1
|
Fenollar-Penadés A, Catalá-Gregori P, Tallá-Ferrer V, Castillo MÁ, García-Ferrús M, Jiménez-Belenguer A. Evolution of the Antibiotic Resistance Levels, Multi-Resistance Patterns, and Presence of Antibiotic Resistance Genes in E. coli Isolates from the Feces of Breeding Hens during the Rearing Period. Antibiotics (Basel) 2024; 13:753. [PMID: 39200053 PMCID: PMC11350658 DOI: 10.3390/antibiotics13080753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The food chain acts as an entry point for antibiotic resistance to reach humans and environment. Because of the importance of the poultry sector, we investigated the prevalence and evolution of antibiotic resistance in Escherichia coli isolates from a series of 14,500 breeding hens and their farm environment during the rearing period. Samples included meconium from one-day-old breeders and fecal samples and boot swabs from the breeding sheds of pullets and adult hens. All E. coli isolates from one-day-old chicks, 77% from feces and 61% from boot swabs, were resistant to at least one antibiotic. Cefotaxime and multi-drug resistance in fecal isolates decreased during the rearing period from 41.2% and 80.8% in one-day-old chicks to 3.8% and 33.8% in adults. All genes studied were detected in E. coli from feces and boot swabs, the most common being blaTEM (75%), blaSHV (72%), and qnrB (67%). blaCMY-2 was detected in 100% of one-day-old breeders. The combination of at least one cephalosporin and one quinolone resistance gene was detected in 68.7% of fecal and boot swab isolates. Our results highlight the need to monitor the prevalence of antibiotic resistance on farms and to take appropriate measures to reduce the risk to public and environmental health.
Collapse
Affiliation(s)
- Alejandro Fenollar-Penadés
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain; (A.F.-P.); (M.G.-F.); (A.J.-B.)
| | - Pablo Catalá-Gregori
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), CEU Universities, Universidad CEU Cardenal Herrera, 46115 Alfara del Patriarca, Spain;
| | | | - María Ángeles Castillo
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain; (A.F.-P.); (M.G.-F.); (A.J.-B.)
| | - Miguel García-Ferrús
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain; (A.F.-P.); (M.G.-F.); (A.J.-B.)
| | - Ana Jiménez-Belenguer
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain; (A.F.-P.); (M.G.-F.); (A.J.-B.)
| |
Collapse
|
2
|
Che M, Fresno AH, Calvo-Fernandez C, Hasman H, Kurittu PE, Heikinheimo A, Hansen LT. Comparison of IncK- blaCMY-2 Plasmids in Extended-Spectrum Cephalosporin-Resistant Escherichia coli Isolated from Poultry and Humans in Denmark, Finland, and Germany. Antibiotics (Basel) 2024; 13:349. [PMID: 38667025 PMCID: PMC11047599 DOI: 10.3390/antibiotics13040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Escherichia coli carrying IncK-blaCMY-2 plasmids mediating resistance to extended-spectrum cephalosporins (ESC) has been frequently described in food-producing animals and in humans. This study aimed to characterize IncK-blaCMY-2-positive ESC-resistant E. coli isolates from poultry production systems in Denmark, Finland, and Germany, as well as from Danish human blood infections, and further compare their plasmids. Whole-genome sequencing (Illumina) of all isolates (n = 46) confirmed the presence of the blaCMY-2 gene. Minimum inhibitory concentration (MIC) testing revealed a resistant phenotype to cefotaxime as well as resistance to ≥3 antibiotic classes. Conjugative transfer of the blaCMY-2 gene confirmed the resistance being on mobile plasmids. Pangenome analysis showed only one-third of the genes being in the core with the remainder being in the large accessory gene pool. Single nucleotide polymorphism (SNP) analysis on sequence type (ST) 429 and 1286 isolates showed between 0-60 and 13-90 SNP differences, respectively, indicating vertical transmission of closely related clones in the poultry production, including among Danish, Finnish, and German ST429 isolates. A comparison of 22 ST429 isolates from this study with 80 ST429 isolates in Enterobase revealed the widespread geographical occurrence of related isolates associated with poultry production. Long-read sequencing of a representative subset of isolates (n = 28) allowed further characterization and comparison of the IncK-blaCMY-2 plasmids with publicly available plasmid sequences. This analysis revealed the presence of highly similar plasmids in ESC-resistant E. coli from Denmark, Finland, and Germany pointing to the existence of common sources. Moreover, the analysis presented evidence of global plasmid transmission and evolution. Lastly, our results indicate that IncK-blaCMY-2 plasmids and their carriers had been circulating in the Danish production chain with an associated risk of spreading to humans, as exemplified by the similarity of the clinical ST429 isolate to poultry isolates. Its persistence may be driven by co-selection since most IncK-blaCMY-2 plasmids harbor resistance factors to drugs used in veterinary medicine.
Collapse
Affiliation(s)
- Meiyao Che
- National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark; (M.C.); (C.C.-F.)
| | - Ana Herrero Fresno
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Campus Terra, Universidade da Santiago de Compostela (USC), 27002 Lugo, Spain;
| | - Cristina Calvo-Fernandez
- National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark; (M.C.); (C.C.-F.)
| | - Henrik Hasman
- Reference Laboratory for Antibiotic Resistance, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark;
| | - Paula E. Kurittu
- Department of Food Health and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; (P.E.K.); (A.H.)
| | - Annamari Heikinheimo
- Department of Food Health and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; (P.E.K.); (A.H.)
