1
|
Luczo JM, Spackman E. Epitopes in the HA and NA of H5 and H7 avian influenza viruses that are important for antigenic drift. FEMS Microbiol Rev 2024; 48:fuae014. [PMID: 38734891 PMCID: PMC11149724 DOI: 10.1093/femsre/fuae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, East Geelong, Victoria 3219, Australia
| | - Erica Spackman
- Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605, United States
| |
Collapse
|
2
|
Li G, Wang X, Li Q, Yang J, Liu X, Qi W, Guo J, Deng R, Zhang G. Development of an immunochromatographic strip for rapid detection of H7 subtype avian influenza viruses. Virol J 2021; 18:68. [PMID: 33827632 PMCID: PMC8025375 DOI: 10.1186/s12985-021-01537-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND H7N9 avian influenza virus (AIV) including highly and low pathogenic viruses have been detected in China since 2013. H7N9 AIV has a high mortality rate after infection in humans, and most human cases have close contacted with poultry in the live poultry market. Therefore, it is necessary to develop a rapid point-of-care testing (POCT) technique for H7N9 AIV detection. METHODS The H7N9 AIV was inactivated and purified, and was used as the antigen to immunize BALB/c. Twelve H7-HA specific monoclonal antibodies (McAbs) were produced through the hybridoma technique. The McAb 10A8 was conjugated with colloid gold as detecting antibody; McAb 9B6 was dispensed on the nitrocellulose membran as the capture test line and the Goat-anti mouse IgG antibody was dispensed as control line respectively. The immunochromatographic strip was prepared. RESULTS The analysis of ELISA and virus neutralization test showed that the obtained McAbs specifically recognized H7 HA. Based on the prepared strip, the detection of H7 AIV was achieved within 10 min. No cross-reaction occurred between H7 AIVs and other tested viruses. The detection limit of the strip for H7 was 2.4 log10EID50/0.1 mL for chicken swab samples. CONCLUSION The McAbs were specific for H7 and the immunochromatographic strip developed in this study was convenient, rapid and reliable for the detection of H7 AIV. The strip could provide an effective method for the rapid and early detection of H7 AIV.
Collapse
Affiliation(s)
- Ge Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Jifei Yang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Xiao Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510000 China
| | - Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 China
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
3
|
Hu Z, Zhao J, Shi L, Hu J, Hu S, Liu X. Identification of the dominant non-neutralizing epitope in the haemagglutinin of H7N9 avian influenza virus. Virus Res 2021; 298:198409. [PMID: 33819520 DOI: 10.1016/j.virusres.2021.198409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
H7N9 avian influenza vaccines induce high levels of non-neutralizing (nonNeu) antibodies against the haemagglutinin (HA). However, the antigenic epitopes underlying this particular antibody response are still undefined. In this study, a panel of 13 monoclonal antibodies (mAbs) against the HA protein of H7N9 virus was generated and 12 of them had no hemagglutination inhibition and virus neutralizing activities. One linear epitope in the stalk (373-TAA-375) recognized by three mAbs and one conformational epitope in the head (220Q-225S-227G) targeted by one mAb were identified using peptide-based enzyme-linked immunosorbent assay (ELISA) and biopanning of phage display random peptide library. In addition, competition ELISA revealed that the mAb targeting the head epitope strongly inhibited HA-binding of chicken nonNeu anti-H7N9 sera, whereas lower inhibition was observed for chicken neutralizing antisera, indicating the immunodominance of this epitope in the elicitation of nonNeu antibodies. Moreover, the stalk epitope is conserved among the H1-H17 subtypes and the mAb recognizing this epitope exhibited cross-reactivity with different subtypes. In conclusion, two novel nonNeu epitopes in H7N9 HA were identified, and an epitope in the head was identified as an immunodominant epitope underlying the induction of nonNeu H7N9 antibodies. Our results add new knowledge to the molecular basis for antibody immunity against H7N9 vaccines and provide useful implications for vaccine design and modification.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China; Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiangyan Zhao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China; Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Wang Q, Sun Z, Li J, Qin T, Ma H, Chen S, Peng D, Liu X. Identification of a universal antigen epitope of influenza A virus using peptide microarray. BMC Vet Res 2021; 17:22. [PMID: 33413356 PMCID: PMC7792037 DOI: 10.1186/s12917-020-02725-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Background Hemagglutinin is a major surface protein in influenza A virus (IAV), and HA2 is relative conserved among different IAVs. It will be meaningful to identify broad-spectrum epitopes based on the HA2 protein. Results Overlapping peptides of the HA2 protein of the H5N1 IAV A/Mallard/Huadong/S/2005 were synthesized and loaded on modified silica gel film to form a microarray, and antisera against different subtypes of IAVs were used to screen universal epitopes. The selected epitope was further confirmed by western blotting using anti-peptide immune serum and viruses rescued with amino acid substitution. The results showed that 485-FYHKCDNECME-495 of the H5 14th peptide in HA2 had broad-spectrum binding activity with antisera against H1, H3, H4, H5, H6, H7, H8, H9, and H10 subtype IAV. Substitution of amino acids (K or D) in rescued viruses resulted in decreased serum binding, indicating that they were critical residues for serum binding activity. In Immune Epitope Database, some epitopes containing 14–4 peptide were confirmed as MHC-II-restricted CD4 T cell epitope and had effects on releasing IL-2 or IFN. Conclusion The identified epitope should be a novel universal target for detection and vaccine design and its ability to generate immune protection needs further exploration. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02725-5.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhihao Sun
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jingzhi Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215000, People's Republic of China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Hongwei Ma
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215000, People's Republic of China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China
| |
Collapse
|
5
|
