Using this approach, OvHV-2 nucleic acids were detected in lymphocytes in MCF-affected animals following both natural infection (American bison and domestic cattle) and experimental infection (American bison, rabbits, and pigs). The probe did not cross-react with 4 closely related gammaherpesviruses that also cause MCF: alcelaphine herpesvirus 1, alcelaphine herpesvirus 2, caprine herpesvirus 2, and ibex-MCF virus (MCFV). No signal was detected in control tissues negative for OvHV-2. ISH will be of value in analyzing the natural progression of OvHV-2 infection in time-course studies following experimental infection and in addressing the pathogenesis of MCF.
Collapse
Affiliation(s)
- Patricia A Pesavento
- 1 Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Cristina W Cunha
- 2 Animal Disease Research Unit, USDA-Agricultural Research Service, Washington State University, Pullman, WA, USA
- 3 Paul G. Allen School for Global Animal Health, Allen Center, Washington State University, Pullman, WA, USA
| | - Hong Li
- 2 Animal Disease Research Unit, USDA-Agricultural Research Service, Washington State University, Pullman, WA, USA
- 4 Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Kenneth Jackson
- 1 Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Donal O'Toole
- 5 Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
8
|
Abstract
Malignant catarrhal fever (MCF) is an often lethal infection of many species in the order Artiodactyla. It is caused by members of the MCF virus group within Gammaherpesvirinae. MCF is a worldwide problem and has a significant economic impact on highly disease-susceptible hosts, such as cattle, bison, and deer. Several epidemiologic forms of MCF, defined by the reservoir ruminant species from which the causative virus arises, are recognized. Wildebeest-associated MCF (WA-MCF) and sheep-associated MCF (SA-MCF) are the most prevalent and well-studied forms of the disease. Historical understanding of MCF is largely based on WA-MCF, in which the causative virus can be propagated in vitro. Characterization of SA-MCF has been constrained because the causative agent has never been successfully propagated in vitro. Development of molecular tools has enabled more definitive studies on SA-MCF. The current understanding of MCF, including its etiological agents, epidemiology, pathogenesis, and prevention, is the subject of the present review.
Collapse
Affiliation(s)
- Hong Li
- Animal Disease Research Unit, USDA-ARS, and
| | | | | | | |
Collapse
|