1
|
Garcia-Morante B, De Abreu C, Underwood G, Lara Puente JH, Pieters M. Characterization of a Mycoplasma hyopneumoniae aerosol infection model in pigs. Vet Microbiol 2024; 299:110296. [PMID: 39581076 DOI: 10.1016/j.vetmic.2024.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024]
Abstract
The purpose of the present study was to develop and characterize an experimental aerosol model for Mycoplasma hyopneumoniae (M. hyopneumoniae) infection and respiratory disease in pigs. The experiment was carried out to determine the pathogenicity, colonization, mucosal immune response, and clinical course of disease of dose-controlled aerosols of M. hyopneumoniae. Four groups of three M. hyopneumoniae-free gilts each were individually exposed to aerosols of diluted lung homogenate containing M. hyopneumoniae strain 232 in a chamber. Each group was exposed to different doses of viable organisms (105 to 106 color changing units/mL during 15-20 or 30-35 min in two consecutive days). Nasal, laryngeal, and deep-tracheal secretions were collected from each gilt at 0, 7, 14, 21, and 28 days post-exposure (dpe). Blood samples were collected at 0 and 28 dpe. At necropsy, lung lesions were assessed, and bronchial secretions and bronchoalveolar lavage fluid (BALF) were collected from each lung set. Blood was used to assess seroconversion by means of an indirect ELISA, while BALF, deep-tracheal and nasal secretions were tested by modifying the ELISA to evaluate mucosal IgG and IgA production. Nasal, laryngeal, deep-tracheal, and bronchial secretions were tested by real-time PCR to evaluate bacterial load. Gilts became infected irrespective of the infectious dose, as determined by M. hyopneumoniae detection in deep-tracheal secretions from all gilts at 7 dpe. A specific local humoral immune response starting at 14 dpe was detected in all gilts. While all experimental groups presented gilts with some extent of mycoplasmal pneumonia, only the exposure of gilts to high-dose aerosols consistently reproduced typical clinical signs and severe lung lesions. These results showed that the reproduction of mycoplasmal pneumonia by means of infectious aerosols can be successfully achieved at experimental level, making this model a valuable alternative to evaluate preventive and treatment measures against M. hyopneumoniae.
Collapse
Affiliation(s)
- Beatriz Garcia-Morante
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Campus, Bellaterra, Catalonia 08193, Spain; WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra 08193, Spain; Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | - Cipriano De Abreu
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | | | | | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
2
|
Eddicks M, Feicht F, Beckjunker J, Genzow M, Alonso C, Reese S, Ritzmann M, Stadler J. Monitoring of Respiratory Disease Patterns in a Multimicrobially Infected Pig Population Using Artificial Intelligence and Aggregate Samples. Viruses 2024; 16:1575. [PMID: 39459909 PMCID: PMC11512249 DOI: 10.3390/v16101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
A 24/7 AI sound-based coughing monitoring system was applied in combination with oral fluids (OFs) and bioaerosol (AS)-based screening for respiratory pathogens in a conventional pig nursery. The objective was to assess the additional value of the AI to identify disease patterns in association with molecular diagnostics to gain information on the etiology of respiratory distress in a multimicrobially infected pig population. Respiratory distress was measured 24/7 by the AI and compared to human observations. Screening for swine influenza A virus (swIAV), porcine reproductive and respiratory disease virus (PRRSV), Mycoplasma (M.) hyopneumoniae, Actinobacillus (A.) pleuropneumoniae, and porcine circovirus 2 (PCV2) was conducted using qPCR. Except for M. hyopneumoniae, all of the investigated pathogens were detected within the study period. High swIAV-RNA loads in OFs and AS were significantly associated with a decrease in respiratory health, expressed by a respiratory health score calculated by the AI The odds of detecting PRRSV or A. pleuropneumoniae were significantly higher for OFs compared to AS. qPCR examinations of OFs revealed significantly lower Ct-values for swIAV and A. pleuropneumoniae compared to AS. In addition to acting as an early warning system, AI gained respiratory health data combined with laboratory diagnostics, can indicate the etiology of respiratory distress.
Collapse
Affiliation(s)
- Matthias Eddicks
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University München, 85764 München, Germany; (M.E.); (F.F.); (M.R.)
| | - Franziska Feicht
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University München, 85764 München, Germany; (M.E.); (F.F.); (M.R.)
| | - Jochen Beckjunker
- Boehringer Ingelheim Vetmedica GmbH, Ingelheim, 55216 Ingelheim am Rhein, Germany; (J.B.); (M.G.); (C.A.)
| | - Marika Genzow
- Boehringer Ingelheim Vetmedica GmbH, Ingelheim, 55216 Ingelheim am Rhein, Germany; (J.B.); (M.G.); (C.A.)
| | - Carmen Alonso
- Boehringer Ingelheim Vetmedica GmbH, Ingelheim, 55216 Ingelheim am Rhein, Germany; (J.B.); (M.G.); (C.A.)
| | - Sven Reese
- Institute for Anatomy, Histology and Embryology, LMU Munich, 80539 Munich, Germany;
| | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University München, 85764 München, Germany; (M.E.); (F.F.); (M.R.)
| | - Julia Stadler
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University München, 85764 München, Germany; (M.E.); (F.F.); (M.R.)
| |
Collapse
|
3
|
Okafor PC, Jimongkolkul N, Khongpradit A, Ahiwichai W, Homwong N. Enhancement of selectivity, 25-hydroxyvitamin D3 level, alkaline phosphatase activity and reproductive performance in gilts and primiparous sows using 14-epimer of 25-hydroxyvitamin D3. Vet Anim Sci 2024; 24:100352. [PMID: 38699218 PMCID: PMC11064612 DOI: 10.1016/j.vas.2024.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Selecting breed-worthy gilts as sow replacements is essential for continuity of pig production cycle. Though vitamin D3 (VD3) is known to enhance reproductive performance of multiparous sows, there is still a knowledge gap on its impact in developing gilts and primiparous sows. This study was aimed to quantify plasma 25-hydroxyvitamin D3 (25(OH)D3), serum alkaline phosphatase (ALP), and examine the reproductive performance of primiparous sows fed diets supplemented with regular VD3, and its 25(OH)D3 epimers. The study sample comprised 10-week-old replacement gilts (50 % Landrace x 50 % Yorkshire, N = 180) assigned in a randomized complete block design to three treatments [2,000 IU/kg of VD3 (T1), 25 µg/kg of 14‑epi-25(OH)D3, half dose (T2), and 50 µg/kg of 25(OH)D3 (T3)] equilibrated to 2,000 IU/kg in base diets. Selections occurred at 22, 27 and 35 weeks of age, respectively. Plasma 25(OH)D3, serum alkaline phosphatase (ALP), bone structure and reproductive performance were analyzed. Dietary treatments influenced carpus (P = 0.023), fore view stance (P = 0.017), infantile vulva (P = 0.014), inverted (P = 0.048), and prominent teat (P < 0.001). Post-partum 25(OH)D3 concentration and ALP activity were elevated by day 25 (P < 0.001). Treatment diets also influenced total born (P < 0.001), born alive (P = 0.048), and still born (P = 0.049). Two factors affect circulating 25(OH)D3 and ALP activity: physiological changes in sows during lactation, and dietary 25(OH)D3 intake. 14‑epi-25(OH)D3 is a potent metabolite for improving maturation of reproductive organs in developing gilts. It also reduces still birth in primiparous sows.