- Microbiology Unit, Finnish Food Authority, Mustialankatu 3, 00790 Helsinki, Finland
| | | |
Collapse
|
3
|
Pereira A, Sidjabat HE, Davis S, Vong da Silva PG, Alves A, Dos Santos C, Jong JBDC, da Conceição F, Felipe NDJ, Ximenes A, Nunes J, Fária IDR, Lopes I, Barnes TS, McKenzie J, Oakley T, Francis JR, Yan J, Ting S. Prevalence of Antimicrobial Resistance in Escherichia coli and Salmonella Species Isolates from Chickens in Live Bird Markets and Boot Swabs from Layer Farms in Timor-Leste. Antibiotics (Basel) 2024; 13:120. [PMID: 38391506 PMCID: PMC10885974 DOI: 10.3390/antibiotics13020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The rapid emergence of antimicrobial resistance is a global concern, and high levels of resistance have been detected in chicken populations worldwide. The purpose of this study was to determine the prevalence of antimicrobial resistance in Escherichia coli and Salmonella spp. isolated from healthy chickens in Timor-Leste. Through a cross-sectional study, cloacal swabs and boot swabs were collected from 25 live bird markets and two layer farms respectively. E. coli and Salmonella spp. from these samples were tested for susceptibility to six antimicrobials using a disk diffusion test, and a subset was tested for susceptibility to 27 antimicrobials using broth-based microdilution. E. coli and Salmonella spp. isolates showed the highest resistance towards either tetracycline or ampicillin on the disk diffusion test. E. coli from layer farms (odds ratio:5.2; 95%CI 2.0-13.1) and broilers (odds ratio:18.1; 95%CI 5.3-61.2) were more likely to be multi-drug resistant than those from local chickens. Based on the broth-based microdilution test, resistance to antimicrobials in the Timor-Leste Antimicrobial Guidelines for humans were low, except for resistance to ciprofloxacin in Salmonella spp. (47.1%). Colistin resistance in E. coli was 6.6%. Although this study shows that antimicrobial resistance in chickens was generally low in Timor-Leste, there should be ongoing monitoring in commercial chickens as industry growth might be accompanied with increased antimicrobial use.
Collapse
Affiliation(s)
- Abrao Pereira
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Hanna E Sidjabat
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Steven Davis
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Paulo Gabriel Vong da Silva
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Amalia Alves
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Cristibela Dos Santos
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Joanita Bendita da Costa Jong
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Felisiano da Conceição
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Natalino de Jesus Felipe
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Augusta Ximenes
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Junilia Nunes
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Isménia do Rosário Fária
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Isabel Lopes
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | | | - Joanna McKenzie
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - Tessa Oakley
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Joshua R Francis
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Jennifer Yan
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Shawn Ting
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| |
Collapse
|
4
|
Nhung NT, Dutta A, Higginson E, Kermack L, Yen NTP, Phu DH, Kiet BT, Choisy M, Geskus RB, Baker S, Carrique-Mas J. Impact of antimicrobial use on abundance of antimicrobial resistance genes in chicken flocks in Vietnam. JAC Antimicrob Resist 2023; 5:dlad090. [PMID: 37484028 PMCID: PMC10362913 DOI: 10.1093/jacamr/dlad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023] Open
Abstract
Objectives We investigated longitudinally Vietnamese small-scale chicken flocks in order to characterize changes in antimicrobial resistance gene (ARG) content over their life cycle, and the impact of antimicrobial use (AMU) on an intervention consisting of veterinary advice provision. Methods AMU data and faecal samples were collected from 83 flocks (25 farms) at day-old, mid- and late-production (∼4 month cycle). Using high-throughput real-time PCR, samples were investigated for 94 ARGs. ARG copies were related to 16S rRNA and ng of DNA (ngDNA). Impact of AMU and ARGs in day-olds was investigated by mixed-effects models. Results Flocks received a mean (standard error, SE) animal daily dose (ADD) of 736.7 (83.0) and 52.1 (9.9) kg in early and late production, respectively. Overall, ARGs/16S rRNA increased from day-old (mean 1.47; SE 0.10) to mid-production (1.61; SE 0.16), further decreasing in end-production (1.60; SE 0.1) (all P > 0.05). In mid-production, ARGs/16S rRNA increased for aminoglycosides, phenicols, sulphonamides and tetracyclines, decreasing for polymyxins β-lactams and genes that confer resistance to mutiple classes (multi-drug resistance) (MDR). At end-production, aminoglycoside resistance decreased and polymyxin and quinolone resistance increased (all P < 0.05). Results in relation to ngDNA gave contradictory results. Neither AMU nor ARGs in day-olds had an impact on subsequent ARG abundance. The intervention resulted in 74.2% AMU reduction; its impact on ARGs depended on whether ARGs/ngDNA (+14.8%) or ARGs/16S rRNA metrics (-10.7%) (P > 0.05) were computed. Conclusions The flocks' environment (contaminated water, feed and residual contamination) is likely to play a more important role in transmission of ARGs to flocks than previously thought. Results highlight intriguing differences in the quantification of ARGs depending on the metric chosen.
