1
|
Valero Y, Souto S, Olveira JG, López-Vázquez C, Dopazo CP, Bandín I. Water-in-oil adjuvant challenges in fish vaccination: An experimental inactivated adjuvanted vaccine against betanodavirus infection in Senegalese sole. JOURNAL OF FISH DISEASES 2024; 47:e13945. [PMID: 38523313 DOI: 10.1111/jfd.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector. Currently, vaccines are the most cost-effective preventing tool in the fight against viruses. Inactivated vaccines have the advantage of simplicity in their development at the same time as present the antigen in a similar manner than the natural infection in the host. Nevertheless, they usually trigger weaker immune responses needing adjuvants to boost their effectiveness. In this work, we have intraperitoneally vaccinated Senegalese sole juveniles (Solea senegalensis) with a previously designed inactivated vaccine against NNV based on binary ethylenimine (BEI), mixed or not with an oil-adjuvant. Our results demonstrated the potential activation of different immune pathways when the vaccine was administered alone compared to the oil-adjuvanted vaccine, both resulting in an equivalent partial improvement in survival following a NNV challenge. However, whilst the vaccine alone led to a significant increase in specific antibodies, in the adjuvanted version those antibodies were kept basal although with a slight improvement in their neutralization capacity. At transcriptional level, neither vaccine (adjuvanted or not) triggered the immune system activation during the vaccination period. However, after NNV infection, the BEI-inactivated vaccines alone and oil-adjuvanted both elicited the stimulation of antiviral responsive genes (rtp3, herc4), antigen presentation molecules (mhcii) and T-cell markers (cd8a) in the head-kidney. Additionally, the oil-adjuvanted vaccine appears to stimulate mediator cytokines (il6) and B-cell markers (ight and ighm). Surprisingly, when the adjuvant was administered alone, fish showed the highest survival rates concomitantly with a lack of NNV-IgM production, pointing to the possible induction of different immune pathways than the B-cell responses via antibodies by the adjuvant. Since this combined vaccine did not succeed in the full extension of protection against the pathogen, further studies should be performed focusing on unravelling the molecular mechanisms through which adjuvants trigger the immune response, both independently and when added to a vaccine antigen.
Collapse
Affiliation(s)
- Yulema Valero
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sandra Souto
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Olveira
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen López-Vázquez
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos P Dopazo
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Bandín
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Vázquez-Salgado L, Olveira JG, Dopazo CP, Bandín I. Detection of different Betanodavirus genotypes in wild fish from Spanish Atlantic coastal waters (Galicia, northwestern Spain). JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:57-69. [PMID: 37787030 DOI: 10.1002/aah.10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE The nervous necrosis virus (NNV; genus Betanodavirus) is an aquatic pathogen that is responsible for a neurological disease affecting marine fish. Despite its almost worldwide distribution, global warming could favor the spread of NNV to new areas, highlighting the importance of conducting epidemiological surveys on both wild and farmed marine fish species. In this study, we assessed NNV prevalence in wild fish caught along the Galician Atlantic coast. METHODS In total, 1277 fish were analyzed by reverse transcription real-time polymerase chain reaction. RESULT Twenty two (1.72%) of those fish tested positive for NNV, including two species in which the pathogen had not yet been reported. CONCLUSION The reassortant RGNNV/SJNNV (red-spotted grouper NNV/striped jack NNV) was detected in 55% of NNV-positive individuals, while the remaining 45% harbored the SJNNV-type genome. Moreover, from European Pilchard Sardina pilchardus and Atlantic Mackerel Scomber scombrus, we isolated four reassortant strains that carried amino acid mutations at key sites related to NNV-host interaction.
Collapse
Affiliation(s)
- Lucía Vázquez-Salgado
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Olveira
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos P Dopazo
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Bandín
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Combe M, Reverter M, Caruso D, Pepey E, Gozlan RE. Impact of Global Warming on the Severity of Viral Diseases: A Potentially Alarming Threat to Sustainable Aquaculture Worldwide. Microorganisms 2023; 11:1049. [PMID: 37110472 PMCID: PMC10146364 DOI: 10.3390/microorganisms11041049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
With an ever-increasing human population, food security remains a central issue for the coming years. The magnitude of the environmental impacts of food production has motivated the assessment of the environmental and health benefits of shifting diets, from meat to fish and seafood. One of the main concerns for the sustainable development of aquaculture is the emergence and spread of infectious animal diseases in a warming climate. We conducted a meta-analysis to investigate the influence of global warming on mortality due to viral infections in farmed aquatic animals. We found a positive trend between increasing temperature and increasing viral virulence, with an increase in water temperature of 1 °C resulting in an increase in mortality of 1.47-8.33% in OsHV-1 infected oysters, 2.55-6.98% in carps infected with CyHV-3 and 2.18-5.37% in fishes infected with NVVs. We suggest that global warming is going to pose a risk of viral disease outbreaks in aquaculture and could compromise global food security.