Collapse
Affiliation(s)
- Prester C.John Okafor
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Nattanit Jimongkolkul
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Anchalee Khongpradit
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Wunwinee Ahiwichai
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Nitipong Homwong
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- National Swine Research and Training Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Serafini Poeta Silva AP, Mugabi R, Rotolo ML, Krantz S, Hu D, Robbins R, Hemker D, Diaz A, Tucker AW, Main R, Cano JP, Harms P, Wang C, Clavijo MJ. Effect of pooled tracheal sample testing on the probability of Mycoplasma hyopneumoniae detection. Sci Rep 2024; 14:10226. [PMID: 38702379 PMCID: PMC11068755 DOI: 10.1038/s41598-024-60377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Tracheal pooling for Mycoplasma hyopneumoniae (M. hyopneumoniae) DNA detection allows for decreased diagnostic cost, one of the main constraints in surveillance programs. The objectives of this study were to estimate the sensitivity of pooled-sample testing for the detection of M. hyopneumoniae in tracheal samples and to develop probability of M. hyopneumoniae detection estimates for tracheal samples pooled by 3, 5, and 10. A total of 48 M. hyopneumoniae PCR-positive field samples were pooled 3-, 5-, and 10-times using field M. hyopneumoniae DNA-negative samples and tested in triplicate. The sensitivity was estimated at 0.96 (95% credible interval [Cred. Int.]: 0.93, 0.98) for pools of 3, 0.95 (95% Cred. Int: 0.92, 0.98) for pools of 5, and 0.93 (95% Cred. Int.: 0.89, 0.96) for pools of 10. All pool sizes resulted in PCR-positive if the individual tracheal sample Ct value was < 33. Additionally, there was no significant decrease in the probability of detecting at least one M. hyopneumoniae-infected pig given any pool size (3, 5, or 10) of tracheal swabs. Furthermore, this manuscript applies the probability of detection estimates to various real-life diagnostic testing scenarios. Combining increased total animals sampled with pooling can be a cost-effective tool to maximize the performance of M. hyopneumoniae surveillance programs.
Collapse
Affiliation(s)
| | - Robert Mugabi
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, IA, USA
| | | | | | - Dapeng Hu
- College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
| | | | | | | | | | - Rodger Main
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, IA, USA
| | | | | | - Chong Wang
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, IA, USA
- College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
| | - Maria Jose Clavijo
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, IA, USA.
- PIC®, Hendersonville, TN, USA.
| |
Collapse
|
5
|
Sponheim A, Alvarez J, Fano E, Rovira A, McDowell E, Toohill E, Dalquist L, Pieters M. A diagnostic approach to confirm Mycoplasma hyopneumoniae "Day zero" for pathogen eradication. Prev Vet Med 2023; 221:106057. [PMID: 37931354 DOI: 10.1016/j.prevetmed.2023.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Breeding herds in the US are trending toward eradication of Mycoplasma hyopneumoniae (M. hyopneumoniae) due to the positive impact on welfare and downstream production. In an eradication program, "Day 0″ is the time point when the last replacement gilts to enter the herd were exposed to M. hyopneumoniae and marks the beginning of a herd closure. However, no specific diagnostic protocols are available for confirmation of successful exposure to define Day 0. Therefore, the objective of this study was to develop diagnostic guidelines, including sample collection approaches, for two common gilt exposure methods to confirm an entire population has been infected with M. hyopneumoniae following purposeful exposure. Forty gilts, age 21-56 days, were ear-tagged for longitudinal sample collection at five commercial gilt developer units (GDUs) and were exposed to M. hyopneumoniae by natural contact or aerosolization. Study gilts originated from sources known to be negative to major swine pathogens, including M. hyopneumoniae, and were sampled prior to exposure to confirm negative status, then every two weeks. Blood samples were collected for antibody detection, while laryngeal and deep tracheal secretions and pen based oral fluids were collected for PCR, and sampling continued until at least 85% of samples were positive by PCR. Detection of M. hyopneumoniae varied greatly based on sample type. Oral fluids showed the lowest detection in groups of gilts detected positive by other sample types. Detection by PCR in deep tracheal secretions was higher than in laryngeal secretions. Seroconversion to and PCR detection of M. hyopneumoniae on oral fluids were delayed compared to PCR detection at the individual level. By two weeks post-exposure, at least 85% of study gilts in three GDUs exposed by aerosolization were PCR positive in deep tracheal secretions. Natural contact exposure resulted in 22.5% of study gilts becoming PCR positive by two weeks post-initial exposure, 61.5% at four weeks, and 100% at six weeks on deep tracheal secretions. Deep tracheal secretions required the lowest number of gilts to sample for the earliest detection compared to all other samples evaluated. As observed in one of the GDUs using aerosolization, demonstration of failure to expose gilts to M. hyopneumoniae allowed for early intervention in the exposure protocol and delay of Day 0, for accurate timing of the eradication protocol. Sampling guidelines proposed in this study can be used for verification of M. hyopneumoniae infection of gilts following exposure to determine Day 0 of herd closure.
Collapse
Affiliation(s)
- Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Boehringer Ingelheim Animal Health Inc., 3239 Satellite Blvd NW, Duluth, GA 30096, USA
| | - Julio Alvarez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health Inc., 3239 Satellite Blvd NW, Duluth, GA 30096, USA
| | - Albert Rovira
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA
| | - Emily McDowell
- Pipestone Veterinary Services, 1300 S Highway 75, Pipestone, MN 56164, USA
| | - Elise Toohill
- The Maschhoffs, 6996 State Route 127, Carlyle, IL 62231, USA
| | - Laura Dalquist
- Swine Vet Center, 1608 S Minnesota Ave., St. Peter, MN 56082, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
6
|
Brandalise L, Takeuti KL, Kich JD, Clavijo MJ, Simão GMR, Sato JPH, Coldebella A, Pigozzo R, Nagae R, Dezen D. Mycoplasma hyopneumoniae infection dynamics in naïve replacement gilts introduced to positive farms. Vet Microbiol 2023; 286:109886. [PMID: 37862723 DOI: 10.1016/j.vetmic.2023.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/29/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
This study was designed to characterize the dynamics of infection of Mycoplasma hyopneumoniae in naïve replacement gilts after introduction to positive systems. Ninety-eight naïve gilts were monitored in three positive commercial farms (A, B, and C). The näive gilts were housed for 21 days in pens adjacently located to older gilt cohorts (named seeders), which have been naturally exposed to the positive farms. The infection dynamics was evaluated by PCR and ELISA, from laryngeal swabs and serum samples, respectively. Samples were collected at 150 (arrival), 165, 180, 210, 240, 270, 300 days of age (doa), and pre-farrowing. Infection occurred rapidly on farms A and B, taking 25.2 and 23.9 days for 95% of gilts to be PCR positive, respectively. There was no influence on the number of seeders at the time of exposure, but their absence (farm C) could explain the extended period it took for gilts to get infected (69.4 days). On average, it took 162.2 days after the first PCR detection for 85% of gilts to stop shedding the bacterium. The serology results were consistent with the herd infection curve. At pre-farrowing, 100% of gilts seroconverted and 36.7% remained PCR positive. A total of 1.33% of piglets were positive at weaning. Fifteen variants were detected among the three farms by MLVA. The acclimation protocol was efficient and easy to perform, and the presence of seeders was likely critical for early acclimation for M. hyopneumoniae.