OASL Triggered by Novel Goose Astrovirus via ORF2 Restricts Its Replication. J Virol 2020; 94:JVI.01767-20. [PMID: 32967952 DOI: 10.1128/jvi.01767-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Although astroviruses causes enteric diseases and encephalitis in humans and nephritis and hepatitis in poultry, astrovirus infection is thought to be self-limiting. However, little is known about its molecular mechanism. In this study, we found that a novel goose astrovirus (GAstV), GAstV-GD, and its open reading frame 2 (ORF2) could efficiently activate the innate immune response and induce a high level of OASL in vitro and in vivo The truncation assay for ORF2 further revealed that the P2 domain of ORF2 contributed to stimulating OASL, whereas the acidic C terminus of ORF2 attenuated such activation. Moreover, the overexpression and knockdown of OASL could efficiently restrict and promote the viral replication of GAstV-GD, respectively. Our data not only give novel insights for elucidating self-limiting infection by astrovirus but also provide virus and host targets for fighting against astroviruses.IMPORTANCE Astroviruses cause gastroenteritis and encephalitis in human, and nephritis, hepatitis, and gout disease in poultry. However, the host immune response activated by astrovirus is mostly unknown. Here, we found that a novel goose astrovirus, GAstV-GD, and its ORF2 protein could efficiently induce a high level of OASL in vitro and in vivo, which could feed back to restrict the replication of GAstV-GD, revealing novel innate molecules triggered by astroviruses and highlighting that the ORF2 of GAstV-GD and OASL can be potential antiviral targets for astroviruses.
Collapse
|
6
|
Heiss K, Heidepriem J, Fischer N, Weber LK, Dahlke C, Jaenisch T, Loeffler FF. Rapid Response to Pandemic Threats: Immunogenic Epitope Detection of Pandemic Pathogens for Diagnostics and Vaccine Development Using Peptide Microarrays. J Proteome Res 2020; 19:4339-4354. [PMID: 32892628 PMCID: PMC7640972 DOI: 10.1021/acs.jproteome.0c00484] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Emergence and re-emergence of pathogens bearing the risk of becoming a pandemic threat are on the rise. Increased travel and trade, growing population density, changes in urbanization, and climate have a critical impact on infectious disease spread. Currently, the world is confronted with the emergence of a novel coronavirus SARS-CoV-2, responsible for yet more than 800 000 deaths globally. Outbreaks caused by viruses, such as SARS-CoV-2, HIV, Ebola, influenza, and Zika, have increased over the past decade, underlining the need for a rapid development of diagnostics and vaccines. Hence, the rational identification of biomarkers for diagnostic measures on the one hand, and antigenic targets for vaccine development on the other, are of utmost importance. Peptide microarrays can display large numbers of putative target proteins translated into overlapping linear (and cyclic) peptides for a multiplexed, high-throughput antibody analysis. This enabled for example the identification of discriminant/diagnostic epitopes in Zika or influenza and mapping epitope evolution in natural infections versus vaccinations. In this review, we highlight synthesis platforms that facilitate fast and flexible generation of high-density peptide microarrays. We further outline the multifaceted applications of these peptide array platforms for the development of serological tests and vaccines to quickly encounter pandemic threats.
Collapse
Affiliation(s)
- Kirsten Heiss
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
| | - Jasmin Heidepriem
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Nico Fischer
- Section
Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital, INF 324, 69120 Heidelberg, Germany
| | - Laura K. Weber
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christine Dahlke
- Division
of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department
of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German
Center for Infection Research, Partner Site
Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
| | - Thomas Jaenisch
- Heidelberg
Institute of Global Health (HIGH), Heidelberg
University Hospital, Im Neuenheimer Feld 130, 69120 Heidelberg, Germany
- Center
for Global Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
- Department
of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
| | - Felix F. Loeffler
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Li S, Qiao Y, Xu Y, Li P, Nie J, Zhao Q, Chai W, Shi Y, Kong W, Shan Y. Identification of Linear Peptide Immunogens with Verified Broad-spectrum Immunogenicity from the Conserved Regions within the Hemagglutinin Stem Domain of H1N1 Influenza Virus. Immunol Invest 2020; 51:411-424. [PMID: 33078652 DOI: 10.1080/08820139.2020.1834579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Influenza A viruses (IAVs) induce acute respiratory disease and cause severe epidemics and pandemics. Since IAVs exhibit antigenic variation and genome reassortment, the development of broad-spectrum influenza vaccines is crucial. The stem of the hemagglutinin (HA) is highly conserved across IAV strains and thus has been explored in broad-spectrum influenza vaccine studies. The present study aimed to identify viral epitopes capable of eliciting effective host immune responses, which can be explored for the development of broad-spectrum non-strain specific prophylactic options against IAV.Methods: In this study, a series of conserved linear sequences from the HA stem of IAV (H1N1) was recognized by sequence alignment and B/T-cell epitope prediction after being chemically coupled to the Keyhole Limpet Hemocyanin (KLH) protein. The predicted linear epitopes were identified by enzyme-linked immunosorbent assay (ELISA) after animal immunization and then fused with ferritin carriers.Results: Three predicted linear epitopes with relatively strong immunogenicity, P3, P6 and P8 were fused with ferritin carriers P3F, P6F and P8F, respectively to further improve their immunogenicity. Antibody titre of the sera of mice immunized with the recombinant immunogens revealed the elicitation of specific antibody-binding activities by the identified sequences. While hemagglutinin-inhibition activities were not detected in the antisera, neutralizing antibodies against the H1 and H3 virus subtypes were detected by the microneutralization assay.Conclusion: The linear epitopes fused with ferritin identified in this study can lay the foundation for future advancements in development of broad-spectrum subunit vaccine against IAV (H1N1), and give rise to the potential future applicability of ferritin-based antigen delivery nanoplatforms.