Collapse
Affiliation(s)
- Marine Combe
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France
| | - Miriam Reverter
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Domenico Caruso
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France
| | - Elodie Pepey
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France
- CIRAD, UMR ISEM, 34398 Montpellier, France
| | | |
Collapse
|
4
|
BEI Inactivated Vaccine Induces Innate and Adaptive Responses and Elicits Partial Protection upon Reassortant Betanodavirus Infection in Senegalese Sole. Vaccines (Basel) 2021; 9:vaccines9050458. [PMID: 34064461 PMCID: PMC8147993 DOI: 10.3390/vaccines9050458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Nervous necrosis virus (NNV), the causative agent of viral encephalopathy and retinopathy (VER), is one of the most threatening viruses affecting marine and freshwater fish species worldwide. Senegalese sole is a promising fish species in Mediterranean aquaculture but also highly susceptible to NNV and VER outbreaks, that puts its farming at risk. The development of vaccines for aquaculture is one of best tools to prevent viral spread and sudden outbreaks, and virus inactivation is the simplest and most cost-effective method available. In this work, we have designed two inactivated vaccines based on the use of formalin or binary ethylenimine (BEI) to inactivate a reassortant NNV strain. After vaccination, the BEI-inactivated vaccine triggered the production of specific IgM-NNV antibodies and stimulated innate and adaptive immune responses at transcriptional level (rtp3, mx, mhcii and tcrb coding genes). Moreover, it partially improved survival after an NNV in vivo challenge, reducing the mid-term viral load and avoiding the down-regulation of immune response post-challenge. On the other hand, the formalin-inactivated vaccine improved the survival of fish upon infection without inducing the production of IgM-NNV antibodies and only stimulating the expression of herc4 and mhcii genes (in head-kidney and brain, respectively) during the vaccination period; this suggests that other immune-related pathways may be involved in the partial protection provoked. Although these vaccines against NNV showed encouraging results, further studies are needed to improve sole protection and to fully understand the underlying immune mechanism.
Collapse
|
5
|
Betanodavirus and VER Disease: A 30-year Research Review. Pathogens 2020; 9:pathogens9020106. [PMID: 32050492 PMCID: PMC7168202 DOI: 10.3390/pathogens9020106] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The outbreaks of viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), represent one of the main infectious threats for marine aquaculture worldwide. Since the first description of the disease at the end of the 1980s, a considerable amount of research has gone into understanding the mechanisms involved in fish infection, developing reliable diagnostic methods, and control measures, and several comprehensive reviews have been published to date. This review focuses on host–virus interaction and epidemiological aspects, comprising viral distribution and transmission as well as the continuously increasing host range (177 susceptible marine species and epizootic outbreaks reported in 62 of them), with special emphasis on genotypes and the effect of global warming on NNV infection, but also including the latest findings in the NNV life cycle and virulence as well as diagnostic methods and VER disease control.