Collapse
Affiliation(s)
- Luciano Brandalise
- College of Veterinary Medicine, Catarinense Federal Institute, Concórdia, SC, Brazil; Agroceres PIC, Rio Claro, SP, Brazil
| | - Karine L Takeuti
- College of Veterinary Medicine, Feevale University, Campo Bom, RS, Brazil
| | | | - Maria J Clavijo
- Veterinary Diagnostic and Population Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA; Pig Improvement Company, PIC®, Hendersonville, TN, USA
| | | | | | | | | | | | - Diogenes Dezen
- College of Veterinary Medicine, Catarinense Federal Institute, Concórdia, SC, Brazil.
| |
Collapse
|
7
|
Takeuti KL, Betlach AM, Fano E, Schwartz M, Yaros J, Wayne S, Schmaling E, de Barcellos DESN, Pieters M. The effect of gilt flow management during acclimation on Mycoplasma hyopneumoniae detection. Vet Microbiol 2023; 276:109554. [PMID: 36435011 DOI: 10.1016/j.vetmic.2022.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 12/27/2022]
Abstract
The objective of this study was to characterize the Mycoplasma hyopneumoniae (M. hyopneumoniae) detection and seroconversion patterns in recently acclimated gilts to be introduced to endemically infected farms using different types of replacement management. Three gilt developing units (GDUs) belonging to sow farms were included in this investigation: two farms managed gilts in continuous flow, and one farm managed gilts all-in/all-out. Two replicates of 35 gilts each were selected per GDU and sampled approximately every 60 days for a total of four or five samplings, per replicate and per GDU. Detection of M. hyopneumoniae was evaluated by PCR, while antibodies were measured using a commercial ELISA assay. Also, M. hyopneumoniae genetic variability was evaluated using Multiple-Locus Variable number tandem repeat Analysis. Detection of M. hyopneumoniae was similar across GDUs. Although a significant proportion of gilts was detected positive for M. hyopneumoniae after acclimation, an average of 30.3 % of gilts was negative at any point during the study. Detection of M. hyopneumoniae antibodies was similar among GDUs regardless of flow type or vaccination protocol. The genetic variability analysis revealed a limited number of M. hyopneumoniae types within each GDU. Results of this study showed a similar pattern of M. hyopneumoniae detection by PCR and seroconversion by ELISA among GDUs, regardless of the type of flow management strategies applied to gilts.
Collapse
Affiliation(s)
- Karine L Takeuti
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Swine Vet Center, St. Peter, MN, United States
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health, Duluth, GA, United States
| | - Mark Schwartz
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Schwartz Farms Inc, Sleepy Eye, MN, United States
| | - Joseph Yaros
- Pipestone Veterinary Services, Pipestone, MN, United States
| | - Spencer Wayne
- Pipestone Veterinary Services, Pipestone, MN, United States
| | - Ethan Schmaling
- Boehringer Ingelheim Animal Health, Duluth, GA, United States
| | - David E S N de Barcellos
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
8
|
Garcia-Morante B, Maes D, Sibila M, Betlach AM, Sponheim A, Canturri A, Pieters M. Improving Mycoplasma hyopneumoniae diagnostic capabilities by harnessing the infection dynamics. Vet J 2022; 288:105877. [PMID: 35901923 DOI: 10.1016/j.tvjl.2022.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Mycoplasma hyopneumoniae remains one of the most problematic bacterial pathogens for pig production. Despite an abundance of observational and laboratory testing capabilities for this organism, diagnostic interpretation of test results can be challenging and ambiguous. This is partly explained by the chronic nature of M. hyopneumoniae infection and its tropism for lower respiratory tract epithelium, which affects diagnostic sensitivities associated with sampling location and stage of infection. A thorough knowledge of the available tools for routine M. hyopneumoniae diagnostic testing, together with a detailed understanding of infection dynamics, are essential for optimizing sampling strategies and providing confidence in the diagnostic process. This study reviewed known information on sampling and diagnostic tools for M. hyopneumoniae and summarized literature reports of the dynamics of key infection outcomes, including clinical signs, lung lesions, pathogen detection, and humoral immune responses. Such knowledge could facilitate better understanding of the performance of different diagnostic approaches at various stages of infection.
Collapse
Affiliation(s)
- Beatriz Garcia-Morante
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Unit Porcine Health Management, Ghent University, Salisburylaan, 133 B-9820 Merelbeke, Belgium
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Swine Vet Center, 1608 S Minnesota Ave, St. Peter, MN 56082, USA
| | - Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd NW, Duluth, GA 30096, USA
| | - Albert Canturri
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, St Paul, 55108 MN, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, 1988 Fitch Ave, St. Paul, MN 55108, USA.
| |
Collapse
|
9
|
Silva APSP, Storino GY, Ferreyra FSM, Zhang M, Fano E, Polson D, Wang C, Derscheid RJ, Zimmerman JJ, Clavijo MJ, Arruda BL. Cough associated with the detection of Mycoplasma hyopneumoniae DNA in clinical and environmental specimens under controlled conditions. Porcine Health Manag 2022; 8:6. [PMID: 35078535 PMCID: PMC8788120 DOI: 10.1186/s40813-022-00249-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022] Open
Abstract
Background The association of cough with Mycoplasma hyopneumoniae (MHP) DNA detection in specimens was evaluated under conditions in which the MHP status of inoculated and contact-infected pen mates was closely monitored for 59 days post-inoculation (DPI).
Methods Seven-week-old pigs (n = 39) were allocated to five rooms (with one pen). Rooms contained 9 pigs each, with 1, 3, 6, or 9 MHP-inoculated pigs, respectively, except Room 5 (three sham-inoculated pigs). Cough data (2 × week) and specimens, tracheal swabs (2 × week), oral fluids (daily), drinker wipes (~ 1 × week), and air samples (3 × week) were collected. At 59 DPI, pigs were euthanized, and lung and trachea were evaluated for gross and microscopic lesions. Predictive cough value to MHP DNA detection in drinker and oral fluid samples were estimated using mixed logistic regression. Results Following inoculation, MHP DNA was first detected in tracheal swabs from inoculated pigs (DPI 3), then oral fluids (DPI 8), air samples (DPI 10), and drinker wipes (21 DPI). MHP DNA was detected in oral fluids in 17 of 59 (Room 1) to 43 of 59 (Room 3) samples, drinker wipes in 4 of 8 (Rooms 2 and 3) to 5 of 8 (Rooms 1 and 4) samples, and air samples in 5 of 26 (Room 2) or 3 of 26 (Room 4) samples. Logistic regression showed that the frequency of coughing pigs in a pen was associated with the probability of MHP DNA detection in oral fluids (P < 0.01) and nearly associated with drinker wipes (P = 0.08). Pathology data revealed an association between the period when infection was first detected and the severity of gross lung lesions. Conclusions Dry, non-productive coughs suggest the presence of MHP, but laboratory testing and MHP DNA detection is required for confirmation. Based on the data from this study, oral fluids and drinker wipes may provide a convenient alternative for MHP DNA detection at the pen level when cough is present. This information may help practitioners in specimen selection for MHP surveillance.