Collapse
Affiliation(s)
- Nguyen Thi Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Avijit Dutta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
- Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Ellen Higginson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
| | - Leanne Kermack
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
| | | | - Doan Hoang Phu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Bach Tuan Kiet
- Sub-Department of Animal Health and Production, Dong Thap Province, Cao Lanh, Vietnam
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Ronald B Geskus
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
| | - Juan Carrique-Mas
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Food and Agriculture Organization of the United Nations (FAO), Hanoi, Vietnam
| |
Collapse
|
5
|
Zhu Y, Pang L, Lai S, Xie X, Zhang H, Yu J, Wu J, Qi H, Zhou Q, Feng J, Zhang A. Deciphering risks of resistomes and pathogens in intensive laying hen production chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161790. [PMID: 36702267 DOI: 10.1016/j.scitotenv.2023.161790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial resistance (AMR) and pathogens derived from food animals and their associated environments have emerged as challenging threats to humans from a health perspective, but our understanding of these risks and their key prevention and control points in the current intensive breeding industry remains poor. By creating an integral composition and risk profile of the resistome and microbiome through metagenomics in feces, flies, dust, sewage, and soil along the four-stage laying hen production chain, we found that the whole production chain is a hotspot for antimicrobial resistance genes (ARGs) with 374 known subtypes and pathogens, including 157 human pathogenic bacteria (HPB). Feces and flies were identified as major risk sources for these contaminations. Also, we confirmed a twin-risk of AMR and pathogenicity prevailing throughout the chain, but with different frequencies in each stage; thus, high-risk ARGs in the young chicken stage and highly prioritized HPB in the chick stage contributed 37.33 % to the total AMR risk and 36.36 % to the pathogenic risks, respectively, thus rendering the two stages to be the key prevention points. Moreover, the prevalence of 112 binned ARG supercarriers (for example, Klebsiella pneumoniae harboring 20 ARGs) was unraveled along the production chain, especially in feces, flies, and dust, and 87 potential hosts exhibited high pathogenic risk, high-risk AMR, or both, with 262 ARGs and 816 virulence factor genes. Overall, this study provides first-hand comprehensive data on high-risk ARGs and their pathogenic hosts in the intensive laying hen production chain, and thus is fundamentally important for developing new measures to help control the global AMR crisis induced through the animal-environment-human pathway.
Collapse
Affiliation(s)
- Yixiao Zhu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Shanming Lai
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xianjun Xie
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haoyu Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jie Wu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haoxuan Qi
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Quan Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jingyi Feng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Comparative meta-analysis of antimicrobial resistance from different food sources along with one health approach in Italy and Thailand. One Health 2022; 16:100477. [PMID: 36593979 PMCID: PMC9803827 DOI: 10.1016/j.onehlt.2022.100477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is increasing worldwide due to overuse, misuse and incomplete treatment of antibiotics. Many countries are facing the excessive issue due to the spreading of AMR not only in humans and animals, but also in water and agri-food sector. Our main aim was to perform a competitive meta-analysis of surveillance-resistant microbes and their antimicrobial superintendence in Italy and Thailand. Data have been collected from reports published for the period 2012-2021. A total of 9507 and 11,753 food samples contained 3905 (41.07%) and 3526 (30%) AMR bacteria in Italy and Thailand, respectively. In Italy, the highest microbial prevalence was β-lactam and tetracycline, while in Thailand mostly isolates showed resistance to cephalosporin and aminoglycoside. Our findings contribute to highlighting the increment of AMR related to different microbes with tendency to become multidrug resistant.
Collapse
|
7
|
Torres MC, Vieira TR, Cardoso MRI, Siqueira FM, Borba MR. Perception of poultry veterinarians on the use of antimicrobials and antimicrobial resistance in egg production. Poult Sci 2022; 101:101987. [PMID: 35841632 PMCID: PMC9293647 DOI: 10.1016/j.psj.2022.101987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to describe the perception of veterinarians who work with commercial laying hens in the state of Rio Grande do Sul, Brazil, regarding the use of antibiotics and their possible impacts on animal, human, and environmental health. A descriptive epidemiological study was carried out through face-to-face or web conferencing interviews with the veterinarians that provide technical assistance at commercial laying hen operations. A standardized and structured questionnaire was developed based on the literature and expert opinion, which contained 1 opened and 40 closed questions. Conventional non-probabilistic sampling was used, based on an initial list of 15 veterinarians registered in the Poultry Production Association of Rio Grande do Sul, followed by the snowball technique. The acquisition of 26 contacts of veterinarians was accomplished, and 16 were interviewed. Through the answers obtained it was possible to verify that the interviewees' understanding regarding both the antibiotic resistance impact and the decision-making about the use of antibiotics seem to be linked to their practical experiences. Besides that, according to the veterinarians, farmers can acquire and administer the antimicrobials on their farms. Moreover, both farm storage and administration of lower doses of antibiotics than the recommended one could be contributing factors to resistant bacteria selection. Furthermore, controversially, the professionals believed that resistant bacteria can be transmitted to humans from eggs, but they said that there are no bacteria in eggs. Therefore, the veterinarians´ practices can be improved considering national and international guidelines on antimicrobial resistance to minimize the development of resistance. Finally, it is expected that the present results will contribute to a more complex discussion about antimicrobial resistance, helping to formulate public policies in the egg production industry.
