1
|
Jiang X, Wei F, He D, Niu X, Wu B, Wu Q, Tang Y, Diao Y. Co-circulation of multiple genotypes of ARV in poultry in Anhui, China. Avian Pathol 2023; 52:389-400. [PMID: 37314823 DOI: 10.1080/03079457.2023.2226081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/19/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
ABSTRACTPoultry production in China has been experiencing a high incidence of broiler arthritis /tenosynovitis caused by avian orthoreovirus (ARV) since 2013. In the spring of 2020 severe arthritis cases from broiler flocks were identified in a large-scale commercial poultry company in Anhui Province, China. Diseased organs from dead birds were sent for diagnosis to our laboratory. ARVs, including seven broiler-isolates and two breeder-isolates, were successfully harvested and sequenced. Interestingly, the genotypes of ARVs isolated from infected chickens were inconsistent between different flocks, or even between different houses on the same flocks. Pathogenicity testing in chicks confirmed that the seven broiler-isolates were pathogenic strains, which could cause arthritis in infected chickens. Subsequently, a total of 89.66% serum samples collected from apparently healthy adult broiler flocks not vaccinated against ARV tested positive for ARV antibodies, suggesting that low and high virulence reovirus strains may be co-circulating in the farm. To this end, we collected dead embryos of unhatched chicken eggs for pathogen tracing, and the two ARV breeder-isolates isolated indicated that vertical transmission from breeders to progeny should not be underestimated for the prevalence of ARV within broiler flocks. The findings have implications for the evidenced-based formulation of prevention and control strategies.
Collapse
Affiliation(s)
- Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
| | - Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
| | - Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
| | - Xing Niu
- Linyi Vocational University of Science and Technology, Linyi, Shandong, People's Republic of China
| | - Bingrong Wu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
| | - Qiong Wu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, People's Republic of China
| |
Collapse
|
2
|
Yang H, Zhang W, Wang M, Yuan S, Zhang X, Wen F, Guo J, Mei K, Huang S, Li Z. Characterization and pathogenicity evaluation of recombinant novel duck reovirus isolated from Southeast China. Front Vet Sci 2023; 10:1124999. [PMID: 36998638 PMCID: PMC10043381 DOI: 10.3389/fvets.2023.1124999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
The novel duck reovirus (NDRV) emerged in southeast China in 2005. The virus causes severe liver and spleen hemorrhage and necrosis in various duck species, bringing serious harm to waterfowl farming. In this study, three strains of NDRV designated as NDRV-ZSS-FJ20, NDRV-LRS-GD20, and NDRV-FJ19 were isolated from diseased Muscovy ducks in Guangdong and Fujian provinces. Pairwise sequence comparisons revealed that the three strains were closely related to NDRV, with nucleotide sequence identities for 10 genomic fragments ranging between 84.8 and 99.8%. In contrast, the nucleotide sequences of the three strains were only 38.9–80.9% similar to the chicken-origin reovirus and only 37.6–98.9% similar to the classical waterfowl-origin reovirus. Similarly, phylogenetic analysis revealed that the three strains clustered together with NDRV and were significantly different from classical waterfowl-origin reovirus and chicken-origin reovirus. In addition, the analyses showed that the L1 segment of the NDRV-FJ19 strain was a recombinant of 03G and J18 strains. Experimental reproduction of the disease showed that the NDRV-FJ19 strain was pathogenic to both ducks and chickens and could lead to symptoms of hemorrhage and necrosis in the liver and spleen. This was somewhat different from previous reports that NDRV is less pathogenic to chickens. In conclusion, we speculated that the NDRV-FJ19 causing duck liver and spleen necrosis is a new variant of a duck orthoreovirus that is significantly different in pathogenicity from any previously reported waterfowl-origin orthoreovirus.
Collapse
Affiliation(s)
- Huihu Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Wandi Zhang
- Nanyang Vocational College of Agriculture, Nanyang, China
| | - Meihong Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Xuelian Zhang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Kun Mei
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- *Correspondence: Shujian Huang
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- Zhili Li
| |
Collapse
|
3
|
Genetic and pathogenic characteristics of two novel/recombinant avian orthoreovirus. Vet Microbiol 2022; 275:109601. [DOI: 10.1016/j.vetmic.2022.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
4
|
Yan T, Zhu S, Wang H, Li C, Diao Y, Tang Y. Synergistic pathogenicity in sequential coinfection with fowl adenovirus type 4 and avian orthoreovirus. Vet Microbiol 2020; 251:108880. [PMID: 33091795 DOI: 10.1016/j.vetmic.2020.108880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/27/2020] [Indexed: 01/20/2023]
Abstract
Hydropericardium hepatitis syndrome (HHS) is a fatal disease caused by fowl adenovirus serotype 4 (FAdV-4). Avian viral arthritis is an infectious disease characterized by movement disorders caused by avian orthoreovirus (ARV). In the early 2019, our epidemiologic survey on poultry diseases in eight commercial broiler farms in China showed that FAdV-4 and ARV have a high coinfection rate, accounting for 63 % of all ARV-positive samples. We designed chicken embryo and animal models to investigate the synergistic pathogenicity of FAdV-4 and ARV. Weakness and inappetence were observed in all specific-pathogen-free (SPF) chickens of the experimental group. FAdV-4 and ARV coinfection caused severe embryonic body and hepatic hemorrhage in SPF chicken embryos. Compared with the singular ARV-infected group, joint swelling was more severe in all coinfected groups. Compared with single virus infection, the coinfection of the two viruses increased the mortality of SPF chicken embryos and chickens. FAdV-4 and ARV coinfection resulted in significantly severe macroscopic and microscopic lesions of the liver, spleen, and kidney of SPF chickens. The detection results of viral load in allantoic fluid, liver, and cloacal swabs indicated that ARV enhanced FAdV-4 replication in SPF chicken embryos and chickens. Cytokine detection showed a significant change in interleukin-1 (IL-1), IL-6, and interferon-α (IFN-α) levels in coinfected groups compared with those in the single-infected groups. Additionally, FAdV-4 and ARV coinfection caused severe damage to the SPF chicken's immune system. In summary, these findings provide insights into the pathology, prevention, and treatment of FAdV-4 and ARV coinfection.