Collapse
|
10
|
Betlach AM, Baumert D, Utrera V, Galina Pantoja L, Pieters M. Effect of antibiotic treatment on Mycoplasma hyopneumoniae detection and infectious potential. Vet Microbiol 2021; 262:109222. [PMID: 34544009 DOI: 10.1016/j.vetmic.2021.109222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) causes significant economic losses in the swine industry. Antibiotics with activity against Mycoplasma spp. are employed for disease mitigation and pathogen elimination. However, veterinarians are often challenged with the detection of M. hyopneumoniae by PCR after antibiotic treatment, thus raising the question whether the bacterium is still infectious. The objective of this study was to evaluate the effect of tulathromycin treatment on M. hyopneumoniae detection and infectious potential during the acute and chronic phases of infection. For each infection phase, one age-matched naïve gilt was placed in contact with one M. hyopneumoniae infected gilt that was either treated with tulathromycin, treated and vaccinated, or non-treated, for 14 days. Four replicates per treatment group were performed for each infection phase. A numerical reduction in relative bacterial load was observed in acutely treated gilts compared to non-treated gilts. The rate at which naïve gilts became infected with M. hyopneumoniae was numerically reduced when co-housed with treated, acutely infected gilts compared to those housed with non-treated, infected gilts. During the chronic infection phase, M. hyopneumoniae was detected by PCR in more than 50 % of treated infected gilts and persisted for up to three months post-treatment. Transmission was not detected in all treatment groups however, the possibility that the pathogen was infectious could not be completely ruled out. Further research focused on assessing M. hyopneumoniae detection and viability post-treatment is necessary to guide control and elimination efforts.
Collapse
Affiliation(s)
- Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Swine Vet Center, St. Peter, MN, USA
| | | | | | | | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
11
|
Abstract
Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative “omics” results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| |
Collapse
|
12
|
Comparison of Mycoplasma hyopneumoniae response to infection by route of exposure. Vet Microbiol 2021; 258:109118. [PMID: 34058523 DOI: 10.1016/j.vetmic.2021.109118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/13/2021] [Indexed: 11/23/2022]
Abstract
Mycoplasma hyopneumoniae (MHP) is a concern both for pig well-being and producer economic viability. In the absence of fully protective health interventions, producers rely on controlled exposure to induce an immune response in pigs and minimize the clinical outcomes of MHP infection in pig populations. This study compared the effect of route of exposure on MHP infection, antibody response, clinical signs, and pathology. Six-week-old MHP-negative pigs (n = 78) were allocated to negative control (n = 6) or one of three MHP exposure routes: intratracheal (n = 24, feeding catheter), intranasal (n = 24, atomization device), and aerosol (n = 24, fogger). Body weight, cough indices, and samples (serum, oral fluid, tracheal) were collected weekly through 49 days post-exposure (DPE). Intratrachal exposure produced the highest proportion (24/24) of MHP DNA-positive pigs on DPE 7, as well as earlier and higher serum antibody response. Intranasal and aerosol exposures resulted in infection with MHP DNA detected in tracheal samples from 18/24 and 21/24 pigs on DPE 7, respectively. Aerosol exposure had the least impact on weight gain (0.64 kg/day). No difference was observed among treatment groups in coughing and lung lesions at necropsy. While intratracheal inoculation and seeder animals are frequently used in swine production settings, intranasal or aerosol exposure are viable alternatives to achieve MHP infection. Regardless of the route, steps should be taken to verify the purity of the inoculum and, in the case of aerosol exposure, avert the unintended exposure of personnel and animals to other pathogens.
Collapse
|
13
|
Betlach AM, Fano E, VanderWaal K, Pieters M. Effect of multiple vaccinations on transmission and degree of Mycoplasma hyopneumoniae infection in gilts. Vaccine 2020; 39:767-774. [PMID: 33342634 DOI: 10.1016/j.vaccine.2020.10.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/26/2023]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) infections continue to result in significant respiratory challenges in the swine industry worldwide. Vaccination for M. hyopneumoniae is commonly utilized, as reduction in bacterial loads and clinical severity in vaccinated pigs have been shown. However, the effect of M. hyopneumoniae vaccination on transmission across different pig populations has been minimally investigated. The aim of this pilot study was to evaluate the effect of multiple vaccinations on M. hyopneumoniae infection, transmission, and genetic variability in infected and susceptible gilt populations. Thirty-two naïve gilts were allocated to four treatment groups: (1) Vaccinated seeder (VS); (2) Non-vaccinated seeder (NVS); (3) Vaccinated contact (VC); and (4) Non-vaccinated contact (NVC). At 5, 7, and 9 weeks of age, all gilts selected to be vaccinated received a commercial M. hyopneumoniae bacterin for a total of 3 doses. At 11 weeks of age, VS and NVS gilts were inoculated with M. hyopneumoniae to become seeders. At 28 days post-inoculation (dpi), VS and NVS gilts were individually relocated to clean experimental rooms, where they were placed in contact with one age-matched VC or NVC gilt (1:1 ratio) for 14 days. Blood and tracheal samples, bronchial swabs, and lung lesions were collected and/or evaluated for M. hyopneumoniae infection. In this study, a three-dose vaccination strategy against M. hyopneumoniae significantly reduced bacterial load in seeder gilts. Furthermore, a numerical reduction in M. hyopneumoniae lung lesions at 28 dpi was observed in VS gilts. All VC gilts in the VS:VC treatment group pairing remained M. hyopneumoniae negative, compared to other groups in which 1-2 transmission events occurred per treatment group. Results from this investigation provide insight on the potential impact of multiple vaccinations on reducing M. hyopneumoniae transmission and infection. Further research encompassing vaccinations of gilt groups in field settings is necessary to validate findings.
Collapse
Affiliation(s)
- Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Swine Vet Center, St. Peter, MN, USA
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
14
|
Oh Y, Baek J, Lee J, Cho SH, Park C. The first assessment to detect Mycoplasma hyopneumoniae by sampling laryngeal swabs to investigate sow stability in South Korea. BMC Vet Res 2020; 16:452. [PMID: 33228643 PMCID: PMC7681762 DOI: 10.1186/s12917-020-02663-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022] Open
Abstract
Background Mycoplasma hyopneumoniae (M. hyopneumoniae), a representative pathogen causing swine enzootic pneumonia, generally infects piglets vertically. However, it is difficult to ascertain the M. hyopneumoniae infection state of sows due to limited detection methods. This report investigated sow herd stability by applying nested PCR to laryngeal swabs of suckling pigs, which is reportedly the most sensitive method. Results M. hyopneumoniae was detected in 14 farms (63.6%) and 127 piglets (6.5%). The prevalence of sows likely to transmit M. hyopneumoniae in herds (11.1%) was calculated. In addition, there was a significant difference in detection rates among farms depending on herd size, gilt replacement rate, acclimation method, and antibiotic usage, suggesting various parameters that influence sow stability. Conclusions The results demonstrated that laryngeal swabs from suckling pigs have provided useful information regarding vertical transmission from sows in South Korean farm conditions. This result demonstrated that farms with larger herd sizes, higher gilt replacement rates, and a practice of naturally exposing gilts for acclimation had higher detection rates in weaning piglets, indicating an unstable sow infection state.