Collapse
Affiliation(s)
- Mariana C Torres
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Rio Grande do Sul CEP: 91540-000, Brazil; Postgraduate Program in Veterinary Science, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Rio Grande do Sul CEP: 91540-000, Brazil
| | - Tatiana R Vieira
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Rio Grande do Sul CEP: 91540-000, Brazil
| | - Marisa R I Cardoso
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Rio Grande do Sul CEP: 91540-000, Brazil
| | - Franciele M Siqueira
- Postgraduate Program in Veterinary Science, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Rio Grande do Sul CEP: 91540-000, Brazil; Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Rio Grande do Sul CEP: 91540-000, Brazil.
| | - Mauro R Borba
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Rio Grande do Sul CEP: 91540-000, Brazil
| |
Collapse
|
8
|
Song H, Yi S, Kim WH, Guk JH, Ha M, Kwak I, Han J, Yeon SC, Cho S. Environmental Perturbations during the Rehabilitation of Wild Migratory Birds Induce Gut Microbiome Alteration and Antibiotic Resistance Acquisition. Microbiol Spectr 2022; 10:e0116322. [PMID: 35730950 PMCID: PMC9430529 DOI: 10.1128/spectrum.01163-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/04/2022] [Indexed: 11/21/2022] Open
Abstract
Wild migratory birds are essential for sustaining healthy ecosystems, but the effects of a rehabilitation period on their gut microbiomes are still unclear. Here, we performed longitudinal sampling, 16S rRNA sequencing, and antibiotic resistance monitoring of the gut microbiome of six species of wild migratory birds protected as natural monuments in South Korea that are subject to short- or long-term rehabilitation periods. Overall, gut microbiome diversity was significantly decreased in the early stages of rehabilitation, and it did not recover to a level comparable to that of wild birds. Moreover, while the abundance of short-chain fatty acid-producing bacteria decreased, that of zoonotic pathogens increased, indicating rehabilitation-induced dysbiosis. The metabolic pathways involved in the degradation of aromatic pollutants were significantly downregulated, suggesting the depletion of pollutant-degrading microorganisms. Antibiotic resistance of Escherichia coli significantly increased during rehabilitation, particularly ciprofloxacin and tetracycline resistance, and seven of the rehabilitated wild birds acquired multidrug resistance. The diet and habitat changes experienced by wild migratory birds during rehabilitation may have induced the observed gut microbiome dysbiosis and acquisition of antibiotic resistance. These rehabilitation-induced alterations might affect the adaptability of wild birds to their natural environments and contribute to the spread of antibiotic resistance after their release. IMPORTANCE Wild migratory birds are key for ecosystem health but highly sensitive to anthropogenic activities. Therefore, wild migratory birds often undergo rehabilitation to prevent species extinction or biodiversity monitoring. However, the impact of rehabilitation on the gut microbiome of wild migratory birds, which is closely associated with host fitness, remains unclear. For the migratory bird species considered natural monuments in South Korea evaluated here, such impacts could include rehabilitation-induced gut microbiome dysbiosis and acquisition of antibiotic resistance, with possible repercussions on the adaptability of wild birds and spread of antibiotic resistance in the environment after their release. Therefore, the dynamics of the gut microbiome and antibiotic resistance should be considered for implementing sustainable rehabilitation strategies.
Collapse
Affiliation(s)
- Hyokeun Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Saehah Yi
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jae-Ho Guk
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Minjong Ha
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Seoul Wildlife Center, Seoul, South Korea
| | - Insik Kwak
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Seoul Wildlife Center, Seoul, South Korea
| | - Janghee Han
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Seoul Wildlife Center, Seoul, South Korea
| | - Seong-Chan Yeon
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Seoul Wildlife Center, Seoul, South Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Center for Veterinary Integrated Medicine Research, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Aldea I, Gibello A, Hernández M, Leekitcharoenphon P, Bortolaia V, Moreno MA. Clonal and plasmid-mediated flow of ESBL/AmpC genes in Escherichia coli in a commercial laying hen farm. Vet Microbiol 2022; 270:109453. [DOI: 10.1016/j.vetmic.2022.109453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
|
10
|
Escherichia coli Isolated from Organic Laying Hens Reveal a High Level of Antimicrobial Resistance despite No Antimicrobial Treatments. Antibiotics (Basel) 2022; 11:antibiotics11040467. [PMID: 35453218 PMCID: PMC9027956 DOI: 10.3390/antibiotics11040467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The present study investigated the resistance characteristics of E. coli isolates originating from 18 organic laying hen flocks. E. coli was isolated from different organs at three different time points, resulting in 209 E. coli isolates. The antibiotic susceptibility was determined by applying a microdilution assay. General, a high resistance rate was found. The antibiotic susceptibility was independent from the presence of pathological lesions, the isolation site, or the affiliation to a pathogenic serogroup. The majority of the isolates proved to be multi-drug-resistant (95.70%), of which 36.84% could be categorized as extensively drug-resistant. All isolates were resistant to oxacillin and tylosin. Resistance rates to amoxicillin (67.94%), cefoxitin (55.98%), ceftazidime (82.30%), colistin (73.68%), nalidixic acid (91.87%), streptomycin (42.58%), tetracycline (53.59%), and sulfamethoxazole (95.22%) were high. None of the isolates revealed pan-drug-resistance. A great heterogeneity of resistance profiles was found between isolates within a flock or from different organs of the same bird, even when isolates originated from the same organ. An increase in antimicrobial resistance was found to be correlated with the age of the birds. The fact, that no antibiotic treatment was applied except in two flocks, indicates that resistant bacteria circulating in the environment pose a threat to organic systems.
