1
|
Dynamics of Serological and Mucosal Antibody Responses against African Swine Fever Viruses in Experimentally Infected Pigs. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/9959847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
African swine fever virus (ASFV) is a lethal swine pathogen, and there is no effective vaccine or treatment available for ASFV infection. Recently, the occurrence of ASFV genotype I and genotype II natural mutants that manifest as subacute, longer-incubation, or persistent infections poses threats to preventing ASFV infection. The dynamics of antibody responses to ASFV are still completely unrevealed, especially the secretion of mucosal antibodies in oral fluid. Here, a systematic analysis was performed of serological and mucosal antibody secretion against 6 ASFV antigens after direct or indirect infection with four different ASFV strains or genotypes, namely, the field virulent genotype II isolate ASFV HLJ/18, the artificially attenuated genotype II strain HLJ/18-7GD, the naturally attenuated genotype II isolate HLJ/HRB1/20, and genotype I isolate SD/DY-I/21. Severe clinical signs of HLJ/18 infection were observed in pigs from 4 days postinoculation. However, no clinical signs were observed in HLJ/18-7GD-infected pigs. The contact pigs cohoused with the pigs intramuscularly infected with the isolate SD/DY-I/21 or HLJ/HRB1/20 only showed chronic clinical signs. Interestingly, the oral fluid sIgA responses to all the selected antigens were significantly stronger and earlier than the serum IgG responses in both HLJ/18- and HLJ/18-7GD-challenged pigs. Although significant fluctuations and individual differences appeared in oral swab sIgA responses in the contact transmission group, they were earlier than the corresponding serological IgG responses. Moreover, according to the comparative analysis of the three infection groups, P54 was proposed to be a dominant target for serological IgG diagnosis, while P30, CD2v, P54, P22, and P10 were more advantageous as mucosal sIgA diagnosis targets. These results highlight the important role of mucosal antibodies in the early diagnosis of ASFV infection and can provide references to screen appropriate targets for ASFV detection.
Collapse
|
2
|
Hao F, Bai Y, Xie X, Yuan T, Wei Y, Xiong Q, Gan Y, Zhang L, Zhang Z, Shao G, Feng Z. Phenotypic characteristics and protective efficacy of an attenuated Mycoplasma hyopneumoniae vaccine by aerosol administration. Vaccine 2022; 40:6074-6083. [PMID: 36109278 DOI: 10.1016/j.vaccine.2022.08.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
With the improvement of large-scale breeding in pig farms, conventional head-by-head immunization has disadvantages with low efficiency and high cost. Considering that most pathogens leading to pulmonary diseases circulate from the respiratory mucosa, immunization through the respiratory tract route has been a highly attractive vaccine delivery strategy. In this study, to develop an effective Mycoplasma hyopneumoniae (Mhp) aerosol vaccine, a customized ultrasonic atomizer was developed. The aerodynamic diameter, activity, and content of the Mhp aerosol vaccine were measured. In addition, piglets were immunized with the Mhp aerosol vaccine, and the immunity of the animal challenge protection test was evaluated. At the end of nebulization, the mass median aerodynamic diameters (MMAD) and geometric standard deviation (GSD) of the aerosol were 2.98 ± 0.02 μm and 1.51 ± 0.02, respectively. Moreover, 10 min after nebulization, the MMAD and GSD of the aerosol were 2.76 ± 0.02 μm and 1.51 ± 0.01, respectively, which were hardly changed. Compared with theoretical value, the actual titer of aerosol vaccines presented in 50% color changing unit (CCU50) after nebulization decreased 0.6. The shape, size, and uniformity of collected aerosols are relatively stable. The proportion of Mhp in aerosol produced by vaccine stock solution and 10 times diluted vaccine solution was 76.52% and 58.82%, respectively, and the average number of Mhp in a single aerosol was 3.06 and 1.51, respectively. In addition, the aerosol vaccine antigen particles could be transported to the lower respiratory tract, a local mucosal immune response was induced in piglets. The vaccine colonized the respiratory tract and significantly decline the lung lesion index after aerosol vaccination. In conclusion, an effective aerosol vaccine against Mhp infection was developed. And this is the first effective assessment for Mhp live vaccine with aerosolization against infection in piglets.