Collapse
Affiliation(s)
- YuSik Oh
- Boehringer Ingelheim Animal Health Korea Ltd., Seoul, South Korea.,Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - JongHyuk Baek
- Department of Animal Vaccine Development, BioPOA, 593-26 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - JoongBok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Sun-Hee Cho
- Department of Animal Vaccine Development, BioPOA, 593-26 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Changhoon Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Yongdu-dong, Jung-gu, Daejeon, South Korea.
| |
Collapse
|
15
|
Poeta Silva APS, Magtoto RL, Souza Almeida HM, McDaniel A, Magtoto PD, Derscheid RJ, Merodio MM, Matias Ferreyra FS, Gatto IRH, Baum DH, Clavijo MJ, Arruda BL, Zimmerman JJ, Giménez-Lirola LG. Performance of Commercial Mycoplasma hyopneumoniae Serum Enzyme-Linked Immunosorbent Assays under Experimental and Field Conditions. J Clin Microbiol 2020; 58:e00485-20. [PMID: 32967897 PMCID: PMC7685885 DOI: 10.1128/jcm.00485-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023] Open
Abstract
Mycoplasma hyopneumoniae is an economically significant pathogen of swine. M. hyopneumoniae serum antibody detection via commercial enzyme-linked immunosorbent assays (ELISAs) is widely used for routine surveillance in commercial swine production systems. Samples from two studies were used to evaluate assay performance. In study 1, 6 commercial M. hyopneumoniae ELISAs were compared using serum samples from 8-week-old cesarean-derived, colostrum-deprived (CDCD) pigs allocated to the following 5 inoculation groups of 10 pigs each: (i) negative control, (ii) Mycoplasma flocculare (strain 27399), (iii) Mycoplasma hyorhinis (strain 38983), (iv) Mycoplasma hyosynoviae (strain 34428), and (v) M. hyopneumoniae (strain 232). Weekly serum and daily oral fluid samples were collected through 56 days postinoculation (dpi). The true status of pigs was established by PCR testing on oral fluids samples over the course of the observation period. Analysis of ELISA performance at various cutoffs found that the manufacturers' recommended cutoffs were diagnostically specific, i.e., produced no false positives, with the exceptions of 2 ELISAs. An analysis based on overall misclassification error rates found that 4 ELISAs performed similarly, although one assay produced more false positives. In study 2, the 3 best-performing ELISAs from study 1 were compared using serum samples generated under field conditions. Ten 8-week-old pigs were intratracheally inoculated with M. hyopneumoniae Matched serum and tracheal samples (to establish the true pig M. hyopneumoniae status) were collected at 7- to 14-day intervals through 98 dpi. Analyses of sensitivity and specificity showed similar performance among these 3 ELISAs. Overall, this study provides an assessment of the performance of current M. hyopneumoniae ELISAs and an understanding of their use in surveillance.
Collapse
Affiliation(s)
- Ana Paula S Poeta Silva
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Ronaldo L Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | | | - Aric McDaniel
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Precy D Magtoto
- Pampanga State Agricultural University, Pampanga, Philippines
| | - Rachel J Derscheid
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Maria M Merodio
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Franco S Matias Ferreyra
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Igor R H Gatto
- Universidade Estadual de São Paulo, Jaboticabal, São Paulo, Brazil
| | - David H Baum
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Maria J Clavijo
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
- PIC North America, Hendersonville, Tennessee, USA
| | - Bailey L Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
16
|
Natural transmission and detection of Mycoplasma hyopneumoniae in a naïve gilt population. Vet Microbiol 2020; 248:108819. [PMID: 32891949 DOI: 10.1016/j.vetmic.2020.108819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/01/2020] [Indexed: 11/21/2022]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) continues to be a prevalent and economically important swine respiratory pathogen. For M. hyopneumoniae surveillance, blood samples and/or oral fluids are commonly collected from incoming replacement gilts prior to entering sow farms. However, limitations to this approach exist, particularly due to low sensitivity during acute stages of natural infection, leading to diagnostic uncertainty. Therefore, the objective of this study was to evaluate the natural transmission and detection of M. hyopneumoniae based on the introduction of one infected gilt to a naïve population. Twenty-nine naïve gilts were housed with one M. hyopneumoniae naturally exposed gilt for 8 weeks. Deep tracheal catheters, laryngeal swabs, and blood samples were individually collected from each gilt at 0, 1, 2, 4, 6, and 8 weeks post-contact (wpc), along with one pen-based oral fluid sample. Blood samples were assayed by ELISA, while all other samples were tested by real-time PCR. The transmission rate of M. hyopneumoniae (ꞵ) was estimated using a Bayesian mixed-effects generalized linear model. At 8 wpc, 27 % (8/29) of the naïve gilts had become infected (ꞵ = 0.73 new infected gilts/gilt-week). Seroconversion was detected in 3% of contact gilts at 8 wpc. Oral fluids were negative for M. hyopneumoniae at all samplings. In this study, the natural transmission of M. hyopneumoniae was slow and detection varied based on sample type and timing. Thus, M. hyopneumoniae surveillance protocols should include lower respiratory tract samples that are tested by real-time PCR to avoid the introduction of potentially infected gilts into naïve sow farms.
Collapse
|
17
|
Moiso N, Pieters M, Degano F, Vissio C, Camacho P, Estanguet A, Parada J, Tamiozzo PJ. Detection of Mycoplasma hyopneumoniae in nasal and laryngeal swab specimens in endemically infected pig herds. Vet Rec 2019; 186:27. [PMID: 31732508 DOI: 10.1136/vr.105525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Apparently, laryngeal swabs (LS) are more sensitive than nasal swabs (NS) and allow earlier detection of Mycoplasma hyopneumoniae by PCR. However, antecedents about the compared detection of M hyopneumoniae with NS and LS in growing pigs, from naturally infected herds, are lacking in the literature. Thus, this study compared the PCR detection of M hyopneumoniae from NS and LS in pigs of various ages. METHODS A longitudinal study was performed at two farms where NS and LS were collected from three consecutive groups of 20 pigs at 3, 6, 10, 16 and 22 weeks of age. All samples were analysed by nested PCR for M hyopneumoniae detection. RESULTS The probability of PCR detection of M hyopneumoniae was higher in LS for pigs of all ages (odds ratio (OR)=1.87; 95 per cent confidence interval (CI) 1.31-2.67) and in 22-week-old pigs (OR=4.87; 95 per cent CI 2.86-8.30). The agreement between both sample types was low to moderate (kappa 0.087-0.508), highlighting that M hyopneumoniae does not appear to colonise the respiratory tract in a generalised and consistent fashion. CONCLUSIONS The results suggest that LS could be employed at different ages to achieve greater bacterial detection. Considering that LS is a minimally invasive, highly sensitive sample compared with the traditional NS, it could be suggested to employ this sample type for M hyopneumoniae detection in naturally infected pigs.