Collapse
|
11
|
Stępień-Pyśniak D, Hauschild T, Dec M, Marek A, Brzeski M, Kosikowska U. Antimicrobial resistance and genetic diversity of Enterococcus faecalis from yolk sac infections in broiler chicks. Poult Sci 2021; 100:101491. [PMID: 34695638 PMCID: PMC8554262 DOI: 10.1016/j.psj.2021.101491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022] Open
Abstract
Despite restrictions on the use of antibiotics in poultry, the percentage of multidrug resistant bacteria, isolated from both adult birds and chicks, remains high. These bacteria can spread between countries via hatching eggs or chicks. Antibiotic resistant bacteria can also pose a threat to hatchery and farm workers or to consumers of poultry. The aim of the study was to perform a phenotypic and genotypic analysis of the drug resistance of E. faecalis isolates from yolk sac infections in broiler chicks from Poland and the Netherlands and to determine their genetic diversity. The tests revealed resistance to antibiotics from category D, that is, tetracycline (69.7%); category C – lincomycin (98.7%), erythromycin (51.3%), aminoglycosides (high-level streptomycin and kanamycin resistance – 10.5% and 3.95%, respectively), and chloramphenicol (7.9%); and category B – ciprofloxacin (25% with resistance or intermediate resistance). No resistance to penicillin, ampicillin, high-level gentamicin, tigecycline, or linezolid was noted. Various combinations of the erm(B), tet(M), tet(L), tet(O), ant(6)-Ia, aph(3′)-IIIa, ant(4′)-Ia, cat, and msr(A/B) genes were detected in all isolates (irrespective of the drug-resistance phenotype). Among isolates that carried the tet(M) and/or the tet(L) gene, 28% also had the Int-Tn gene, in contrast with isolates possessing tet(O). There were 28 sequence types and 43 PFGE restriction patterns. About 60% of isolates were of sequences types ST59, ST16, ST116, ST282, ST36, and ST82. Nine new sequence types were shown (ST836-ST844). In conclusion, broiler chicks can be a source of drug-resistant sequence types of E. faecalis that are potentially hazardous for people and animals. Restrictive programs for antibiotic use in broiler breeding flocks should be developed to decrease drug resistance in day-old chicks and reduce economic losses during rearing.
Collapse
Affiliation(s)
- Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, 20-612 Poland.
| | - Tomasz Hauschild
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Białystok, 15-245 Poland
| | - Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, 20-612 Poland
| | - Agnieszka Marek
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, 20-612 Poland
| | - Michał Brzeski
- Veterinary Cabinet - Brzeski and partners, Giżycko, 11-500 Poland
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Medical University in Lublin, Lublin, 20-093 Poland
| |
Collapse
|
12
|
Anyanwu MU, Jaja IF, Okpala COR, Jaja CJI, Oguttu JW, Chah KF, Shoyinka VS. Potential sources and characteristic occurrence of mobile colistin resistance ( mcr) gene-harbouring bacteria recovered from the poultry sector: a literature synthesis specific to high-income countries. PeerJ 2021; 9:e11606. [PMID: 34707919 PMCID: PMC8500085 DOI: 10.7717/peerj.11606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/23/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding the sources, prevalence, phenotypic and genotypic characteristics of mcr gene-harbouring bacteria (MGHB) in the poultry sector is crucial to supplement existing information. Through this, the plasmid-mediated colistin resistance (PMCR) could be tackled to improve food safety and reduce public health risks. Therefore, we conducted a literature synthesis of potential sources and characteristic occurrence of MGHB recovered from the poultry sector specific to the high-income countries (HICs). Colistin (COL) is a last-resort antibiotic used for treating deadly infections. For more than 60 years, COL has been used in the poultry sector globally, including the HICs. The emergence and rapid spread of mobile COL resistance (mcr) genes threaten the clinical use of COL. Currently, ten mcr genes (mcr-1 to mcr-10) have been described. By horizontal and vertical transfer, the mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, and mcr-9 genes have disseminated in the poultry sector in HICs, thus posing a grave danger to animal and human health, as harboured by Escherichia coli, Klebsiella pneumoniae, Salmonella species, and Aeromonas isolates. Conjugative and non-conjugative plasmids are the major backbones for mcr in poultry isolates from HICs. The mcr-1, mcr-3 and mcr-9 have been integrated into the chromosome, making them persist among the clones. Transposons, insertion sequences (IS), especially ISApl1 located downstream and upstream of mcr, and integrons also drive the COL resistance in isolates recovered from the poultry sector in HICs. Genes coding multi-and extensive-drug resistance and virulence factors are often co-carried with mcr on chromosome and plasmids in poultry isolates. Transmission of mcr to/among poultry strains in HICs is clonally unrestricted. Additionally, the contact with poultry birds, manure, meat/egg, farmer's wears/farm equipment, consumption of contaminated poultry meat/egg and associated products, and trade of poultry-related products continue to serve as transmission routes of MGHB in HICs. Indeed, the policymakers, especially those involved in antimicrobial resistance and agricultural and poultry sector stakeholders-clinical microbiologists, farmers, veterinarians, occupational health clinicians and related specialists, consumers, and the general public will find this current literature synthesis very useful.