Collapse
Affiliation(s)
- Fei Hao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Yun Bai
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Xing Xie
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Ting Yuan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yanna Wei
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Qiyan Xiong
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yuan Gan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Lei Zhang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Zhenzhen Zhang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Guoqing Shao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Zhixin Feng
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China.
| |
Collapse
|
3
|
Garcia-Morante B, Maes D, Sibila M, Betlach AM, Sponheim A, Canturri A, Pieters M. Improving Mycoplasma hyopneumoniae diagnostic capabilities by harnessing the infection dynamics. Vet J 2022; 288:105877. [PMID: 35901923 DOI: 10.1016/j.tvjl.2022.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Mycoplasma hyopneumoniae remains one of the most problematic bacterial pathogens for pig production. Despite an abundance of observational and laboratory testing capabilities for this organism, diagnostic interpretation of test results can be challenging and ambiguous. This is partly explained by the chronic nature of M. hyopneumoniae infection and its tropism for lower respiratory tract epithelium, which affects diagnostic sensitivities associated with sampling location and stage of infection. A thorough knowledge of the available tools for routine M. hyopneumoniae diagnostic testing, together with a detailed understanding of infection dynamics, are essential for optimizing sampling strategies and providing confidence in the diagnostic process. This study reviewed known information on sampling and diagnostic tools for M. hyopneumoniae and summarized literature reports of the dynamics of key infection outcomes, including clinical signs, lung lesions, pathogen detection, and humoral immune responses. Such knowledge could facilitate better understanding of the performance of different diagnostic approaches at various stages of infection.
Collapse
Affiliation(s)
- Beatriz Garcia-Morante
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Unit Porcine Health Management, Ghent University, Salisburylaan, 133 B-9820 Merelbeke, Belgium
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Swine Vet Center, 1608 S Minnesota Ave, St. Peter, MN 56082, USA
| | - Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd NW, Duluth, GA 30096, USA
| | - Albert Canturri
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, St Paul, 55108 MN, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, 1988 Fitch Ave, St. Paul, MN 55108, USA.
| |
Collapse
|
4
|
Simionatto S, Marchioro SB, dos Santos Barbosa M, Galli V, Brum CB, Jorge S, Dellagostin OA. Development of ELISA Using Recombinant Proteins for the Diagnosis of Mycoplasma hyopneumoniae Infection. Indian J Microbiol 2022; 62:88-95. [PMID: 35068608 PMCID: PMC8758847 DOI: 10.1007/s12088-021-00981-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/02/2021] [Indexed: 01/19/2023] Open
Abstract
In order to develop a more sensitive and reliable method for detection of serum antibodies against Mycoplasma hyopneumoniae infection in pigs, six recombinant proteins of M. hyopneumoniae (P102, P95, P46, P97 like, Lppt, and hypothetical P987) were used for the standardization of an indirect enzyme-linked immunosorbent assay (ELISA). The proteins were evaluated against 50 sera of the specific pathogen-free and 50 sera of pigs with lesions suggestive of infection. The sensitivity was 88%, 86%, 78%, 74%, 66%, and 60% for the proteins P102, P95, P46, P97 like, Lppt, and hypothetical protein P987, respectively. Moreover, the proteins were used to establish the seroprevalence in two different commercial herds (254 sera pigs from farm considered free of M. hyopneumoniae and 246 from farm with clinical signs of enzootic pneumonia and positive serology for M. hyopneumoniae) and the positive rate was 65.2% for P95, 54.6% for P102, 40.2% for P46, 37.2% for P97 like, 17.4% for the hypothetical P987, and 14% for Lppt protein. In addition, the ELISA with six recombinant proteins was compared to commercial HerdCheck kit using 118 random pig sera samples and the results showed that ELISA with recombinant proteins were more sensitive than the commercial test. These data show that the recombinant proteins P95 and P102 are potential targets to be used in diagnostic tests to detect antibodies against M. hyopneumoniae. Although more studies are necessary, this study provides insights that these recombinant proteins can be useful in epidemiological investigations and as potential biomarkers in differentiating infected animals from those vaccinated.
