1
|
Gingrich AA, Razmara AM, Gingrich PW, Rebhun RB, Murphy WJ, Kent MS, Brown CT, Siegel JB, Canter RJ. Missing a "Missing Self" Mechanism: Modeling and Detection of Ly49 Expression in Canine NK Cells. Immunohorizons 2023; 7:760-770. [PMID: 37971282 PMCID: PMC10696421 DOI: 10.4049/immunohorizons.2300092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
NK cells are a key focus in immuno-oncology, based on their ability to eliminate malignant cells without prior sensitization. Dogs are valuable models for translational immunotherapy studies, especially for NK cells, where critical species differences exist between mice and humans. Given that the mechanism for recognition of "self" by canine NK cells is currently unknown, we sought to evaluate expression of Ly49 in canine NK cells using in silico and high-throughput techniques. We interrogated the identified polymorphism/mutation in canine Ly49 and assessed the potential impact on structure using computational modeling of three-dimensional protein structure and protein-protein docking of canine Ly49 with MHC class I (MHC-I). Bulk and single-cell RNA-sequencing analysis was performed to detect gene expression of Ly49/KLRA1 in resting and activated NK cells. Tertiary protein structure demonstrated significant structural similarity to the known murine system. Molecular docking of canine Ly49 with MHC-I was favorable, converging at a single low-energy conformation. RNA sequencing revealed expression of Ly49/KLRA1 in both resting and activated NK cells and demonstrated almost exclusive expression of the gene in the NK cluster at the single-cell level. Despite prior reports of a mutated, nonfunctional canine Ly49, our data support that the protein product is predicted to bind to MHC-I in a comparable conformation to the murine system and is expressed in canine NK cells with upregulation following activation. Taken together, these data suggest that Ly49 is capable of recognizing MHC-I and therefore regulating NK cell function in dogs.
Collapse
Affiliation(s)
- Alicia A. Gingrich
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA
| | - Aryana M. Razmara
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA
| | - Phillip W. Gingrich
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA
| | - Robert B. Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis School of Veterinary Medicine, Davis, CA
| | - William J. Murphy
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, University of California, Davis School of Veterinary Medicine, Davis, CA
| | - C. Titus Brown
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA
| | - Justin B. Siegel
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA
| | - Robert J. Canter
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA
| |
Collapse
|
2
|
Hullsiek R, Li Y, Snyder KM, Wang S, Di D, Borgatti A, Lee C, Moore PF, Zhu C, Fattori C, Modiano JF, Wu J, Walcheck B. Examination of IgG Fc Receptor CD16A and CD64 Expression by Canine Leukocytes and Their ADCC Activity in Engineered NK Cells. Front Immunol 2022; 13:841859. [PMID: 35281028 PMCID: PMC8907477 DOI: 10.3389/fimmu.2022.841859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Human natural killer (NK) cells can target tumor cells in an antigen-specific manner by the recognition of cell bound antibodies. This process induces antibody-dependent cell-mediated cytotoxicity (ADCC) and is exclusively mediated by the low affinity IgG Fc receptor CD16A (FcγRIIIA). Exploiting ADCC by NK cells is a major area of emphasis for advancing cancer immunotherapies. CD64 (FcγRI) is the only high affinity IgG FcR and it binds to the same IgG isotypes as CD16A, but it is not expressed by human NK cells. We have generated engineered human NK cells expressing recombinant CD64 with the goal of increasing their ADCC potency. Preclinical testing of this approach is essential for establishing efficacy and safety of the engineered NK cells. The dog provides particular advantages as a model, which includes spontaneous development of cancer in the setting of an intact and outbred immune system. To advance this immunotherapy model, we cloned canine CD16A and CD64 and generated specific mAbs. We report here for the first time the expression patterns of these FcγRs on dog peripheral blood leukocytes. CD64 was expressed by neutrophils and monocytes, but not lymphocytes, while canine CD16A was expressed at high levels by a subset of monocytes and lymphocytes. These expression patterns are similar to that of human leukocytes. Based on phenotypic characteristics, the CD16A+ lymphocytes consisted of T cells (CD3+ CD8+ CD5dim α/β TCR+) and NK cells (CD3− CD5− CD94+), but not B cells. Interestingly, the majority of canine CD16A+ lymphocytes were from the T cell population. Like human CD16A, canine CD16A was downregulated by a disintegrin and metalloproteinase 17 (ADAM17) upon leukocyte activation, revealing a conserved means of regulation. We also directly demonstrate that both canine CD16A and CD64 can induce ADCC when expressed in the NK cell line NK-92. These findings pave the way to engineering canine NK cells or T cells with high affinity recombinant canine CD64 to maximize ADCC and to test their safety and efficacy to benefit both humans and dogs.