Collapse
Affiliation(s)
- Shuang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yongbo Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Xu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Pengju Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Wen Chai
- Changchun Institute of Biological Products Co., Ltd, Changchun, Jilin, China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Yao L, Chen Y, Wang X, Bi Z, Xiao Q, Lei J, Yan Y, Zhou J, Yan L. Identification of antigenic epitopes in the haemagglutinin protein of H7 avian influenza virus. Avian Pathol 2019; 49:62-73. [PMID: 31508993 DOI: 10.1080/03079457.2019.1666971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The H7 subtype avian influenza virus (AIV) has been reported to infect not only poultry but also humans. The haemagglutinin (HA) protein is the major surface antigen of AIV and plays an important role in viral infection. In this study, five monoclonal antibodies (mAbs, 2F8, 3F6, 5C11, 5E2 and 5C12) against the HA protein of H7 virus were produced and characterized. Epitope mapping indicated that 103RESGSS107 was the minimal linear epitope recognized by the mAbs 2F8/3F6/5C11, and mAbs 5E2/5C12 recognized the epitope 103-145aa. The protein sequence alignment of HA indicated that the two epitopes were not found in other subtypes of AIV, and none of the five mAbs cross-reacted with other subtypes, suggesting these mAbs are specific to H7 virus. The epitope 103RESGSS107 was highly conserved among Eurasian lineage strains of H7 AIV, whereas three amino acid substitutions (E104R, E104K and E104G) in the epitope occurred in 98.44% of North-American lineage strains. Any of these single mutations prevented the mutated epitope from being recognized by mAbs 2F8/3F6/5C11; thus, these mAbs can distinguish between Eurasian and North-American lineages of H7 strains. Furthermore, the mAbs 2F8, 3F6 and 5C11 could be highly blocked with H7-positive serum in blocking assays, revealing that 103RESGSS107 may be a dominant epitope stimulating the production of antibodies during viral infection. These results may facilitate future investigations into the structure and function of HA protein, as well as surveillance and detection of H7 virus.RESEARCH HIGHLIGHTSFive mAbs against HA protein of H7 AIV were generated and characterized.Two novel epitopes 103RESGSS107 and 103-145aa were identified.The epitope 103RESGSS107 differs between Eurasian and North-American lineages.The mAbs 2F8, 3F6 and 5C11 could distinguish two lineages of H7 strains.
Collapse
Affiliation(s)
- Lu Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yuqing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xingbo Wang
- Key Laboratory of Animal Virology, Ministry of Agriculture, Zhejiang University, Hangzhou, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhenwei Bi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qian Xiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jing Lei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yan Yan
- Key Laboratory of Animal Virology, Ministry of Agriculture, Zhejiang University, Hangzhou, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology, Ministry of Agriculture, Zhejiang University, Hangzhou, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
9
|
Zhang Y, Xu C, Zhang H, Liu GD, Xue C, Cao Y. Targeting Hemagglutinin: Approaches for Broad Protection against the Influenza A Virus. Viruses 2019; 11:v11050405. [PMID: 31052339 PMCID: PMC6563292 DOI: 10.3390/v11050405] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza A viruses are dynamically epidemic and genetically diverse. Due to the antigenic drift and shift of the virus, seasonal vaccines are required to be reformulated annually to match with current circulating strains. However, the mismatch between vaccinal strains and circulating strains occurs frequently, resulting in the low efficacy of seasonal vaccines. Therefore, several “universal” vaccine candidates based on the structure and function of the hemagglutinin (HA) protein have been developed to meet the requirement of a broad protection against homo-/heterosubtypic challenges. Here, we review recent novel constructs and discuss several important findings regarding the broad protective efficacy of HA-based universal vaccines.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cong Xu
- Research Center of Agricultural of Dongguan City, Dongguan 523086, China.
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12,050 167th PL NE, Redmond, WA 98052, USA.
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|