1
|
Radespiel U, Scheumann M. Introduction to the Special Issue Celebrating the Life and Work of Elke Zimmermann. INT J PRIMATOL 2022. [DOI: 10.1007/s10764-022-00307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Septicaemic Listeriosis in a White-Faced Saki (Pithecia pithecia). J Comp Pathol 2022; 194:7-13. [DOI: 10.1016/j.jcpa.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
|
3
|
Casey KM, Karanewsky CJ, Pendleton JL, Krasnow MR, Albertelli MA. Fibrous Osteodystrophy, Chronic Renal Disease, and Uterine Adenocarcinoma in Aged Gray Mouse Lemurs ( Microcebus murinus). Comp Med 2021; 71:256-266. [PMID: 34082858 DOI: 10.30802/aalas-cm-20-000078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The gray mouse lemur (Microcebus murinus, GML) is a nocturnal, arboreal, prosimian primate that is native to Madagascar. Captive breeding colonies of GMLs have been established primarily for noninvasive studies on questions related to circadian rhythms and metabolism. GMLs are increasingly considered to be a strong translational model for neurocognitive aging due to overlapping histopathologic features shared with aged humans. However, little information is available describing the clinical presentations, naturally occurring diseases, and histopathology of aged GMLs. In our colony, a 9 y-old, male, GML was euthanized after sudden onset of weakness, lethargy, and tibial fracture. Evaluation of this animal revealed widespread fibrous osteodystrophy (FOD) of the mandible, maxilla, cranium, appendicular, and vertebral bones. FOD and systemic metastatic mineralization were attributed to underlying chronic renal disease. Findings in this GML prompted periodic colony-wide serum biochemical screenings for azotemia and electrolyte abnormalities. Subsequently, 3 additional GMLs (2 females and 1 male) were euthanized due to varying clinical and serum biochemical presentations. Common to all 4 animals were FOD, chronic renal disease, uterine adenocarcinoma (females only), cataracts, and osteoarthritis. This case study highlights the concurrent clinical and histopathologic abnormalities that are relevant to use of GMLs in the expanding field of aging research.
Collapse
Affiliation(s)
- Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Caitlin J Karanewsky
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
| | - Jozeph L Pendleton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
| | - Mark R Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
| | - Megan A Albertelli
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California;,
| |
Collapse
|
4
|
Schmidtke D. Age affects procedural paired-associates learning in the grey mouse lemur (Microcebus murinus). Sci Rep 2021; 11:1252. [PMID: 33442034 PMCID: PMC7806666 DOI: 10.1038/s41598-021-80960-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/29/2020] [Indexed: 01/12/2023] Open
Abstract
The ability to associate memorized objects with their location in space gradually declines during normal aging and can drastically be affected by neurodegenerative diseases. This study investigates object-location paired-associates learning (PAL) in the grey mouse lemur (Microcebus murinus), a nonhuman primate model of brain aging. Touchscreen-based testing of 6 young adults (1–5 years) and 6 old adults (> 7 years) in the procedural rodent dPAL-task revealed significant age-related performance decline, evident in group differences in the percentage of correct decision during learning and the number of sessions needed to reach a predefined criterion. Response pattern analyses suggest decreased susceptibility to relative stimulus-position biases in young animals, facilitating PAL. Additional data from a subset of “overtrained” individuals (n = 7) and challenge sessions using a modified protocol (sPAL) further suggest that learning criteria routinely used in animal studies on PAL can underestimate the endpoint at which a stable performance is reached and that more conservative criteria are needed to improve construct validity of the task. To conclude, this is the first report of an age effect on dPAL and corroborates the role of mouse lemurs as valuable natural nonhuman primate models in aging research.