Collapse
Affiliation(s)
- Robert Hullsiek
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Yunfang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Kristin M Snyder
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States
| | - Sam Wang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Da Di
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Antonella Borgatti
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Clinical Investigation Center, University of Minnesota, St. Paul, MN, United States
| | - Chae Lee
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Peter F Moore
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Cong Zhu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Chiara Fattori
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States.,Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Kim CJ, Park SC, Lee SH, Lim YJ, Yoon M, Park JG, Baek YB, Cho KO, Hong JW, Shin DJ, Kim SK. Safety analysis of ex vivo-expanded canine natural killer cells in a xenogeneic mouse model of graft-versus-host disease. J Leukoc Biol 2021; 111:439-450. [PMID: 33884654 DOI: 10.1002/jlb.5a1019-501rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Canine natural killer (NK) cells are large, granular lymphocytes that are neither B lymphocytes nor T lymphocytes. However, it has been reported that canine NK cells share some of the phenotypic characteristics of T lymphocytes, such as CD3 and CD5. Studies are needed to assess the safety of canine NK cells for immunotherapy, especially because the safety of using allogeneic NK cells as an immunotherapy for dogs has yet to be shown. In this study, the safety of cultured canine NK cells was assessed using a xenogeneic mouse model of graft-versus-host disease (GVHD). Mice were injected with either canine peripheral blood mononuclear cells (PBMCs) or cultured NK cells for 2 or 3 weeks. Data were then collected on changes in mice body weights, disease severity scores, and survival rates. Histopathological and immunohistochemical evaluations were also performed. All mice injected with canine PBMCs died within 45 days after injection. Severe clinical signs were caused by GVHD. The histopathological and immunohistochemical evaluations showed that mice injected with canine PBMCs had multiple lesions, including necrosis in their lungs, livers, kidneys, and stomachs, and the injected cells were present around the lesions. By contrast, no mice injected with cultured NK cells without removing the CD3+ TCR- cells exhibited any clinical abnormalities. Moreover, they all survived the 90-day experimental period without exhibiting any histopathological changes. Accordingly, the results of this study suggest that canine NK cells do not cause significant side effects such as GVHD and allogeneic NK cells can safely be used for cancer immunotherapy in dogs.
Collapse
Affiliation(s)
- Cheol-Jung Kim
- Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Se-Cheol Park
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.,Korea Testing & Research Institute, Hwasun, Jeollanamdo, Republic of Korea
| | - Soo-Hyeon Lee
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Yu-Jin Lim
- Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Meesun Yoon
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jun-Gyu Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong Won Hong
- Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Dong-Jun Shin
- Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Sang-Ki Kim
- Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.,Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.,Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| |
Collapse
|
4
|
Ma L, Li Q, Cai S, Peng H, Huyan T, Yang H. The role of NK cells in fighting the virus infection and sepsis. Int J Med Sci 2021; 18:3236-3248. [PMID: 34400893 PMCID: PMC8364442 DOI: 10.7150/ijms.59898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022] Open
Abstract
Natural killer cells, one of the important types of innate immune cells, play a pivotal role in the antiviral process in vivo. It has been shown that increasing NK cell activity may promote the alleviation of viral infections, even severe infection-induced sepsis. Given the current state of the novel coronavirus (SARS-CoV-2) global pandemic, clarifying the anti-viral function of NK cells would be helpful for revealing the mechanism of host immune responses and decipher the progression of COVID-19 and providing important clues for combating this pandemic. In this review, we summarize the roles of NK cells in viral infection and sepsis as well as the potential possibilities of NK cell-based immunotherapy for treating COVID-19.