Collapse
Affiliation(s)
- Nicolás Moiso
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Maria Pieters
- Veterinary Population Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Facundo Degano
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Claudina Vissio
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.,Instituto para el Desarrollo Agroindustrial y de Salud (IDAS), UNRC- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Argentina
| | - Pablo Camacho
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Abel Estanguet
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Julián Parada
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Argentina
| | - Pablo J Tamiozzo
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| |
Collapse
|
18
|
Sponheim A, Alvarez J, Fano E, Schmaling E, Dee S, Hanson D, Wetzell T, Pieters M. Comparison of the sensitivity of laryngeal swabs and deep tracheal catheters for detection of Mycoplasma hyopneumoniae in experimentally and naturally infected pigs early and late after infection. Vet Microbiol 2019; 241:108500. [PMID: 31767388 DOI: 10.1016/j.vetmic.2019.108500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
Abstract
Detection of Mycoplasma hyopneumoniae infection in live pigs is a critical component to measure the success of disease control or elimination strategies. However, in vivo diagnosis of M. hyopneumoniae is difficult and the imperfect sensitivity of diagnostic tools has been deemed as one of the main challenges. Here, the sensitivity of laryngeal swabs and deep tracheal catheters for detection of M. hyopneumoniae early and late after infection was determined using inoculation status as a gold standard in experimentally infected pigs and a Bayesian approach in naturally infected pigs. Three-hundred and twenty 8-week old seeder pigs were intra-tracheally inoculated with M. hyopneumoniae strain 232 and immediately placed with 1920 contact pigs to achieve a 1:6 seeder-to-contact ratio. A subset of seeders and contacts were longitudinally sampled at 7, 28, 97, and 113 days post-inoculation (dpi) and at 28, 56, 84, and 113 days post-exposure (dpe), respectively, using laryngeal swabs and deep tracheal catheters. Samples were tested for M. hyopneumoniae by a species-specific real-time PCR. The sensitivity of deep tracheal catheters was higher than the one obtained in laryngeal swabs at all samplings (seeders: 36% higher than laryngeal swabs at 7 dpi, 29% higher at 97 dpi, and 44% higher at 113 dpi; contacts: 51% higher at 56 dpe, 42% higher at 84 dpe, and 32% higher at 113 dpe). Our study indicates that deep tracheal catheters were a more sensitive sample than laryngeal swabs. The sensitivity of both sample types varied over time and by exposure method, and these factors should be considered when designing diagnostic strategies.
Collapse
Affiliation(s)
- Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA
| | - Julio Alvarez
- Centro de Vigilancia Sanitaria Veterinaria VISAVET, Universidad Complutense, Madrid, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA
| | - Ethan Schmaling
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA
| | - Scott Dee
- Pipestone Applied Research, Pipestone, MN, USA
| | - Dan Hanson
- Pipestone Applied Research, Pipestone, MN, USA
| | - Thomas Wetzell
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
19
|
Besser TE, Levy J, Ackerman M, Nelson D, Manlove K, Potter KA, Busboom J, Benson M. A pilot study of the effects of Mycoplasma ovipneumoniae exposure on domestic lamb growth and performance. PLoS One 2019; 14:e0207420. [PMID: 30730893 PMCID: PMC6366759 DOI: 10.1371/journal.pone.0207420] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/19/2019] [Indexed: 11/18/2022] Open
Abstract
Mycoplasma ovipneumoniae is a globally distributed pathogen that has been associated with pneumonia in both domestic and wild Caprinae. It is closely related to M. hyopneumoniae, a respiratory pathogen of swine that is associated with decreased growth rates of pigs as well as clinical respiratory disease. In order to assess the effects of M. ovipneumoniae on lamb performance, we generated a cohort of lambs free of M. ovipneumoniae by segregation of test negative ewes after lambing, then compared the growth and carcass quality traits of M. ovipneumoniae-free and -colonized lambs from weaning to harvest. Some signs of respiratory disease were observed during the feeding trial in both lamb groups, but the M. ovipneumoniae-exposed group included more affected lambs and higher average disease scores. At harvest, lungs of lambs in both groups showed few grossly visible lesions, although the M. ovipneumoniae-exposed group did exhibit increased microscopic lung lesions (P<0.05). In addition, M. ovipneumoniae exposed lambs produced lower average daily gains (P<0.05), and lower yield grade carcasses (P<0.05) compared to those of non-exposed lambs. The results demonstrated the feasibility of test and segregation for elimination of M. ovipneumoniae from groups of sheep and suggested that this pathogen may impair lamb growth and productivity even in the absence of overt respiratory disease.
Collapse
Affiliation(s)
- Thomas E. Besser
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman WA, United States of America
- * E-mail:
| | - Jessica Levy
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman WA, United States of America
| | - Melissa Ackerman
- Department of Veterinary Clinical Sciences, Washington State University College of Veterinary Medicine, Pullman WA, United States of America
| | - Danielle Nelson
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman WA, United States of America
| | - Kezia Manlove
- Department of Wildland Resources, Utah State University College of Natural Resources, Logan UT, United States of America
| | - Kathleen A. Potter
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman WA, United States of America
| | - Jan Busboom
- Department of Animal Sciences, Washington State University College of Agricultural, Human, and Natural Resource Sciences, Pullman WA, United States of America
| | - Margaret Benson
- Department of Animal Sciences, Washington State University College of Agricultural, Human, and Natural Resource Sciences, Pullman WA, United States of America
| |
Collapse
|
20
|
Arsenakis I, Michiels A, Schagemann G, Gomez-Duran CO, Boyen F, Haesebrouck F, Maes DGD. Effects of pre-farrowing sow vaccination against Mycoplasma hyopneumoniae on offspring colonisation and lung lesions. Vet Rec 2019; 184:222. [PMID: 30630875 PMCID: PMC6589467 DOI: 10.1136/vr.104972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 11/06/2022]
Abstract
This study investigated Mycoplasma hyopneumoniae colonisation and lung lesions at slaughter in pigs from vaccinated (V) and non-vaccinated (NV) sows, in two herds (A and B). In each herd, two sow batches were V against M. hyopneumoniae with a commercial bacterin at six and three weeks before farrowing and two sow batches remained NV. From each sow batch, laryngeal swabs were collected from the litters of five primiparous sows at weaning and seven days post-weaning. All samples were tested for M. hyopneumoniae by nested PCR. In total, 488 piglets were sampled. At slaughter, the extent of Mycoplasma-like pneumonia lesions (lung lesion score (LLS)) was assessed. The colonisation rates with M. hyopneumoniae at weaning and seven days post-weaning were (V-A=14.2, NV-A=20.0 (P=0.225); V-B=0.9, NV-B=0.8 (P=0.948)) and (V-A=0.8, NV-A=7.0 (P=0.039); V-B=1.8, NV-B=2.5 (P=0.738)), respectively. The average LLS (in per cent) was V-A=15.5, NV-A=26.4 (P=0.021); V-B=9.7, NV-B=8.4 (P=0.541). In conclusion, in herd A, with a substantially higher level of piglet colonisation at weaning than herd B, offspring from V sows had a significantly lower colonisation rate seven days post-weaning and a significantly lower LLS at slaughter compared with the offspring of the NV sows. This implies that sow vaccination might be useful for control of M. hyopneumoniae infections, although significant results may not be achieved at all times (such as in herd B).