Collapse
Affiliation(s)
- Simone Simionatto
- grid.412335.20000 0004 0388 2432Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS Brazil
| | - Silvana Beutinger Marchioro
- grid.412335.20000 0004 0388 2432Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS Brazil ,grid.8399.b0000 0004 0372 8259Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA Brazil
| | - Marcelo dos Santos Barbosa
- grid.412335.20000 0004 0388 2432Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS Brazil
| | - Vanessa Galli
- grid.411221.50000 0001 2134 6519Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Clarice Brink Brum
- grid.411221.50000 0001 2134 6519Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS Brazil ,grid.411221.50000 0001 2134 6519Programa de Pós Graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Sergio Jorge
- grid.411221.50000 0001 2134 6519Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Odir Antonio Dellagostin
- grid.411221.50000 0001 2134 6519Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS Brazil
| |
Collapse
|
5
|
Mechler-Dreibi ML, Almeida HMS, Sonalio K, Martines MAC, Petri FAM, Zambotti BB, Ferreira MM, Storino GY, Martins TS, Montassier HJ, Sant'Anna OA, Fantini MCA, de Oliveira LG. Oral vaccination of piglets against Mycoplasma hyopneumoniae using silica SBA-15 as an adjuvant effectively reduced consolidation lung lesions at slaughter. Sci Rep 2021; 11:22377. [PMID: 34789792 PMCID: PMC8599662 DOI: 10.1038/s41598-021-01883-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Mycoplasma (M.) hyopneumoniae is the main pathogen of porcine enzootic pneumonia (PEP). Its controlling is challenging, and requires alternative strategies. This study aimed to develop an oral vaccine against M. hyopneumoniae using a nanostructured mesoporous silica (SBA-15) as an adjuvant, and compare its effect with an intramuscular (IM) commercial vaccine (CV). Fifty 24 day-old M. hyopneumoniae-free piglets composed five equal groups for different immunization protocols, consisting of a CV and/or oral immunization (OI). Control piglets did not receive any form of immunization. All piglets were challenged with M. hyopneumoniae strain 232 on D49 by tracheal route. IgA antibody response in the respiratory tract, bacterial shedding and serum IgG were evaluated. The piglets were euthanized on 28 (D77) and 56 (D105) days post-infection. Lung lesions were macroscopically evaluated; lung fragments and bronchoalveolar fluid (BALF) were collected for estimation of bacterial loads by qPCR and/or histopathology examination. All immunization protocols induced reduction on Mycoplasma-like macroscopic lung lesions. IgA Ab responses anti-M. hyopneumoniae, the expression of IL-4 cytokine and a lower expression of IL-8 were induced by CV and OI vaccines, while IgG was induced only by CV. Oral immunization using silica as a carrier-adjuvant can be viable in controlling M. hyopneumoniae infection.
Collapse
Affiliation(s)
- Marina L Mechler-Dreibi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Henrique M S Almeida
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Karina Sonalio
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Mariela A C Martines
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Fernando A M Petri
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Beatriz B Zambotti
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Marcela M Ferreira
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Gabriel Y Storino
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Tereza S Martins
- Department of Chemistry, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Hélio J Montassier
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | | | - Luís Guilherme de Oliveira
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil.
| |
Collapse
|
6
|
Abstract
Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative “omics” results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| |
Collapse
|
7
|
Ding H, Wen Y, Xu Z, Zhou B, Tlili C, Tian Y, Wang Z, Ning Y, Xin J. Development of an ELISA for distinguishing convalescent sera with Mycoplasma hyopneumoniae infection from hyperimmune sera responses to bacterin vaccination in pigs. Vet Med Sci 2021; 7:1831-1840. [PMID: 34021737 PMCID: PMC8464267 DOI: 10.1002/vms3.539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Vaccination with inactivated bacterin is the most popular and practical measure to control enzootic pneumonia. After immunisation with inactivated bacterin, Mycoplasma hyopneumoniae colonised on the respiratory tract and lung stimulates the humoural immune responses and produces IgG and IgA antibodies. ELISA is a widely used serological method to detect M. hyopneumoniae antibodies. However, commercial IgG‐ELISA kit cannot distinguish between inactivated bacterin‐induced hyperimmune sera and convalescent sera stimulated by natural infection. SIgA‐ELISA method needs to collect nasal swabs, but collecting nasal swabs is not easy to operate. Establishment of a discriminative ELISA detecting humoural IgG from convalescent sera but not hyperimmune sera facilitates to evaluate the natural infection of M. hyopneumoniae after inactivated bacterin vaccination. We expressed and purified a recombinant protein named Mhp366‐N which contains an epitope recognised by the convalescent sera but not hyperimmune sera. The developed discriminative IgG‐ELISA could discriminate between inactivated bacterin‐induced hyperimmune sera and convalescent sera and was reproducible, sensitive and specific to M. hyopneumoniae antibody produced by natural infection. Compared to SIgA‐ELISA method, discriminative IgG‐ELISA was more convenient to detect IgG antibody from sera than IgA from nasal swabs, although it has limited sensitivity in the early stages of infection. Additionally, to some extent, it has a potential to avoid the interference of maternally derived IgG antibodies. The established discriminative IgG‐ELISA was efficient to judge the serological IgG antibodies induced from natural infection or inactivated vaccine stimulation and provided a useful method to investigate and evaluate the live organism infection after the application of inactivated bacterin.