Collapse
Affiliation(s)
- Lu Ma
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qi Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Suna Cai
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hourong Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ting Huyan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
5
|
Graves SS, Storb R. Developments and translational relevance for the canine haematopoietic cell transplantation preclinical model. Vet Comp Oncol 2020; 18:471-483. [PMID: 32385957 DOI: 10.1111/vco.12608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
The development of safe and reliable haematopoietic cell transplantation (HCT) protocols to treat human patients with malignant and non-malignant blood disorders was highly influenced by preclinical studies obtained in random-bred canines. The surmounted barriers included recognizing the crucial importance of histocompatibility matching, establishing long-term donor haematopoietic cell engraftment, preventing graft-vs-host disease and advancing effective conditioning and post-grafting immunosuppression protocols, all of which were evaluated in canines. Recent studies have applied the tolerance inducing potential of HCT to solid organ and vascularized composite tissue transplantation. Several advances in HCT and tolerance induction that were first developed in the canine preclinical model and subsequently applied to human patients are now being recruited into veterinary practice for the treatment of malignant and non-malignant disorders in companion dogs. Here, we review recent HCT advancements attained in the canine model during the past 15 years.
Collapse
Affiliation(s)
- Scott S Graves
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rainer Storb
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
6
|
Gingrich AA, Modiano JF, Canter RJ. Characterization and Potential Applications of Dog Natural Killer Cells in Cancer Immunotherapy. J Clin Med 2019; 8:jcm8111802. [PMID: 31717876 PMCID: PMC6912828 DOI: 10.3390/jcm8111802] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells of the innate immune system are a key focus of research within the field of immuno-oncology based on their ability to recognize and eliminate malignant cells without prior sensitization or priming. However, barriers have arisen in the effective translation of NK cells to the clinic, in part because of critical species differences between mice and humans. Companion animals, especially dogs, are valuable species for overcoming many of these barriers, as dogs develop spontaneous tumors in the setting of an intact immune system, and the genetic and epigenetic factors that underlie oncogenesis appear to be similar between dogs and humans. Here, we summarize the current state of knowledge for dog NK cells, including cell surface marker phenotype, key NK genes and genetic regulation, similarities and differences of dog NK cells to other mammals, especially human and mouse, expression of canonical inhibitory and activating receptors, ex vivo expansion techniques, and current and future clinical applications. While dog NK cells are not as well described as those in humans and mice, the knowledge of the field is increasing and clinical applications in dogs can potentially advance the field of human NK biology and therapy. Better characterization is needed to truly understand the similarities and differences of dog NK cells with mouse and human. This will allow for the canine model to speed clinical translation of NK immunotherapy studies and overcome key barriers in the optimization of NK cancer immunotherapy, including trafficking, longevity, and maximal in vivo support.
Collapse
Affiliation(s)
- Alicia A. Gingrich
- Department of Surgery, University of California Davis, 2221 Stockton Blvd, Sacramento, CA 95817, USA;
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program, College of Veterinary Medicine and Masonic Cancer Center, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA;
| | - Robert J. Canter
- Department of Surgery, University of California Davis, 2221 Stockton Blvd, Sacramento, CA 95817, USA;
- Correspondence:
| |
Collapse
|
7
|
Kim Y, Lee SH, Kim CJ, Lee JJ, Yu D, Ahn S, Shin DJ, Kim SK. Canine non-B, non-T NK lymphocytes have a potential antibody-dependent cellular cytotoxicity function against antibody-coated tumor cells. BMC Vet Res 2019; 15:339. [PMID: 31610784 PMCID: PMC6790994 DOI: 10.1186/s12917-019-2068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Background The antibody-dependent cellular cytotoxicity (ADCC) is a cell-mediated immune defense mechanism in which effector immune cells actively lyse antibody-coated target cells. The ADCC of tumor cells is employed in the treatment of various cancers overexpressing unique antigens, and only natural killer (NK) cells are known to be major effectors of antibody mediated ADCC activity. Canine NK cells are still defined as non-B, non-T large granular lymphocytes because of the lack of information regarding the NK cell-restricted specific marker in dogs, and it has never been demonstrated that canine NK cells have ADCC ability against tumor cells. In the present study, we investigated whether canine non-B, non-T NK cells have ADCC ability against target antibody-coated tumor cells, using cetuximab and trastuzumab, the only human antibodies reported binding to canine cancer cells. Results Activated canine non-B, non-T NK cells (CD3−CD21−CD5−TCRαβ−TCRγδ−) for 13~17 days ex vivo showed ADCC ability against trastuzumab- or cetuximab-coated target tumor cells expressing various levels of human epidermal growth factor receptor 2 (HER-2) and epidermal growth factor receptor (EGFR). Trastuzumab and cetuximab induced significant ADCC responses of canine NK cells even in CMT-U334 and CF41.Mg cells expressing low levels of HER-2 and/or EGFR, as well as in SKBR3 and DU145 cells overexpressing HER-2 and/or EGFR. The trastuzumab-mediated ADCC activity of NK cells was significantly enhanced by treatment with rcIL-21. Conclusions The results of this study suggest that canine non-B, non-T NK lymphocytes have a potential ADCC function and that combinational strategies of monoclonal antibodies with either cytokines, which activate NK cells in vivo, or adoptive transfer of NK cells may be a feasible method for amplifying the efficacy of immunotherapy against malignant cancers even with very low expression of target molecules in dogs. Electronic supplementary material The online version of this article (10.1186/s12917-019-2068-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoseop Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea.,Present Address: Research Institute, Vaxcell-Bio Therapeutics, Hwasun, Jellanamdo, Republic of Korea
| | - Soo-Hyeon Lee
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.,Present Address: CHABiolab Co.,Ltd, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Cheol-Jung Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea
| | - Je-Jung Lee
- Department of Hemotology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Dohyeon Yu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Soomin Ahn
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Dong-Jun Shin
- Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea.