Collapse
Affiliation(s)
- Madubuike Umunna Anyanwu
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nsukka, Enugu, Nigeria
| | - Ishmael Festus Jaja
- Livestock and Pasture Science, University of Fort Hare, Alice, Eastern Cape, South Africa
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Chinwe-Juliana Iwu Jaja
- Department of Nursing and Midwifery, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, Western Cape, South Africa
| | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, University of South Africa, Johannesburg, Gauteng, South Africa
| | - Kennedy Foinkfu Chah
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nsukka, Enugu, Nigeria
| | - Vincent Shodeinde Shoyinka
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nsukka, Enugu, Nigeria
| |
Collapse
|
13
|
Yang C, Rehman MA, Yin X, Carrillo CD, Wang QI, Yang C, Gong J, Diarra MS. Antimicrobial Resistance Phenotypes and Genotypes of Escherichia coli Isolates from Broiler Chickens Fed Encapsulated Cinnamaldehyde and Citral. J Food Prot 2021; 84:1385-1399. [PMID: 33770170 DOI: 10.4315/jfp-21-033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
ABSTRACT This study was conducted to investigate the effects of in-feed encapsulated cinnamaldehyde (CIN) and citral (CIT) alone or in combination on antimicrobial resistance (AMR) phenotypes and genotypes of Escherichia coli isolates recovered from feces of 6-, 16-, 23-, and 27-day-old broiler chickens. The five dietary treatments including the basal diet (negative control [NC]) and the basal diet supplemented with 55 ppm of bacitracin (BAC), 100 ppm of encapsulated CIN, 100 ppm of encapsulated CIT, or 100 ppm each of encapsulated CIN and encapsulated CIT (CIN+CIT). Antimicrobial susceptibility testing of 240 E. coli isolates revealed that the most common resistance was to β-lactams, aminoglycosides, sulfonamides, and tetracycline; however, the prevalence of AMR decreased (P < 0.05) as birds aged. The prevalence of resistance to amoxicillin-clavulanic acid, ceftiofur, ceftriaxone, cefoxitin, gentamicin, and sulfonamide was lower (P < 0.05) in isolates from the CIN or CIN+CIT groups than in isolates from the NC or BAC groups. Whole genome sequencing of 227 of the 240 isolates revealed 26 AMR genes and 19 plasmids, but the prevalence of some AMR genes and the number of plasmids were lower (P < 0.05) in E. coli isolated from CIN or CIN+CIT birds than in isolates from NC or BAC birds. The most prevalent resistance genes were tet(A) (108 isolates), aac(3)-VIa (91 isolates), aadA1 (86 isolates), blaCMY-2 (78 isolates), sul1 (77 isolates), aph(3)-Ib (58 isolates), aph(6)-Id (58 isolates), and sul2 (24 isolates). The numbers of most virulence genes carried by isolates increased (P < 0.05) in chickens from 6 to 27 days of age. The prevalence of E. coli O21:H16 isolates was lower (P < 0.05) in CIN and CIN+CIT, and the colibacillosis-associated multilocus sequence type (ST117) was most prevalent in isolates from 23-day-old chickens. A phylogenetic tree of whole genome sequences revealed a close relationship between 25 of the 227 isolates and human or broiler extraintestinal pathogenic E. coli strains. These findings indicate that AMR and virulence genotypes of E. coli could be modulated by providing encapsulated CIN or CIN+CIT feed supplements, but further investigation is needed to determine the mechanisms of the effects of these supplements. HIGHLIGHTS
Collapse
Affiliation(s)
- Chongwu Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Muhammad Attiq Rehman
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Catherine D Carrillo
- Canadian Food Inspection Agency, Ottawa Laboratory (Carling), Ottawa, Ontario, Canada K1A 0Z2
| | - Q I Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| |
Collapse
|
14
|
Melo RT, Galvão NN, Guidotti-Takeuchi M, Peres PABM, Fonseca BB, Profeta R, Azevedo VAC, Monteiro GP, Brenig B, Rossi DA. Molecular Characterization and Survive Abilities of Salmonella Heidelberg Strains of Poultry Origin in Brazil. Front Microbiol 2021; 12:674147. [PMID: 34220757 PMCID: PMC8253257 DOI: 10.3389/fmicb.2021.674147] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of the study was to evaluate the genotypic and phenotypic characteristics of 20 strains of S. Heidelberg (SH) isolated from broilers produced in southern Brazil. The similarity and presence of genetic determinants linked to virulence, antimicrobial resistance, biofilm formation, and in silico-predicted metabolic interactions revealed this serovar as a threat to public health. The presence of the ompC, invA, sodC, avrA, lpfA, and agfA genes was detected in 100% of the strains and the luxS gene in 70% of them. None of the strains carries the blaSHV, mcr-1, qnrA, qnrB, and qnrS genes. All strains showed a multidrug-resistant profile to at least three non-β-lactam drugs, which include colistin, sulfamethoxazole, and tetracycline. Resistance to penicillin, ceftriaxone (90%), meropenem (25%), and cefoxitin (25%) were associated with the presence of blaCTX–M and blaCMY–2 genes. Biofilm formation reached a mature stage at 25 and 37°C, especially with chicken juice (CJ) addition. The sodium hypochlorite 1% was the least efficient in controlling the sessile cells. Genomic analysis of two strains identified more than 100 virulence genes and the presence of resistance to 24 classes of antibiotics correlated to phenotypic tests. Protein-protein interaction (PPI) prediction shows two metabolic pathways correlation with biofilm formation. Virulence, resistance, and biofilm determinants must be constant monitoring in SH, due to the possibility of occurring infections extremely difficult to cure and due risk of the maintenance of the bacterium in production environments.