Collapse
Affiliation(s)
- Tian Yan
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Siming Zhu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Hongzhi Wang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Chong Li
- Hebei Provincial Center of Animal Disease Control and Prevention, Shijiazhuang, Hebei, 050000, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| |
Collapse
|
5
|
Ma L, Shi H, Zhang M, Song Y, Zhang K, Cong F. Establishment of a Real-Time Recombinase Polymerase Amplification Assay for the Detection of Avian Reovirus. Front Vet Sci 2020; 7:551350. [PMID: 33195523 PMCID: PMC7536300 DOI: 10.3389/fvets.2020.551350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Avian reovirus (ARV) infection results in multiple disease manifestations in chicken. A rapid detection method will contribute to early diagnosis and control of the virus infection. The recombinase polymerase amplification (RPA) technology is a nucleic acid amplification method which is experiencing rapid development. In present study, a real-time reverse transcription (RT)-RPA assay was developed for the detection of ARV. The limit of detection of the real-time RT-RPA was 102 copies/μL of ARV genomic RNA standard in 95% of cases. The RT-RPA assay also exhibited remarkable specificity. When the nucleic acids of CRV and other common avian pathogens were subjected to the RT-RPA test, only ARV tested positive, all the other pathogens tested negative. Furthermore, the practicality of the RT-RPA assay in field was confirmed by testing 86 clinical samples. The clinical samples were also detected by qRT-PCR. The detection result by RT-RPA was 96.5% agreement with that of qRT-PCR. As a result of the simplicity and convenience of the assay with high sensitivity and specificity, the probe-based RT-RPA will be an alternative diagnostic assay for the detection of ARV in resource-limited settings.
Collapse
Affiliation(s)
- Lei Ma
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China.,Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Academician Workstation of Animal Disease Control and Nutrition Immunity in Henan Province, Anyang, China
| | - Hongfei Shi
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | - Mingliang Zhang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China.,Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Academician Workstation of Animal Disease Control and Nutrition Immunity in Henan Province, Anyang, China
| | - Yuwei Song
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China.,Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Academician Workstation of Animal Disease Control and Nutrition Immunity in Henan Province, Anyang, China
| | - Kunpeng Zhang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China.,Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Academician Workstation of Animal Disease Control and Nutrition Immunity in Henan Province, Anyang, China
| | - Feng Cong
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| |
Collapse
|
6
|
Ye D, Ji Z, Shi H, Chen J, Shi D, Cao L, Liu J, Li M, Dong H, Jing Z, Wang X, Liu Q, Fan Q, Cong G, Zhang J, Han Y, Zhou J, Gu J, Zhang X, Feng L. Molecular characterization of an emerging reassortant mammalian orthoreovirus in China. Arch Virol 2020; 165:2367-2372. [PMID: 32757058 DOI: 10.1007/s00705-020-04712-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Mammalian orthoreoviruses (MRVs) infect almost all mammals, and there are some reports on MRVs in China. In this study, a novel strain was identified, which was designated as HLJYC2017. The results of genetic analysis showed that MRV HLJYC2017 is a reassortant strain. According to biological information analysis, different serotypes of MRV contain specific amino acid insertions and deletions in the σ1 protein. Neutralizing antibody epitope analysis revealed partial cross-protection among MRV1, MRV2, and MRV3 isolates from China. L3 gene recombination in MRV was identified for the first time in this study. The results of this study provide valuable information on MRV reassortment and evolution.
Collapse
Affiliation(s)
- Dandan Ye
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Zhaoyang Ji
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Hongyan Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Jianfei Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Da Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Liyan Cao
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Jianbo Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Mingwei Li
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Hui Dong
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Zhaoyang Jing
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Xiaobo Wang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Qiuge Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Qianjin Fan
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Guangyi Cong
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Jiyu Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Yuru Han
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Jinyan Gu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China.
| | - Xin Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China.
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|