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea. .,Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea. .,Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea.
| |
Collapse
|
8
|
Graves SS, Gyurkocza B, Stone DM, Parker MH, Abrams K, Jochum C, Gallo S, Saad M, Johnson MM, Rosinski SL, Storb R. Development and characterization of a canine-specific anti-CD94 (KLRD-1) monoclonal antibody. Vet Immunol Immunopathol 2019; 211:10-18. [PMID: 31084888 DOI: 10.1016/j.vetimm.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 12/29/2022]
Abstract
Natural killer (NK) cells are non-T, non-B lymphocytes are part of the innate immune system and function without prior activation. The human NK cell surface determinant, CD94, plays a critical role in regulation of NK cell activity as a heterodimer with NKG2 subclasses. Canine NK cells are not as well defined as the human and murine equivalents, due in part to the paucity of reagents specific to cell surface markers. Canines possess NK/NKT cells that have similar morphological characteristics to those found in humans, yet little is known about their functional characteristics nor of cell surface expression of CD94. Here, we describe the development and function of a monoclonal antibody (mAb) to canine (ca) CD94. Freshly isolated canine CD94+ cells were CD3+/-, CD8+/-, CD4-, CD21-, CD5low, NKp46+, and were cytotoxic against a canine target cell line. Anti-caCD94 mAb proved useful in enriching NK/NKT cells from PBMC for expansion on CTAC feeder cells in the presence of IL-2 and IL-15. The cultured cells were highly cytolytic with co-expression of NKp46 and reduced expression of CD3. Transmission electron microscopy revealed expanded CD94+ lymphocytes were morphologically large granular lymphocytes with large electron dense granules. Anti-caCD94 (mAb) can serve to enrich NK/NKT cells from dog peripheral blood for ex vivo expansion for HCT and is a potentially valuable reagent for studying NK/NKT regulation in the dog.
Collapse
Affiliation(s)
- Scott S Graves
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, United States
| | - Boglarka Gyurkocza
- Department of Hematology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States
| | - Diane M Stone
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, United States
| | - Maura H Parker
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, United States
| | - Kraig Abrams
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, United States
| | - Christoph Jochum
- Clinic of Internal Medicine and Gastroenterology, University Medicine Essen St-Josef Hospital, Werden, Essen, Germany
| | - Susanna Gallo
- Medical Oncology, Turin Metropolitan Transplantation Center, Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy
| | - Marium Saad
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, United States
| | - Melissa M Johnson
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, United States
| | - Steven L Rosinski
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, United States
| | - Rainer Storb
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, United States; Department of Medicine, University of Washington, Seattle, WA, 981095, United States.