Collapse
Affiliation(s)
- Roberta T Melo
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Newton N Galvão
- Ministry of Agriculture, Livestock and Supply, Rio de Janeiro, Brazil
| | | | - Phelipe A B M Peres
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Belchiolina B Fonseca
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology and Evolution (GEE), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A C Azevedo
- Department of Genetics, Ecology and Evolution (GEE), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme P Monteiro
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Daise A Rossi
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
15
|
Marin C, Sevilla-Navarro S, Lonjedo R, Catalá-Gregori P, Ferrús MA, Vega S, Jiménez-Belenguer A. Genotyping and molecular characterization of antimicrobial resistance in thermophilic Campylobacter isolated from poultry breeders and their progeny in Eastern Spain. Poult Sci 2020; 99:5096-5104. [PMID: 32988548 PMCID: PMC7598336 DOI: 10.1016/j.psj.2020.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/04/2022] Open
Abstract
Thermophilic Campylobacter spp. are recognized as a major cause of acute bacterial diarrhea in humans, with broiler meat being the most common source of human infection. Antibiotic therapy is usually necessary for severe or prolonged infections, especially in immunocompromised populations such as young or elderly individuals. However, different studies have demonstrated a close association between antibiotic use in animal production and antimicrobial resistance (AMR) in humans. In this sense, there is social pressure to reduce antibiotic administration and find adequate alternatives to control the presence of bacterial infections in farms. However, there is a lack of information related to Campylobacter AMR dynamics through the entire production system from breeders to their progeny. It is unknown if resistance genes are a result of adaptation through chromosomal mutation or through horizontal gene transfer, instead of vertical transmission of DNA from the parent to their progeny. Thus, the main objectives of this study were to assess the main AMR rates present in a poultry production system, to study the relationship between Campylobacter AMR profiles from breeders and their progeny, and to study the presence and distribution of antibiotic resistance genes in poultry production. Regarding AMR rates, ciprofloxacin was classified as extremely high, followed by nalidixic acid and tetracyclines that were classified as very high. Moreover, this study demonstrated a relationship between the AMR patterns and genes found from Campylobacter strains isolated in breeders and those present in their progeny.
Collapse
Affiliation(s)
- C Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - S Sevilla-Navarro
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, Spain; Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - R Lonjedo
- Biotechnology Department. Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, 46022 Valencia, Spain
| | - P Catalá-Gregori
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, Spain; Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - M A Ferrús
- Biotechnology Department. Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, 46022 Valencia, Spain
| | - S Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - A Jiménez-Belenguer
- Biotechnology Department. Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
16
|
Herawati O, Untari T, Anggita M, Artanto S. Effect of mangosteen ( Garcinia mangostana L.) peel extract as an antibiotic growth promoter on growth performance and antibiotic resistance in broilers. Vet World 2020; 13:796-800. [PMID: 32546928 PMCID: PMC7245713 DOI: 10.14202/vetworld.2020.796-800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/17/2020] [Indexed: 11/19/2022] Open
Abstract
Background and Aim: Antibiotic resistance poses a risk to human health and has therefore been the focus of research. One of the causes of this resistance is the use of antibiotics as feed additives for animal nutrition. The development of antibiotic resistance in poultry through nutrition feed has drawn attention to the need for alternative antibiotic growth promoters (AGPs). Mangosteen (Garcinia mangostana L.), as a natural source of bioactive phytochemicals, is a potential AGP, but the effect of mangosteen-based treatment on antibiotic resistance in poultry has not been reported to date. Therefore, the aim of this study was to evaluate the effects of mangosteen peel extract as an AGP on body weight gain, feed conversion rate (FCR), and the antibiotic resistance in broilers. Materials and Methods: In this study, 30 1-day-old broiler chicks were divided into three groups. Group A (control) was not administered any treatment in the feed, Group B was treated with 0.3 g/kg colistin as the AGP in the feed, and Group C was treated with 2% mangosteen peel extract as the AGP in the feed; the treatments were administered for 30 days. The observed parameters included the effect of the treatments on body weight gain, feed intake, FCR, and the presentation of antibiotic resistance before and after the treatments (pre-treatment and post-treatment, respectively). Results: Post-treatment, the body weight gain, and feed intake in the broilers were not significantly different among all the groups; however, the body weight gain and FCR were significantly different between the control group and the treatment groups in the 3rd week of treatment and were not significantly different between Groups B and C. The rate of antibiotic resistance to chloramphenicol increased significantly by 40% in Group B post-treatment, but no such increase was observed in Groups A and C. Conclusion: The findings of our study indicate that compared with using colistin as an AGP using mangosteen peel extract as a natural AGP did not have any significantly different effect on body weight gain, feed intake, and FCR (p>0.05) but had a significantly different effect on the rate of antibiotic resistance in broilers (p<0.05). This study indicates the usefulness of mangosteen for improving the overall growth and production performance of broilers without increasing their antibiotic resistance.