Collapse
|
6
|
Ignatz EH, Braden LM, Benfey TJ, Caballero-Solares A, Hori TS, Runighan CD, Fast MD, Westcott JD, Rise ML. Impact of rearing temperature on the innate antiviral immune response of growth hormone transgenic female triploid Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2020; 97:656-668. [PMID: 31891812 DOI: 10.1016/j.fsi.2019.12.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
AquAdvantage Salmon (growth hormone transgenic female triploid Atlantic salmon) are a faster-growing alternative to conventional farmed diploid Atlantic salmon. To investigate optimal rearing conditions for their commercial production, a laboratory study was conducted in a freshwater recirculating aquaculture system (RAS) to examine the effect of rearing temperature (10.5 °C, 13.5 °C, 16.5 °C) on their antiviral immune and stress responses. When each temperature treatment group reached an average weight of 800 g, a subset of fish were intraperitoneally injected with either polyriboinosinic polyribocytidylic acid (pIC, a viral mimic) or an equal volume of sterile phosphate-buffered saline (PBS). Blood and head kidney samples were collected before injection and 6, 24 and 48 h post-injection (hpi). Transcript abundance of 7 antiviral biomarker genes (tlr3, lgp2, stat1b, isg15a, rsad2, mxb, ifng) was measured by real-time quantitative polymerase chain reaction (qPCR) on head kidney RNA samples. Plasma cortisol levels from blood samples collected pre-injection and from pIC and PBS groups at 24 hpi were quantified by ELISA. While rearing temperature and treatment did not significantly affect circulating cortisol, all genes tested were significantly upregulated by pIC at all three temperatures (except for tlr3, which was only upregulated in the 10.5 °C treatment). Target gene activation was generally observed at 24 hpi, with most transcript levels decreasing by 48 hpi in pIC-injected fish. Although a high amount of biological variability in response to pIC was evident across all treatments, rearing temperature significantly influenced transcript abundance and/or fold-changes comparing time- and temperature-matched pIC- and PBS-injected fish for several genes (tlr3, lgp2, stat1b, isg15a, rsad2 and ifng) at 24 hpi. As an example, significantly higher fold-changes of rsad2, isg15a and ifng were found in fish reared at 10.5 °C when compared to 16.5 °C. Multivariate analysis confirmed that rearing temperature modulated antiviral immune response. The present experiment provides novel insight into the relationship between rearing temperature and innate antiviral immune response in AquAdvantage Salmon.
Collapse
Affiliation(s)
- Eric H Ignatz
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada; Memorial University, Fisheries and Marine Institute, 155 Ridge Road, St. John's, NL, A1C 5R3, Canada; Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Laura M Braden
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada; Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE, C1A 4P3, Canada.
| | - Tillmann J Benfey
- University of New Brunswick, Department of Biology, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada.
| | - Albert Caballero-Solares
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Tiago S Hori
- Center for Aquaculture Technologies Canada, 20 Hope Street, Souris, PE, C0A 2B0, Canada.
| | - C Dawn Runighan
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada.
| | - Mark D Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE, C1A 4P3, Canada.
| | - Jillian D Westcott
- Memorial University, Fisheries and Marine Institute, 155 Ridge Road, St. John's, NL, A1C 5R3, Canada.
| | - Matthew L Rise
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
7
|
Souto S, Vázquez-Salgado L, Olveira JG, Bandín I. Amino acidic substitutions in the polymerase N-terminal region of a reassortant betanodavirus strain causing poor adaptation to temperature increase. Vet Res 2019; 50:50. [PMID: 31227007 PMCID: PMC6588924 DOI: 10.1186/s13567-019-0669-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/12/2019] [Indexed: 11/17/2022] Open
Abstract
Nervous necrosis virus (NNV), Genus Betanodavirus, is the causative agent of viral encephalopathy and retinopathy (VER), a neuropathological disease that causes fish mortalities worldwide. The NNV genome is composed of two single-stranded RNA molecules, RNA1 and RNA2, encoding the RNA polymerase and the coat protein, respectively. Betanodaviruses are classified into four genotypes: red-spotted grouper nervous necrosis virus (RGNNV), striped jack nervous necrosis virus (SJNNV), barfin flounder nervous necrosis virus (BFNNV) and tiger puffer nervous necrosis virus (TPNNV). In Southern Europe the presence of RGNNV, SJNNV and their natural reassortants (in both RNA1/RNA2 forms: RGNNV/SJNNV and SJNNV/RGNNV) has been reported. Pathology caused by these genotypes is closely linked to water temperature and the RNA1 segment encoding amino acids 1–445 has been postulated to regulate viral adaptation to temperature. Reassortants isolated from sole (RGNNV/SJNNV) show 6 substitutions in this region when compared with the RGNNV genotype (positions 41, 48, 218, 223, 238 and 289). We have demonstrated that change of these positions to those present in the RGNNV genotype cause low and delayed replication in vitro when compared with that of the wild type strain at 25 and 30 °C. The experimental infections confirmed the impact of the mutations on viral replication because at 25 °C the viral load and the mortality were significantly lower in fish infected with the mutant than in those challenged with the non-mutated virus. It was not possible to challenge fish at 30 °C because of the scarce tolerance of sole to this temperature.