Collapse
Affiliation(s)
- Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
5
|
Wittkowski J, Fritz RG, Meier M, Schmidtke D. Conditioning learning in an attentional task relates to age and ventricular expansion in a nonhuman primate (Microcebus murinus). Behav Brain Res 2020; 399:113053. [PMID: 33279643 DOI: 10.1016/j.bbr.2020.113053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 01/25/2023]
Abstract
The grey mouse lemur (Microcebus murinus) is a promising nonhuman primate model for brain ageing and neurodegenerative diseases. Age-related cognitive decline in this model is well described, however, data on possible relations between attention and age, as they are known from humans, are missing. We tested 10 mouse lemurs in a touchscreen-based version of the 5-choice-serial-reaction-time-task (5CSRTT) on visuo-spatial attention: subjects had to interact with a briefly presented stimulus occurring unpredictably in one out of five locations on the touchscreen. Animals were trained to an 80 % performance at a four seconds stimulus presentation duration (SPD) and subsequently challenged by a SPD of two seconds. Additionally, ventricular expansion was assessed using structural magnetic resonance imaging. Trials to the 80 % criterion at four seconds SPD correlated significantly with age and with ventricular expansion, especially around the occipital lobe. Once criterion performance was reached, two seconds challenge performance was independent of age. In four subjects that were additionally challenged with 1.5, 1.0, 0.8, or 0.6 s SPDs or variable delays preceding stimulus presentation, performance linearly declined with decreasing SPD, i.e. increasing attentional demand. In conclusion, this is the first report of 5CSRTT data in mouse lemurs and demonstrates the general applicability of this task of visuo-spatial attention to this nonhuman primate model. Results further demonstrate age-related deficits in learning during acquisition of the 5CSRTT and suggest that both may be linked through age-related atrophy of occipital structures and a resulting deficit in central visual processes.
Collapse
Affiliation(s)
- Jennifer Wittkowski
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Rebecca G Fritz
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Meier
- ZTL-Imaging, Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
6
|
Fritz RG, Zimmermann E, Meier M, Mestre-Francés N, Radespiel U, Schmidtke D. Neurobiological substrates of animal personality and cognition in a nonhuman primate (Microcebus murinus). Brain Behav 2020; 10:e01752. [PMID: 32683780 PMCID: PMC7507526 DOI: 10.1002/brb3.1752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The gray mouse lemur (Microcebus murinus) is an important nonhuman primate model in biomedical research. Numerous studies investigated mouse lemur behavior and possible factors underlying interindividual variation in both, animal personality and cognitive performance. Some effects, such as an age-related decline in executive functioning, have robustly been found across laboratory colonies; however, little is known about the brain structural substrates in mouse lemurs. METHODS Here, we provide first exploratory data linking in vivo magnetic resonance imaging of 34 mouse lemurs to performance in a standardized, touchscreen-based task on object discrimination and reversal learning as well as to animal personality under different scenarios in an open field. RESULTS High interindividual variability in both brain morphometric and behavioral measurements was found, but only few significant correlations between brain structure and behavior were revealed: Object discrimination learning was linked to the volume of the hippocampus and to temporal lobe thickness, while reversal learning was linked to thalamic volume and the thickness of the anterior cingulate lobe. Emergence latency into the open field correlated with volume of the amygdala. General exploration-avoidance in the empty open-field arena correlated with thicknesses of the anterior cingulate lobe and fronto-parietal substructures. Neophilia, assessed as exploration of a novel object placed in the arena, among others, related to the volume of the caudate nucleus. CONCLUSION In summary, our data suggest a prominent role of temporal structures (including the hippocampus) for learning capability, as well as thalamic and anterior cingulate structures for cognitive flexibility and response inhibition. The amygdala, the anterior cingulate lobe, and the caudate nucleus are particularly linked to animal personality in the open-field setting. These findings are congruent with the comparative psychological literature and provide a valuable basis for future studies elucidating aspects of behavioral variation in this nonhuman primate model.
Collapse
Affiliation(s)
- Rebecca Grace Fritz
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Meier
- ZTL-Imaging, Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
7
|
Schmidtke D, Zimmermann E, Trouche SG, Fontès P, Verdier JM, Mestre-Francés N. Linking cognition to age and amyloid-β burden in the brain of a nonhuman primate (Microcebus murinus). Neurobiol Aging 2020; 94:207-216. [PMID: 32650184 DOI: 10.1016/j.neurobiolaging.2020.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
The gray mouse lemur (Microcebus murinus) is a valuable model in research on age-related proteopathies. This nonhuman primate, comparable to humans, naturally develops tau and amyloid-β proteopathies during aging. Whether these are linked to cognitive alterations is unknown. Here, standardized cognitive testing in pairwise discrimination and reversal learning in a sample of 37 aged (>5 years) subjects was combined with tau and amyloid-β histochemistry in individuals that died naturally. Correlation analyses in successfully tested subjects (n = 22) revealed a significant relation between object discrimination learning and age, strongly influenced by outliers, suggesting pathological cases. Where neuroimmunohistochemistry was possible, as subjects deceased, the naturally developed cortical amyloid-β burden was significantly linked to pretraining success (intraneuronal accumulations) and discrimination learning (extracellular deposits), showing that cognitive (pairwise discrimination) performance in old age predicts the natural accumulation of amyloid-β at death. This is the first description of a direct relation between the cortical amyloid-β burden and cognition in a nonhuman primate.
