1
|
Arrieta-Mendoza D, Garces B, Hidalgo AA, Neira V, Ramirez G, Neira-Carrillo A, Bucarey SA. Design of a New Vaccine Prototype against Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae and M. hyorhinis Based on Multiple Antigens Microencapsulation with Sulfated Chitosan. Vaccines (Basel) 2024; 12:550. [PMID: 38793801 PMCID: PMC11125950 DOI: 10.3390/vaccines12050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
This work evaluated in vivo an experimental-multivalent-vaccine (EMV) based on three Porcine Respiratory Complex (PRC)-associated antigens: Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae (Mhyop) and M. hyorhinis (Mhyor), microencapsulated with sulfated chitosan (M- ChS + PRC-antigens), postulating chitosan sulphate (ChS) as a mimetic of the heparan sulfate receptor used by these pathogens for cell invasion. The EMV was evaluated physicochemically by SEM (Scanning-Electron-Microscopy), EDS (Energy-Dispersive-Spectroscopy), Pdi (Polydispersity-Index) and zeta potential. Twenty weaned pigs, distributed in four groups, were evaluated for 12 weeks. The groups 1 through 4 were as follows: 1-EMV intramuscular-route (IM), 2-EMV oral-nasal-route (O/N), 3-Placebo O/N (M-ChS without antigens), 4-Commercial-vaccine PCV2-Mhyop. qPCR was used to evaluate viral/bacterial load from serum, nasal and bronchial swab and from inguinal lymphoid samples. Specific humoral immunity was evaluated by ELISA. M-ChS + PRC-antigens measured between 1.3-10 μm and presented low Pdi and negative zeta potential, probably due to S (4.26%). Importantly, the 1-EMV protected 90% of challenged animals against PCV2 and Mhyop and 100% against Mhyor. A significant increase in antibody was observed for Mhyor (1-EMV and 2-EMV) and Mhyop (2-EMV), compared with 4-Commercial-vaccine. No difference in antibody levels between 1-EMV and 4-Commercial-vaccine for PCV2-Mhyop was observed. Conclusion: The results demonstrated the effectiveness of the first EMV with M-ChS + PRC-antigens in pigs, which were challenged with Mhyor, PCV2 and Mhyop, evidencing high protection for Mhyor, which has no commercial vaccine available.
Collapse
Affiliation(s)
- Darwuin Arrieta-Mendoza
- Doctoral Program in Forestry, Agricultural and Veterinary Sciences, South Campus, University of Chile, Av. Santa Rosa 11315, La Pintana, Santiago 8820808, Chile;
| | - Bruno Garces
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, 2320 Sazié, Santiago 8320000, Chile; (B.G.); (A.A.H.)
| | - Alejandro A. Hidalgo
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, 2320 Sazié, Santiago 8320000, Chile; (B.G.); (A.A.H.)
| | - Victor Neira
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, Santiago 8320000, Chile; (V.N.); (G.R.)
| | - Galia Ramirez
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, Santiago 8320000, Chile; (V.N.); (G.R.)
| | - Andrónico Neira-Carrillo
- Laboratorio Polyforms, Departamento de Ciencias Biológicas, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, Santiago 8320000, Chile;
| | - Sergio A. Bucarey
- Centro Biotecnológico Veterinario, Biovetec, Departamento de Ciencias Biológicas, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, Santiago 8320000, Chile
| |
Collapse
|
2
|
Földi D, Nagy ZE, Belecz N, Szeredi L, Földi J, Kollár A, Tenk M, Kreizinger Z, Gyuranecz M. Establishment of a Mycoplasma hyorhinis challenge model in 5-week-old piglets. Front Microbiol 2023; 14:1209119. [PMID: 37601388 PMCID: PMC10436309 DOI: 10.3389/fmicb.2023.1209119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Mycoplasma hyorhinis is an emerging swine pathogen with high prevalence worldwide. The main lesions caused are arthritis and polyserositis, and the clinical manifestation of the disease may result in significant economic losses due to decreased weight gain and enhanced medical costs. We aimed to compare two challenge routes to induce M. hyorhinis infection using the same clinical isolate. Methods Five-week-old, Choice hybrid pigs were inoculated on 2 consecutive days by intravenous route (Group IV-IV) or by intravenous and intraperitoneal routes (Group IV-IP). Mock-infected animals were used as control (control group). After the challenge, the clinical signs were recorded for 28 days, after which the animals were euthanized. Gross pathological and histopathological examinations, PCR detection, isolation, and genotyping of the re-isolated Mycoplasma sp. and culture of bacteria other than Mycoplasma sp. were carried out. The ELISA test was used to detect anti-M. hyorhinis immunoglobulins in the sera of all animals. Results Pericarditis and polyarthritis were observed in both challenge groups; however, the serositis was more severe in Group IV-IV. Statistically significant differences were detected between the challenged groups and the control group regarding the average daily weight gain, pathological scores, and ELISA titers. Additionally, histopathological scores in Group IV-IV differed significantly from the scores in the control group. All re-isolated strains were the same or a close genetic variant of the original challenge strain. Discussion Our results indicate that both challenge routes are suitable for modeling the disease. However, due to the evoked more severe pathological lesions and the application being similar to the hypothesized natural route of infection in Group IV-IV, the two-dose intravenous challenge is recommended by the authors to induce serositis and arthritis associated with M. hyorhinis infection.