Collapse
Affiliation(s)
- Ioannis Arsenakis
- Unit Porcine Health Management, Department of Reproduction, Obstetrics & Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annelies Michiels
- Unit Porcine Health Management, Department of Reproduction, Obstetrics & Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dominiek G D Maes
- Unit Porcine Health Management, Department of Reproduction, Obstetrics & Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
21
|
Garza-Moreno L, Segalés J, Pieters M, Romagosa A, Sibila M. Acclimation strategies in gilts to control Mycoplasma hyopneumoniae infection. Vet Microbiol 2018; 219:23-29. [PMID: 29778201 DOI: 10.1016/j.vetmic.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary causative agent of enzootic pneumonia (EP), one of the most economically important infectious disease for the swine industry worldwide. M. hyopneumoniae transmission occurs mainly by direct contact (nose-to-nose) between infected to susceptible pigs as well as from infected dams to their offspring (sow-to-piglet). Since disease severity has been correlated with M. hyopneumoniae prevalence at weaning in some studies, and gilts are considered the main bacterial shedders, an effective gilt acclimation program should help controlling M. hyopneumoniae in swine farms. The present review summarizes the different M. hyopneumoniae monitoring strategies of incoming gilts and recipient herd and proposes a farm classification according to their health statuses. The medication and vaccination programs against M. hyopneumoniae most used in replacement gilts are reviewed as well. Gilt replacement acclimation against M. hyopneumoniae in Europe and North America indicates that vaccination is the main strategy used, but there is a current trend in US to deliberately expose gilts to the pathogen.
Collapse
Affiliation(s)
- Laura Garza-Moreno
- IRTA, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra Spain.
| | - Maria Pieters
- Departament of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States.
| | - Anna Romagosa
- PIC Europe, C/ Pau Vila 22, 2º 6ª, 08174 Sant Cugat del Vallés, Barcelona, Spain.
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
22
|
Maes D, Sibila M, Kuhnert P, Segalés J, Haesebrouck F, Pieters M. Update on Mycoplasma hyopneumoniae infections in pigs: Knowledge gaps for improved disease control. Transbound Emerg Dis 2017; 65 Suppl 1:110-124. [PMID: 28834294 DOI: 10.1111/tbed.12677] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Indexed: 02/07/2023]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary pathogen of enzootic pneumonia, a chronic respiratory disease in pigs. Infections occur worldwide and cause major economic losses to the pig industry. The present paper reviews the current knowledge on M. hyopneumoniae infections, with emphasis on identification and analysis of knowledge gaps for optimizing control of the disease. Close contact between infected and susceptible pigs is the main route of M. hyopneumoniae transmission. Management and housing conditions predisposing for infection or disease are known, but further research is needed to better understand M. hyopneumoniae transmission patterns in modern pig production systems, and to assess the importance of the breeding population for downstream disease control. The organism is primarily found on the mucosal surface of the trachea, bronchi and bronchioles. Different adhesins and lipoproteins are involved in the adherence process. However, a clear picture of the virulence and pathogenicity of M. hyopneumoniae is still missing. The role of glycerol metabolism, myoinositol metabolism and the Mycoplasma Ig binding protein-Mycoplasma Ig protease system should be further investigated for their contribution to virulence. The destruction of the mucociliary apparatus, together with modulating the immune response, enhances the susceptibility of infected pigs to secondary pathogens. Clinical signs and severity of lesions depend on different factors, such as management, environmental conditions and likely also M. hyopneumoniae strain. The potential impact of strain variability on disease severity is not well defined. Diagnostics could be improved by developing tests that may detect virulent strains, by improving sampling in live animals and by designing ELISAs allowing discrimination between infected and vaccinated pigs. The currently available vaccines are often cost-efficient, but the ongoing research on developing new vaccines that confer protective immunity and reduce transmission should be continued, as well as optimization of protocols to eliminate M. hyopneumoniae from pig herds.
Collapse
Affiliation(s)
- D Maes
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - P Kuhnert
- Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - J Segalés
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - F Haesebrouck
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
23
|
Takeuti KL, de Barcellos DESN, de Andrade CP, de Almeida LL, Pieters M. Infection dynamics and genetic variability of Mycoplasma hyopneumoniae in self-replacement gilts. Vet Microbiol 2017; 208:18-24. [PMID: 28888635 DOI: 10.1016/j.vetmic.2017.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022]
Abstract
The aim of this study was to assess the longitudinal pattern of M. hyopneumoniae detection in self-replacement gilts at various farms and to characterize the genetic diversity among samples. A total of 298 gilts from three M. hyopneumoniae positive farms were selected at 150days of age (doa). Gilts were tested for M. hyopneumoniae antibodies by ELISA, once in serum at 150 doa and for M. hyopneumoniae detection in laryngeal swabs by real time PCR two or three times. Also, 425 piglets were tested for M. hyopneumoniae detection in laryngeal swabs. A total of 103 samples were characterized by Multiple Locus Variable-number tandem repeats Analysis. Multiple comparison tests were performed and adjusted using Bonferroni correction to compare prevalences of positive gilts by ELISA and real time PCR. Moderate to high prevalence of M. hyopneumoniae in gilts was detected at 150 doa, which decreased over time, and different detection patterns were observed among farms. Dam-to-piglet transmission of M. hyopneumoniae was not detected. The characterization of M. hyopneumoniae showed 17 different variants in all farms, with two identical variants detected in two of the farms. ELISA testing showed high prevalence of seropositive gilts at 150 doa in all farms. Results of this study showed that circulation of M. hyopneumoniae in self-replacement gilts varied among farms, even under similar production and management conditions. In addition, the molecular variability of M. hyopneumoniae detected within farms suggests that in cases of minimal replacement gilt introduction bacterial diversity maybe farm specific.
Collapse
Affiliation(s)
- Karine L Takeuti
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - David E S N de Barcellos
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline P de Andrade
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura L de Almeida
- Virology Laboratory, Institute of Veterinary Researches Desidério Finamor, Eldorado do Sul, RS, Brazil
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
24
|
Hernandez-Garcia J, Robben N, Magnée D, Eley T, Dennis I, Kayes SM, Thomson JR, Tucker AW. The use of oral fluids to monitor key pathogens in porcine respiratory disease complex. Porcine Health Manag 2017; 3:7. [PMID: 28405463 PMCID: PMC5382517 DOI: 10.1186/s40813-017-0055-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/13/2017] [Indexed: 01/28/2023] Open
Abstract
Background The usefulness of oral fluid (OF) sampling for surveillance of infections in pig populations is already accepted but its value as a tool to support investigations of porcine respiratory disease complex (PRDC) has been less well studied. This study set out to describe detection patterns of porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), swine influenza virus type A (SIV) and Mycoplasma hyopneumoniae (M. hyo) among farms showing differing severity of PRDC. The study included six wean-to-finish pig batches from farms with historical occurrence of respiratory disease. OF samples were collected from six pens every two weeks from the 5th to the 21st week of age and tested by real time PCR for presence of PRRSV, SIV and M. hyo and by quantitative real time PCR for PCV2. Data was evaluated alongside clinical and post-mortem observations, mortality rate, slaughter pathology, histopathology, and immunohistochemistry testing data for PCV2 antigen where available. Results PRRSV and M. hyo were detectable in OF but with inconsistency between pens at the same sampling time and within pens over sequential sampling times. Detection of SIV in clinical and subclinical cases showed good consistency between pens at the same sampling time point with detection possible for periods of 2–4 weeks. Quantitative testing of OF for PCV2 indicated different patterns and levels of detection between farms unaffected or affected by porcine circovirus diseases (PCVD). There was good correlation of PCR results for multiple samples collected from the same pen but no associations were found between prevalence of positive test results and pen location in the building or sex of pigs. Conclusions Detection patterns for PRRSV, SIV and M. hyo supported the effectiveness of OF testing as an additional tool for diagnostic investigation of PRDC but emphasised the importance of sampling from multiple pens and on multiple occasions. Preliminary evidence supported the measurement of PCV2 load in pooled OF as a tool for prediction of clinical or subclinical PCVD at farm level.