Collapse
Affiliation(s)
- Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover, Hannover, Germany.
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Stéphanie G Trouche
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Pascaline Fontès
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Jean-Michel Verdier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Nadine Mestre-Francés
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| |
Collapse
|
8
|
Pezzotta A, Mazzola M, Spreafico M, Marozzi A, Pistocchi A. Enigmatic Ladies of the Rings: How Cohesin Dysfunction Affects Myeloid Neoplasms Insurgence. Front Cell Dev Biol 2019; 7:21. [PMID: 30873408 PMCID: PMC6400976 DOI: 10.3389/fcell.2019.00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/05/2019] [Indexed: 12/04/2022] Open
Abstract
The genes of the cohesin complex exert different functions, ranging from the adhesion of sister chromatids during the cell cycle, DNA repair, gene expression and chromatin architecture remodeling. In recent years, the improvement of DNA sequencing technologies allows the identification of cohesin mutations in different tumors such as acute myeloid leukemia (AML), acute megakaryoblastic leukemia (AMKL), and myelodysplastic syndromes (MDS). However, the role of cohesin dysfunction in cancer insurgence remains elusive. In this regard, cells harboring cohesin mutations do not show any increase in aneuploidy that might explain their oncogenic activity, nor cohesin mutations are sufficient to induce myeloid neoplasms as they have to co-occur with other causative mutations such as NPM1, FLT3-ITD, and DNMT3A. Several works, also using animal models for cohesin haploinsufficiency, correlate cohesin activity with dysregulated expression of genes involved in myeloid development and differentiation. These evidences support the involvement of cohesin mutations in myeloid neoplasms.
Collapse
Affiliation(s)
- Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Mara Mazzola
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Schmidtke D, Lempp C, Dubicanac M, Radespiel U, Zimmermann E, Baumgärtner W, Kästner S, Meier M, Balkema-Buschmann A, Harris RA, Raveendran M, Muzny DM, Worley KC, Rogers J. Spontaneous Spongiform Brainstem Degeneration in a Young Mouse Lemur ( Microcebus murinus) with Conspicuous Behavioral, Motor, Growth, and Ocular Pathologies. Comp Med 2018; 68:489-495. [PMID: 30486920 DOI: 10.30802/aalas-cm-18-000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we report a case of severe growth retardation and neurologic abnormalities in a female gray mouse lemur (Microcebus murinus), a small NHP species for which the genomic sequence recently became available. The female lemur we present here died on postnatal day 125. This lemur had impaired development of motor skills and showed severe ataxia and tremors. In addition, hearing seemed normal whereas ophthalmic examination revealed incipient bilateral cataracts, abnormal pigmentation in the lens of the left eye, and a missing optokinetic nystagmus, which indicated impaired vision. Most prominently, the lemur showed severe growth retardation. Necropsy revealed maldevelopment of the left reproductive organs and unilateral dilation of the right lateral ventricle, which was confirmed on brain MRI. Brain histology further revealed large, bilateral areas of vacuolation within the brainstem, but immunohistochemistry indicated no sign of pathologic prion protein deposition. Full genomic sequencing of the lemur revealed a probably pathologic mutation in LARGE2 of the LARGE gene family, which has been associated with congenital muscular dystrophies. However, potentially functional mutations in other genes were also present. The observed behavioral and motor signs in the presented animal might have been linked to spongiform degeneration and resulting brainstem dysfunction and progressive muscle weakness. The macroscopic developmental abnormalities and ophthalmic findings might be genetic in origin and linked to the mutation in LARGE2.
Collapse
Affiliation(s)
- Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany; Center for Neuroscience Systems Hannover, Hannover, Lower Saxony, Germany.
| | - Charlotte Lempp
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Marko Dubicanac
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany; Center for Neuroscience Systems Hannover, Hannover, Lower Saxony, Germany
| | - Wolfgang Baumgärtner
- Center for Neuroscience Systems Hannover, Hannover, Lower Saxony, Germany; Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Sabine Kästner
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Martin Meier
- Imaging Center, Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, FriedrichLoeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Mecklenburg Western Pomerania, Germany
| | - R Alan Harris
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Muthuswamy Raveendran
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Donna M Muzny
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jeffrey Rogers
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|