Collapse
Affiliation(s)
- Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yukang Wen
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Zuobo Xu
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Bingqian Zhou
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chaker Tlili
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yaqin Tian
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhaodi Wang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yaru Ning
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jiuqing Xin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
8
|
Tian Y, Xu Z, Wen Y, Yang M, Ning Y, Wang Z, Ding H. Development of an indirect ELISA for detection of anti-Mycoplasma hyopneumoniae IgG in naturally infected pathogen-induced convalescent sera. BMC Vet Res 2021; 17:123. [PMID: 33726780 PMCID: PMC7968261 DOI: 10.1186/s12917-021-02828-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Immunization of pigs with an inactivated Mycoplasma hyopneumoniae vaccine (bacterin) generates hyperimmune serum that contains high concentrations of anti-M. hyopneumoniae IgG. Commercially available IgG-ELISA kits cannot distinguish between anti-M. hyopneumoniae IgG in inactivated bacterin-induced hyperimmune sera and convalescent sera resulting from natural M. hyopneumoniae infection. Establishment of an ELISA to detect anti-M. hyopneumoniae IgG in convalescent sera will facilitate the evaluation of the M. hyopneumoniae status of pig farms. RESULTS In this study, we expressed and purified recombinant Mhp366-N protein, which contains an epitope recognized by M. hyopneumoniae convalescent sera but not hyperimmune sera, for use as a coating antigen. For the M. hyopneumoniae convalescent serum IgG-ELISA, the optimal antigen concentration, blocking buffer, blocking time, dilution of serum, incubation time with serum, secondary antibody dilution, secondary antibody incubation time and colorimetric reaction time were 0.25 µg/mL, 2.5 % skim milk, 1 h, 1:500, 0.5 h, 1:10,000, 1 h and 15 min, respectively. Validation of the M. hyopneumoniae convalescent serum IgG-ELISA showed a cut-off value of 0.323, the intra-assay CV ranged from 3.27 to 7.26 %, the inter-assay CV ranged from 3.46 to 5.93 %, and the assay was able to differentiate convalescent sera from antibodies to 7 other porcine respiratory pathogens. The convalescent serum IgG-ELISA detected no anti-M. hyopneumoniae IgG in hyperimmune serum samples while a commercial IgG-ELISA identified 95/145 of these sera as positive. The accuracy of the M. hyopneumoniae convalescent serum IgG-ELISA was comparable to the sIgA-ELISA but better than the commercial IgG-ELISA. CONCLUSIONS The convalescent serum IgG-ELISA is a reproducible, sensitive, and specific indirect ELISA to detect anti-M. hyopneumoniae IgG in naturally infected pathogen-induced convalescent sera. This ELISA could be used to carry out large scale surveillance of M. hyopneumoniae infection in pig farms regardless of vaccination status.