Collapse
Affiliation(s)
- Okti Herawati
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Untari
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Marla Anggita
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sidna Artanto
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
17
|
Karunarathna R, Ahmed KA, Liu M, Yu C, Popowich S, Goonewardene K, Gunawardana T, Kurukulasuriya S, Gupta A, Ayalew LE, Willson P, Ngeleka M, Gomis S. Non-viable chicken embryos: an overlooked niche harbouring a significant source of multidrug resistant bacteria in the poultry production. Int J Vet Sci Med 2020; 8:9-17. [PMID: 32083117 PMCID: PMC7006802 DOI: 10.1080/23144599.2019.1698145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global issue, posing a grave threat to the public, animal, and environmental health. The AMR surveillance at the level of the hatchery is crucial to develop an AMR control strategy in the poultry industry. The objective of this study was to investigate the AMR profiles of bacteria isolated from yolk material of non-viable broiler chicken embryos at hatch from commercial hatcheries in western Canada. Antimicrobial susceptibility testing was done using the Kirby–Bauer disk diffusion method focusing on Escherichia coli (n = 170) and Enterococcus (n = 256) species, which are commonly used as indicators of AMR evolution. E. coli isolates were resistant to tetracycline, ampicillin, amoxycillin-clavulanic acid, triple sulpha, ceftiofur, gentamycin, and spectinomycin at the rate of 52.9%, 50.6%, 40.0% 31.8%, 29.4%, 29.4%, 21.8% respectively. Among those, 37.1% of E. coli were multidrug resistant. The descending order of antimicrobial resistance of E. faecalis was; tetracycline (61.9%), ceftiofur (46.2%), bacitracin (43.9%), erythromycin (31.4%) and tylosin (27.4%). Multidrug resistance was detected in 40.4% of E. faecalis isolates, and 85.7% of E. faecium isolates. To the best of our knowledge, this is the first report on AMR surveillance of non-viable chicken embryos. Overall, the present study revealed that non-viable chicken embryos, an overlooked niche for AMR surveillance, harbour multidrug-resistant E. coli, and enterococci that can be a substantial source of superbugs in the environment. Our data also highlight the urgency of including non-viable chicken embryos in AMR surveillance programme to understand AMR dissemination and its control.
Collapse
Affiliation(s)
- Ruwani Karunarathna
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Mengying Liu
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Chenfang Yu
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Kalhari Goonewardene
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Thushari Gunawardana
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Shanika Kurukulasuriya
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Ashish Gupta
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Lisanework E Ayalew
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Philip Willson
- Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, Canada
| | - Musangu Ngeleka
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.,Clinical Microbiology, Prairie Diagnostic Services, Saskatoon, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
18
|
Chuppava B, Keller B, Abd El-Wahab A, Sürie C, Visscher C. Resistance Reservoirs and Multi-Drug Resistance of Commensal Escherichia coli From Excreta and Manure Isolated in Broiler Houses With Different Flooring Designs. Front Microbiol 2019; 10:2633. [PMID: 31781085 PMCID: PMC6857331 DOI: 10.3389/fmicb.2019.02633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/29/2019] [Indexed: 01/30/2023] Open
Abstract
Carriage of resistant bacteria and spread of antimicrobial resistance (AMR) in the environment through animal manure pose a potential risk for transferring AMR from poultry and poultry products to the human population. Managing this risk is becoming one of the most important challenges in livestock farming. This study focused on monitoring the prevalence of multi-drug resistance (MDR) bacteria and development of AMR depending on flooring. In two experiments (2 × 15,000 birds), broilers were always divided in two different stables. In the control group, the entire floor pen was covered with litter material and in the experimental group, the flooring system was partly modified by installing elevated slat platforms equipped with water lines and feed pans. Over the whole fattening period, excreta and manure samples were taken (days 2, 22, and 32). In total, 828 commensal E. coli isolates were collected. The development and prevalence of resistance against four different antibiotic classes (quinolones, β-lactams, tetracyclines, and sulfonamides) were examined by using broth microdilution. At the end of the trials, the amount of manure per square metre was twice as high below the elevated platforms compared to the control group. Approximately 58% of E. coli isolates from excreta showed resistance against at least one antibacterial agent at day 2. During and at the end of the fattening period, resistant E. coli isolates at least against one of the four antibacterial agents were observed in excreta (46 and 46%, respectively), and manure samples (14 and 42%, respectively), despite the absence of antibacterial agent usage. In spite of less contact to manure in the experimental group, the prevalence of resistant E. coli isolates was significantly higher. Birds preferred the elevated areas which inevitably led to a local high population density. Animal-to-animal contact seems to be more important for spreading antimicrobial resistant bacteria than contact to the litter-excreta mixture. Therefore, attractive areas in poultry housing inducing crowding of animals might foster transmission of AMR. In poultry farming, enrichment is one of the most important aims for future systems. Consequently, there is a need for keeping birds not carrying resistant bacteria at the start of life.
Collapse
Affiliation(s)
- Bussarakam Chuppava
- Institute for Animal Nutrition, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| | - Birgit Keller
- Institute for Animal Nutrition, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| | - Amr Abd El-Wahab
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Christian Sürie
- Farm for Education and Research Ruthe, Foundation University of Veterinary Medicine Hannover, Ruthe, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|