| |
Collapse
|
9
|
Lee SH, Shin DJ, Kim Y, Kim CJ, Lee JJ, Yoon MS, Uong TNT, Yu D, Jung JY, Cho D, Jung BG, Kim SK, Suh GH. Comparison of Phenotypic and Functional Characteristics Between Canine Non-B, Non-T Natural Killer Lymphocytes and CD3 +CD5 dimCD21 - Cytotoxic Large Granular Lymphocytes. Front Immunol 2018; 9:841. [PMID: 29755462 PMCID: PMC5934500 DOI: 10.3389/fimmu.2018.00841] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/05/2018] [Indexed: 12/28/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in the immune response against infections and malignant transformation, and adopted transfer of NK cells is thought to be a promising therapeutic approach for cancer patients. Previous reports describing the phenotypic features of canine NK cells have produced inconsistent results. Canine NK cells are still defined as non-B and non-T (CD3−CD21−) large granular lymphocytes. However, a few reports have demonstrated that canine NK cells share the phenotypic characteristics of T lymphocytes, and that CD3+CD5dimCD21− lymphocytes are putative canine NK cells. Based on our previous reports, we hypothesized that phenotypic modulation could occur between these two populations during activation. In this study, we investigated the phenotypic and functional differences between CD3+CD5dimCD21− (cytotoxic large granular lymphocytes) and CD3−CD5−CD21− NK lymphocytes before and after culture of peripheral blood mononuclear cells isolated from normal dogs. The results of this study show that CD3+CD5dimCD21− lymphocytes can be differentiated into non-B, non-T NK (CD3−CD5−CD21−TCRαβ−TCRγδ−GranzymeB+) lymphocytes through phenotypic modulation in response to cytokine stimulation. In vitro studies of purified CD3+CD5dimCD21− cells showed that CD3−CD5−CD21− cells are derived from CD3+CD5dimCD21− cells through phenotypic modulation. CD3+CD5dimCD21− cells share more NK cell functional characteristics compared with CD3−CD5−CD21− cells, including the expression of T-box transcription factors (Eomes, T-bet), the production of granzyme B and interferon-γ, and the expression of NK cell-related molecular receptors such as NKG2D and NKp30. In conclusion, the results of this study suggest that CD3+CD5dimCD21− and CD3−CD5−CD21− cells both contain a subset of putative NK cells, and the difference between the two populations may be due to the degree of maturation.
Collapse
Affiliation(s)
- Soo-Hyeon Lee
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, South Korea.,Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, South Korea
| | - Dong-Jun Shin
- Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, South Korea.,Research Institute for Natural Products, Kongju National University, Yesan-gun, South Korea
| | - Yoseop Kim
- Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, South Korea
| | - Cheol-Jung Kim
- Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, South Korea
| | - Je-Jung Lee
- Department of Hemotology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Mee Sun Yoon
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Tung Nguyen Thanh Uong
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Dohyeon Yu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Ji-Youn Jung
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, South Korea.,Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, South Korea.,Research Institute for Natural Products, Kongju National University, Yesan-gun, South Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Bock-Gie Jung
- Department of Pulmonary Immunology, The University of Texas Health Science Center, Tyler, TX, United States
| | - Sang-Ki Kim
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, South Korea.,Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, South Korea.,Research Institute for Natural Products, Kongju National University, Yesan-gun, South Korea
| | - Guk-Hyun Suh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
10
|
Foltz JA, Somanchi SS, Yang Y, Aquino-Lopez A, Bishop EE, Lee DA. NCR1 Expression Identifies Canine Natural Killer Cell Subsets with Phenotypic Similarity to Human Natural Killer Cells. Front Immunol 2016; 7:521. [PMID: 27933061 PMCID: PMC5120128 DOI: 10.3389/fimmu.2016.00521] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/08/2016] [Indexed: 01/09/2023] Open
Abstract
Canines spontaneously develop many cancers similar to humans - including osteosarcoma, leukemia, and lymphoma - offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46), the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3-/NKp46+ cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3-/NKp46+ NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3-/NKp46+ cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and granulocyte-macrophage colony-stimulating factor as measured by Luminex. Similar to human NK cells, CD3-/NKp46+ cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median = 20,283-fold in 21 days). Furthermore, we identify a minor Null population (CD3-/CD21-/CD14-/NKp46-) with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3-/NKp46+ cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46+ NK cells and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46- subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy.
Collapse
Affiliation(s)
- Jennifer A Foltz
- Department of Pediatrics-Research, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; Health Science Center, Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, USA
| | - Srinivas S Somanchi
- Department of Pediatrics-Research, MD Anderson Cancer Center, The University of Texas , Houston, TX , USA
| | - Yanwen Yang
- Department of Pediatrics-Research, MD Anderson Cancer Center, The University of Texas , Houston, TX , USA
| | - Arianexys Aquino-Lopez
- Department of Pediatrics-Research, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; Health Science Center, Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, USA
| | - Erin E Bishop
- Department of Pediatrics-Research, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Notre Dame, Notre Dame, IN, USA
| | - Dean A Lee
- Department of Pediatrics-Research, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; Health Science Center, Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, USA
| |
Collapse
|