Collapse
Affiliation(s)
- Yaqin Tian
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Zuobo Xu
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Yukang Wen
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Mei Yang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Yaru Ning
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Zhaodi Wang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China. .,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.
| |
Collapse
|
9
|
Gan Y, Xie X, Zhang L, Xiong Q, Shao G, Feng Z. Establishment of a model of Mycoplasma hyopneumoniae infection using Bama miniature pigs. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-00034-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractMycoplasma hyopneumoniae (M. hyopneumoniae), is the primary aetiological agent of enzootic pneumonia leading to chronic respiratory disease prevalent worldwide. Conventional pigs are the only animals used for pathogenicity studies and vaccine evaluations of M. hyopneumoniae. Considering that the challenge animals have better genetic stability and a smaller body size to operate with, an alternative experimental animal model of M. hyopneumoniae infection with Bama miniature pigs was established. Nine seven-week-old snatch-farrowed, porcine colostrum-deprived (SF-pCD) Bama miniature pigs and nine conventional pigs were randomly divided into two infected groups (Bama miniature-infected (BI) and conventional-infected groups (CI), BI and CI, n = 6) and two control groups (Bama miniature control (BC) and conventional control (CC) groups, BC and CC, n = 3). Every piglet was tracheally inoculated with 5 × 108 CCU/mL containing 10% suspension of a stock of frozen lung homogenate from SF-pCD pigs infected with virulent strain JS or sterilized KM2 medium. Typical lung lesions appeared in all infected pigs after necropsy, and the mean gross lung lesions was 17.3 and 13.7 in groups of BI and CI. Serum IgG and nasal sIgA antibody titres were increased significantly. Cilia shedding and mucus staining increased greatly in JS-infected bronchi. Obvious reddish gross lesions and M. hyopneumoniae antigen were detected, especially apparently observed in group of BI. Moreover, DNA copies of M. hyopneumoniae from bronchoalveolar lavage fluid (BALF) of each JS-infected piglet reached more than 108, and M. hyopneumoniae could be re-isolated from each infected BALF. These results indicate that Bama miniature pigs could be used as an alternative and more maneuverable experimental infection model for M. hyopneumoniae and display typical clinical and pathological features consistent with those in conventional pigs.
Collapse
|
10
|
Toll-Like Receptor 2 (TLR2) and TLR4 Mediate the IgA Immune Response Induced by Mycoplasma hyopneumoniae. Infect Immun 2019; 88:IAI.00697-19. [PMID: 31611272 PMCID: PMC6921651 DOI: 10.1128/iai.00697-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
IgA plays an important role in mucosal immunity against infectious pathogens; however, the molecular mechanism of IgA secretion in response to infection remains largely unknown, particularly in Mycoplasma spp. In this study, we found that the levels of IgA in the peripheral blood serum, bronchoalveolar lavage fluid, nasal mucosa, trachea, hilar lymph nodes, and lung tissues of pigs increased significantly after infection with Mycoplasma hyopneumoniae. IgA plays an important role in mucosal immunity against infectious pathogens; however, the molecular mechanism of IgA secretion in response to infection remains largely unknown, particularly in Mycoplasma spp. In this study, we found that the levels of IgA in the peripheral blood serum, bronchoalveolar lavage fluid, nasal mucosa, trachea, hilar lymph nodes, and lung tissues of pigs increased significantly after infection with Mycoplasma hyopneumoniae. Furthermore, IgA and CD11c were detected in the lungs and hilar lymph nodes by immunohistochemical analysis, and colocalization of these two markers indicates that CD11c+ cells play an important role in IgA mucosal immunity induced by M. hyopneumoniae. To investigate the regulatory mechanism of IgA, we separated mouse dendritic cells (DCs) from different tissues and mouse macrophages from the lungs and then cultured mouse B cells together with either DCs or macrophages in vitro. In the mouse lung-DC/B (LDC/B) cell coculture, IgA secretion was increased significantly after the addition of whole-cell lysates of M. hyopneumoniae. The expression of both Toll-like receptor 2 (TLR2) and TLR4 was also upregulated, as determined by mRNA and protein expression analyses, whereas no obvious change in the expression of TLR3 and TLR7 was detected. Moreover, the IgA level decreased to the same as the control group when TLR2 or TLR4 was inhibited instead of TLR8 or TLR7/9. In conclusion, M. hyopneumoniae can stimulate the response of IgA through TLR2 and TLR4 in a mouse LDC/B cell coculture model, and the coculture model is an ideal tool for studying the IgA response mechanism, particularly that with Mycoplasma spp.
Collapse
|