Collapse
Affiliation(s)
- Sandra Souto
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología-Universidade de Santiago de Compostela, 15706, Santiago de Compostela, Spain. .,Unité de Virologie et d'Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Lucía Vázquez-Salgado
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología-Universidade de Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - José G Olveira
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología-Universidade de Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Isabel Bandín
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología-Universidade de Santiago de Compostela, 15706, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Souto S, Olveira JG, Alonso MC, Dopazo CP, Bandín I. Betanodavirus infection in bath-challenged Solea senegalensis juveniles: A comparative analysis of RGNNV, SJNNV and reassortant strains. JOURNAL OF FISH DISEASES 2018; 41:1571-1578. [PMID: 30028012 DOI: 10.1111/jfd.12865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Senegalese sole has been shown to be highly susceptible to betanodavirus infection, although virulence differences were observed between strains. To study the mechanisms involved in these differences, we have analysed the replication in brain tissue of three strains with different genotypes during 15 days after bath infection. In addition, possible portals of entry for betanodavirus into sole were investigated. The reassortant RGNNV/SJNNV and the SJNNV strain reached the brain after 1 and 2 days postinfection, respectively. Although no RGNNV replication was detected until day 3-4 postinfection, at the end of the experiment this strain yielded the highest viral load; this is in accordance with previous studies in which sole infected with the reassortant showed more acute signs and earlier mortality than the RGNNV and SJNNV strains. Differences between strains were also observed in the possible portals of entry. Thus, whereas the reassortant strain could infect sole mainly through the skin or the oral route, and, to a minor extent, through the gills, the SJNNV strain seems to enter fish only through the gills and the RGNNV strain could use all tissues indistinctly. Taken together, all these results support the hypothesis that reassortment has improved betanodavirus infectivity for sole.
Collapse
Affiliation(s)
- Sandra Souto
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Olveira
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M Carmen Alonso
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain
| | - Carlos P Dopazo
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Bandín
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
9
|
González-Mira A, Torreblanca A, Hontoria F, Navarro JC, Mañanós E, Varó I. Effects of ibuprofen and carbamazepine on the ion transport system and fatty acid metabolism of temperature conditioned juveniles of Solea senegalensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:693-701. [PMID: 29172150 DOI: 10.1016/j.ecoenv.2017.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/02/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
The increasing presence of pharmaceuticals in aquatic environments in the last decades, derived from human and veterinary use, has become an important environmental problem. Previous studies have shown that ibuprofen (IB) and carbamazepine (CBZ) modify physiological and biochemical processes in Senegalese sole (Solea senegalensis) in a temperature-dependent manner. In other vertebrates, there is evidence that both of these pharmaceuticals interfere with the 'arachidonic acid (AA) cascade', which is responsible for the biosynthesis of numerous enzymes that are involved in the osmoregulatory process. The present work aims to study the temperature-dependent effects of these two pharmaceuticals on several biochemical and molecular parameters in Senegalese sole. Regarding osmoregulation, Na+, K+ -ATPase enzyme activity was determined in the gills, kidney and intestine, and the expressions of both Na+, K+ -ATPase 1α-subunit isoforms (ATP1A1a and ATP1A1b) were quantified in gills. Gill prostaglandin-endoperoxide synthase-2 (PTGS2) gene expression and fatty acid composition were selected to determine the interference of both pharmaceuticals with the AA cascade. Senegalese sole juveniles, acclimatised at 15°C or 20°C, were exposed through intraperitoneal injection to IB (10mg/kg) and CBZ (1mg/kg) for 48h. Non-injected fish (Control) and those injected with the carrier (sunflower oil; S.O.), acclimated at each of the two temperatures, were used for comparison. The results show that IB directly affected the osmoregulatory mechanisms that alter gill and intestine Na+, K+ -ATPase activities. In addition, the copy number of ATP1A1a was higher at 20°C than at 15°C, which could be a direct response to the temperature variation. The gene expression of PTGS2 was affected by neither drug administration nor acclimation temperature. Nevertheless, detailed analysis of AA and eicosapentaenoic acid (EPA) percentages revealed a CBZ-derived effect in the fatty acid composition of the gills.