Collapse
Affiliation(s)
- Dorottya Földi
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Zsófia Eszter Nagy
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Nikolett Belecz
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Levente Szeredi
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | | | - Anna Kollár
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Miklós Tenk
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Zsuzsa Kreizinger
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- MolliScience Kft., Biatorbágy, Hungary
| | - Miklós Gyuranecz
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
- MolliScience Kft., Biatorbágy, Hungary
| |
Collapse
|
3
|
Pageaut H, Lacouture S, Lehoux M, Marois-Créhan C, Segura M, Gottschalk M. Interactions of Mycoplasma hyopneumoniae and/or Mycoplasma hyorhinis with Streptococcus suis Serotype 2 Using In Vitro Co-Infection Models with Swine Cells. Pathogens 2023; 12:866. [PMID: 37513713 PMCID: PMC10383509 DOI: 10.3390/pathogens12070866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial and/or viral co-infections are very common in swine production and cause severe economic losses. Mycoplasma hyopneumoniae, Mycoplasma hyorhinis and Streptococcus suis are pathogenic bacteria that may be found simultaneously in the respiratory tracts of pigs. In the present study, the interactions of S. suis with epithelial and phagocytic cells in the presence or absence of a pre-infection with M. hyopneumoniae and/or M. hyorhinis were studied. Results showed relatively limited interactions between these pathogens. A previous infection with one or both mycoplasmas did not influence the adhesion or invasion properties of S. suis in epithelial cells or its resistance to phagocytosis (including intracellular survival) by macrophages and dendritic cells. The most important effect observed during the co-infection was a clear increment in toxicity for the cells. An increase in the relative expression of the pro-inflammatory cytokines IL-6 and CXCL8 was also observed; however, this was the consequence of an additive effect due to the presence of different pathogens rather than a synergic effect. It may be hypothesized that if one or both mycoplasmas are present along with S. suis in the lower respiratory tract at the same time, then increased damage to epithelial cells and phagocytes, as well as an increased release of pro-inflammatory cytokines, may eventually enhance the invasive properties of S. suis. However, more studies should be carried out to confirm this hypothesis.
Collapse
Affiliation(s)
- Héloïse Pageaut
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sonia Lacouture
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mélanie Lehoux
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Corinne Marois-Créhan
- Ploufragan-Plouzané-Niort Laboratory, Mycoplasmology Bacteriology and Antimicrobial Resistance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22 440 Ploufragan, France
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
4
|
Almeida HMDS, Sonalio K, Mechler-Dreibi ML, Petri FAM, Storino GY, Maes D, de Oliveira LG. Experimental Infection with Mycoplasma hyopneumoniae Strain 232 in Swine Influences the Lower Respiratory Microbiota. Vet Sci 2022; 9:vetsci9120674. [PMID: 36548835 PMCID: PMC9788024 DOI: 10.3390/vetsci9120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma (M.) hyopneumoniae, the etiological agent of swine enzootic pneumonia, has been reported to increase the susceptibility to secondary infections and modulate the respiratory microbiota in infected pigs. However, no studies have assessed the influence of M. hyopneumoniae on the respiratory microbiota diversity under experimental conditions. Therefore, this study evaluated the impact of M. hyopneumoniae infection on the respiratory microbiota of experimentally infected swine over time. To accomplish this, 12 weaned pigs from a M. hyopneumoniae-free farm were divided into two groups: M. hyopneumoniae strain 232 infected (n = 8) and non-infected (n = 4). The first group received 10 mL of Friis medium containing 107 CCU/mL of M. hyopneumoniae while the control group received 10 mL of sterile Friis medium. Inoculation of both groups was performed intratracheally when the animals were 35 days old (d0). At 28 days post-inoculation (dpi) and 56 dpi, 4 infected animals plus 2 controls were humanely euthanized, and biopsy samples of nasal turbinates (NT) and bronchus-alveolar lavage fluid (BALF) samples were collected. The DNA was extracted from the individual samples, and each group had the samples pooled and submitted to next-generation sequencing. Taxonomic analysis, alpha and beta diversity indexes, weighted unifrac, and unweighted unifrac distances were calculated. A high relative frequency (99%) of M. hyopneumoniae in BALF samples from infected animals was observed with no significant variation between time points. The infection did not seem to alter the diversity and evenness of bacterial communities in NT, thus, M. hyopneumoniae relative frequency was low in NT pools from infected animals (28 dpi-0.83%; 56 dpi-0.89%). PCoA diagrams showed that BALF samples from infected pigs were grouped and far from the control samples, whereas NT from infected animals were not separated from the control. Under the present coditions, M. hyopneumoniae infection influenced the lower respiratory microbiota, which could contribute to the increased susceptibility of infected animals to respiratory infections.