Collapse
Affiliation(s)
- Juan Hernandez-Garcia
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB30ES Cambridge, England, UK
| | | | | | - Thomas Eley
- Royal Veterinary College, University of London, London, England, UK
| | | | - Sara M Kayes
- SAC Consulting Veterinary, Scotland's Rural College (SRUC), Penicuik, Midlothian Scotland, UK
| | - Jill R Thomson
- SAC Consulting Veterinary, Scotland's Rural College (SRUC), Penicuik, Midlothian Scotland, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB30ES Cambridge, England, UK
| |
Collapse
|
25
|
Takeuti KL, de Barcellos DESN, de Lara AC, Kunrath CF, Pieters M. Detection of Mycoplasma hyopneumoniae in naturally infected gilts over time. Vet Microbiol 2017; 203:215-220. [PMID: 28619147 DOI: 10.1016/j.vetmic.2017.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/15/2022]
Abstract
Mycoplasma hyopneumoniae causes a chronic respiratory infection in pigs and its transmission occurs mainly by direct contact and by vertical transmission (sow-to-piglet). The objective of this study was to assess the detection dynamics and persistence of M. hyopneumoniae natural infection in replacement gilts. Forty-four twenty-day-old gilts were selected from a M. hyopneumoniae positive farm and followed up to one day prior to their first weaning. Laryngeal swabs were collected every 30days, starting at day 20, for M. hyopneumoniae detection by real-time PCR, resulting in 12 samplings. Piglets born to selected females were sampled via laryngeal swabs one day prior to weaning to evaluate sow-to-piglet transmission. The M. hyopneumoniae prevalence was estimated at each one of the 12 samplings in gilts and a multiple comparison test and Bonferroni correction were performed. Bacterial detection in gilts started at 110days of age (doa) and a significant increase (p<0.05) occurred at 140 doa. The M. hyopneumoniae prevalence remained above 20% from 140 to 230 doa, decreasing thereafter. However, it did not reach 0% at any sampling after 110 doa. In this study, M. hyopneumoniae was not detected in piglets sampled prior to weaning. The M. hyopneumoniae detection pattern showed that in natural infections, gilts were positive for M. hyopneumoniae for one to three months, but occasionally long-term detection may occur. Moreover, the lack of M. hyopneumoniae detection throughout the study in 18.2% of gilts indicated the existence of negative subpopulations in positive herds.
Collapse
Affiliation(s)
- Karine L Takeuti
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - David E S N de Barcellos
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
26
|
Pieters M, Daniels J, Rovira A. Comparison of sample types and diagnostic methods for in vivo detection of Mycoplasma hyopneumoniae during early stages of infection. Vet Microbiol 2017; 203:103-109. [PMID: 28619131 DOI: 10.1016/j.vetmic.2017.02.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
Detection of Mycoplasma hyopneumoniae in live pigs during the early stages of infection is critical for timely implementation of control measures, but is technically challenging. This study compared the sensitivity of various sample types and diagnostic methods for detection of M. hyopneumoniae during the first 28days after experimental exposure. Twenty-one 8-week old pigs were intra-tracheally inoculated on day 0 with M. hyopneumoniae strain 232. Two age matched pigs were mock inoculated and maintained as negative controls. On post-inoculation days 0, 2, 5, 9, 14, 21 and 28, nasal swabs, laryngeal swabs, tracheobronchial lavage fluid, and blood samples were obtained from each pig and oral fluid samples were obtained from each room in which pigs were housed. Serum samples were assayed by ELISA for IgM and IgG M. hyopneumoniae antibodies and C-reactive protein. All other samples were tested for M. hyopneumoniae DNA by species-specific real-time PCR. Serum antibodies (IgG) to M. hyopneumoniae were detected in challenge-inoculated pigs on days 21 and 28. M. hyopneumoniae DNA was detected in samples from experimentally inoculated pigs beginning at 5days post-inoculation. Laryngeal swabs at all samplings beginning on day 5 showed the highest sensitivity for M. hyopneumoniae DNA Detection, while oral fluids showed the lowest sensitivity. Although laryngeal swabs are not considered the typical M. hyopneumoniae diagnostic sample, under the conditions of this study laryngeal swabs tested by PCR proved to be a practical and reliable diagnostic sample for M. hyopneumoniae detection in vivo during early-stage infection.
Collapse
Affiliation(s)
- Maria Pieters
- Veterinary Population Medicine Department and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave., St. Paul, MN 55108, USA.
| | - Jason Daniels
- Veterinary Population Medicine Department and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave., St. Paul, MN 55108, USA; Present address: Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Albert Rovira
- Veterinary Population Medicine Department and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave., St. Paul, MN 55108, USA
| |
Collapse
|
27
|
Garcia-Morante B, Segalés J, López-Soria S, de Rozas AP, Maiti H, Coll T, Sibila M. Induction of mycoplasmal pneumonia in experimentally infected pigs by means of different inoculation routes. Vet Res 2016; 47:54. [PMID: 27160189 PMCID: PMC4862235 DOI: 10.1186/s13567-016-0340-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/21/2016] [Indexed: 11/26/2022] Open
Abstract
The purpose of this study was to assess the effect of three different inoculation routes into mycoplasmal pneumonia (MP) in pigs challenged with Mycoplasma hyopneumoniae (M. hyopneumoniae). Thirty six-week-old M. hyopneumoniae seronegative piglets were randomly assigned to four groups: three challenged groups with experimentally inoculated pigs by either the endotracheal (ET; n = 8), intranasal (IN; n = 8) or aerosol (AE; n = 8) routes and one uninfected group (Control; n = 6). Blood samples were collected 1 day before challenge and at necropsy, 28 days post-inoculation (dpi), to assess seroconversion. Laryngeal swabs were collected at −1, 7, 14, 21 and 28 dpi in order to evaluate colonization. At necropsy, lung lesions were scored and lung tissue was collected for histopathological studies and M. hyopneumoniae DNA detection. Broncho-alveolar lavage fluid (BALF) was also obtained to detect M. hyopneumoniae DNA, specific IgA antibodies and cytokines. MP was observed in all inoculated groups, but the ET group displayed a significantly higher number of animals affected by MP as well as a higher mean lung lesion score. These results were paralleled with an earlier seroconversion and upper respiratory tract colonization of M. hyopneumoniae. Additionally, in the ET group, higher levels of pro-inflammatory cytokines and specific IgA antibodies in BALF were found. Under the conditions of the present study, MP was reproduced by the three evaluated inoculation routes. Obtained results suggest that the ET route is the most effective in order to induce MP in pigs experimentally challenged with M. hyopneumoniae.
Collapse
Affiliation(s)
- Beatriz Garcia-Morante
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Boehringer Ingelheim España S.A, Carrer Prat de la Riba, 50, 08174, Sant Cugat del Vallès, Spain
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra, Spain
| | - Sergio López-Soria
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ana Pérez de Rozas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Henrike Maiti
- Boehringer Ingelheim Veterinary Research Center GmbH & Co, BemeroderStraße 31, 30559, Hannover, Germany
| | - Teresa Coll
- Boehringer Ingelheim Veterinary Research Center GmbH & Co, BemeroderStraße 31, 30559, Hannover, Germany
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|