Collapse
Affiliation(s)
- A González-Mira
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
| | - A Torreblanca
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain.
| | - F Hontoria
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| | - J C Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| | - E Mañanós
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| | - I Varó
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| |
Collapse
|
10
|
Toffan A, Pascoli F, Pretto T, Panzarin V, Abbadi M, Buratin A, Quartesan R, Gijón D, Padrós F. Viral nervous necrosis in gilthead sea bream (Sparus aurata) caused by reassortant betanodavirus RGNNV/SJNNV: an emerging threat for Mediterranean aquaculture. Sci Rep 2017; 7:46755. [PMID: 28462930 PMCID: PMC5411978 DOI: 10.1038/srep46755] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/21/2017] [Indexed: 11/23/2022] Open
Abstract
Viral nervous necrosis (VNN) certainly represents the biggest challenge for the sustainability and the development of aquaculture. A large number of economically relevant fish species have proven to be susceptible to the disease. Conversely, gilthead sea bream has generally been considered resistant to VNN, although it has been possible to isolate the virus from apparently healthy sea bream and sporadically from affected larvae and postlarvae. Unexpectedly, in 2014–2016 an increasing number of hatcheries in Europe have experienced mass mortalities in sea bream larvae. Two clinical outbreaks were monitored over this time span and findings are reported in this paper. Despite showing no specific clinical signs, the affected fish displayed high mortality and histological lesions typical of VNN. Fish tested positive for betanodavirus by different laboratory techniques. The isolates were all genetically characterized as being reassortant strains RGNNV/SJNNV. A genetic characterization of all sea bream betanodaviruses which had been isolated in the past had revealed that the majority of the strains infecting sea bream are actually RGNNV/SJNNV. Taken together, this information strongly suggests that RGNNV/SJNNV betanodavirus possesses a particular tropism to sea bream, which can pose a new and unexpected threat to the Mediterranean aquaculture.
Collapse
Affiliation(s)
- Anna Toffan
- OIE reference centre for viral encephalopathy and retinopathy, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, Padova, Italy
| | - Francesco Pascoli
- OIE reference centre for viral encephalopathy and retinopathy, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, Padova, Italy
| | - Tobia Pretto
- Istituto Zooprofilattico Sperimentale delle Venezie, Fish Pathology Department, Via Leonardo da Vinci 39, Adria, Rovigo, Italy.,Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, Italy
| | - Valentina Panzarin
- OIE reference centre for viral encephalopathy and retinopathy, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, Padova, Italy
| | - Miriam Abbadi
- OIE reference centre for viral encephalopathy and retinopathy, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, Padova, Italy
| | - Alessandra Buratin
- OIE reference centre for viral encephalopathy and retinopathy, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, Padova, Italy
| | - Rosita Quartesan
- OIE reference centre for viral encephalopathy and retinopathy, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, Padova, Italy
| | - Daniel Gijón
- Fish Health Service, Skretting, Ctra. de la Estación S/N, Cojóbar, Spain
| | - Francesc Padrós
- Fish Diseases Diagnostic Service, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| |
Collapse
|
11
|
Souto S, Olveira JG, Dopazo CP, Bandín I. Reassortant betanodavirus infection in turbot (Scophthalmus maximus). JOURNAL OF FISH DISEASES 2016; 39:1347-1356. [PMID: 27135777 DOI: 10.1111/jfd.12466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/09/2016] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
In this study, the susceptibility of turbot juveniles to two betanodavirus strains was assessed, a RGNNV/SJNNV reassortant (Ss160.03) and a SJNNV strain. The reassortant isolate exhibits a slightly modified SJNNV CP, with two amino acid substitutions in the C-terminal domain (positions 247 and 270). To analyse the role of these residues as virulence and host determinants in turbot, three recombinant strains (rSs160.03247 , rSs160.03270 , rSs160.03247+270 ) harbouring site-specific mutations in the CP sequence were also tested in experimental trials. Moderate mortalities (up to 50%) were recorded at 18 °C in the fish challenged with the Ss160.03 strain, whereas low mortalities (17%) were observed in the group challenged with the SJNNV strain. A slight decrease (around 10%) was observed in the mortalities caused by the mutants rSs160.03247 and rSs160.03270 , whilst the mutation of both positions reduced mortality by more than half of that observed in fish challenged with the wild strain. These results are confirmed by the replication in brain tissues, because whereas the wild strain was detected from 5 to 30 dpi and reached the highest viral load, the recombinant virus harbouring both mutations was not detected in the brain until 20 dpi and with a moderate viral load.
Collapse
Affiliation(s)
- S Souto
- Unidad de Ictiopatología-Patología Viral, Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
| | - J G Olveira
- Unidad de Ictiopatología-Patología Viral, Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - C P Dopazo
- Unidad de Ictiopatología-Patología Viral, Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - I Bandín
- Unidad de Ictiopatología-Patología Viral, Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Costa JZ, Thompson KD. Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. FISH & SHELLFISH IMMUNOLOGY 2016; 53:35-49. [PMID: 26997200 DOI: 10.1016/j.fsi.2016.03.033] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 05/22/2023]
Abstract
Over the last three decades, the causative agent of viral encephalopathy and retinopathy (VER) disease has become a serious problem of marine finfish aquaculture, and more recently the disease has also been associated with farmed freshwater fish. The virus has been classified as a Betanodavirus within the family Nodaviridae, and the fact that Betanodaviruses are known to affect more than 120 different farmed and wild fish and invertebrate species, highlights the risk that Betanodaviruses pose to global aquaculture production. Betanodaviruses have been clustered into four genotypes, based on the RNA sequence of the T4 variable region of their capsid protein, and are named after the fish species from which they were first derived i.e. Striped Jack nervous necrosis virus (SJNNV), Tiger puffer nervous necrosis virus (TPNNV), Barfin flounder nervous necrosis virus (BFNNV) and Red-spotted grouper nervous necrosis virus (RGNNV), while an additional genotype turbot betanodavirus strain (TNV) has also been proposed. However, these genotypes tend to be associated with a particular water temperature range rather than being species-specific. Larvae and juvenile fish are especially susceptible to VER, with up to 100% mortality resulting in these age groups during disease episodes, with vertical transmission of the virus increasing the disease problem in smaller fish. A number of vaccine preparations have been tested in the laboratory and in the field e.g. inactivated virus, recombinant proteins, virus-like particles and DNA based vaccines, and their efficacy, based on relative percentage survival, has ranged from medium to high levels of protection to little or no protection. Ultimately a combination of effective prophylactic measures, including vaccination, is needed to control VER, and should also target larvae and broodstock stages of production to help the industry deal with the problem of vertical transmission. As yet there are no commercial vaccines for VER and the aquaculture industry eagerly awaits such a product. In this review we provide an overview on the current state of knowledge of the disease, the pathogen, and interactions between betanodavirus and its host, to provide a greater understanding of the multiple factors involved in the disease process. Such knowledge is needed to develop effective methods for controlling VER in the field, to protect the various aquaculture species farmed globally from the different Betanodavirus genotypes to which they are susceptible.
Collapse
Affiliation(s)
- Janina Z Costa
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom
| |
Collapse
|
13
|
Susceptibility of Chinese Perch Brain (CPB) Cell and Mandarin Fish to Red-Spotted Grouper Nervous Necrosis Virus (RGNNV) Infection. Int J Mol Sci 2016; 17:ijms17050740. [PMID: 27213348 PMCID: PMC4881562 DOI: 10.3390/ijms17050740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/10/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
Nervous necrosis virus (NNV) is the causative agent of viral encephalopathy and retinopathy (VER), a neurological disease responsible for high mortality of fish species worldwide. Taking advantage of our established Chinese perch brain (CPB) cell line derived from brain tissues of Mandarin fish (Siniperca chuatsi), the susceptibility of CPB cell to Red-Spotted Grouper nervous necrosis virus (RGNNV) was evaluated. The results showed that RGNNV replicated well in CPB cells, resulting in cellular apoptosis. Moreover, the susceptibility of Mandarin fish to RGNNV was also evaluated. Abnormal swimming was observed in RGNNV-infected Mandarin fish. In addition, the cellular vacuolation and viral particles were also observed in brain tissues of RGNNV-infected Mandarin fish by Hematoxylin-eosin staining or electronic microscopy. The established RGNNV susceptible brain cell line from freshwater fish will pave a new way for the study of the pathogenicity and replication of NNV in the future.
Collapse
|