Collapse
Affiliation(s)
| | - Karina Sonalio
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, São Paul, Brazil
- Unit of Porcine Health Management, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Marina Lopes Mechler-Dreibi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, São Paul, Brazil
| | - Fernando Antônio Moreira Petri
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, São Paul, Brazil
| | - Gabriel Yuri Storino
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, São Paul, Brazil
| | - Dominiek Maes
- Unit of Porcine Health Management, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Luís Guilherme de Oliveira
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, São Paul, Brazil
- Correspondence:
| |
Collapse
|
5
|
Systematic review of animal-based indicators to measure thermal, social, and immune-related stress in pigs. PLoS One 2022; 17:e0266524. [PMID: 35511825 PMCID: PMC9070874 DOI: 10.1371/journal.pone.0266524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
The intense nature of pig production has increased the animals’ exposure to stressful conditions, which may be detrimental to their welfare and productivity. Some of the most common sources of stress in pigs are extreme thermal conditions (thermal stress), density and mixing during housing (social stress), or exposure to pathogens and other microorganisms that may challenge their immune system (immune-related stress). The stress response can be monitored based on the animals’ coping mechanisms, as a result of specific environmental, social, and health conditions. These animal-based indicators may support decision making to maintain animal welfare and productivity. The present study aimed to systematically review animal-based indicators of social, thermal, and immune-related stresses in farmed pigs, and the methods used to monitor them. Peer-reviewed scientific literature related to pig production was collected using three online search engines: ScienceDirect, Scopus, and PubMed. The manuscripts selected were grouped based on the indicators measured during the study. According to our results, body temperature measured with a rectal thermometer was the most commonly utilized method for the evaluation of thermal stress in pigs (87.62%), as described in 144 studies. Of the 197 studies that evaluated social stress, aggressive behavior was the most frequently-used indicator (81.81%). Of the 535 publications examined regarding immune-related stress, cytokine concentration in blood samples was the most widely used indicator (80.1%). Information about the methods used to measure animal-based indicators is discussed in terms of validity, reliability, and feasibility. Additionally, the introduction and wide spreading of alternative, less invasive methods with which to measure animal-based indicators, such as cortisol in saliva, skin temperature and respiratory rate via infrared thermography, and various animal welfare threats via vocalization analysis are highlighted. The information reviewed was used to discuss the feasible and most reliable methods with which to monitor the impact of relevant stressors commonly presented by intense production systems on the welfare of farmed pigs.
Collapse
|
6
|
Evaluation of colonization, variable lipoprotein-based serological response, and cellular immune response of Mycoplasma hyorhinis in experimentally infected swine. Vet Microbiol 2021; 260:109162. [PMID: 34217902 DOI: 10.1016/j.vetmic.2021.109162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022]
Abstract
Mycoplasma hyorhinis (Mhr) is a commensal of the upper respiratory tract that can be shed by nasal secretions and transmitted by direct contact in neonatal and nursery pigs. Lesions associated with Mhr infection include polyserositis and arthritis; however, systemic Mhr disease pathogenesis is not well characterized. This study aimed to investigate the immunopathogenesis and bacterial dissemination pattern of Mhr using single and multiple inoculation approaches in a caesarian-derived colostrum-deprived (CDCD) pig model. Animals in three treatment groups were inoculated once (Mhr 1; n = 12) or four (Mhr 2; n = 8) times with Mhr or sham-inoculated (NC group; n = 3) nasally and by tonsillar painting. Inoculum consisted of a triple cloned Mhr field isolate (4.5 × 107 CFU/mL) in Friis medium. Clinical signs were evaluated daily during the study. Serum and oral fluid antibody (IgA and IgG) response and cellular immune response were assessed using a recombinant chimeric VlpA-G-based indirect ELISA and by ELISpot, respectively. The presence of Mhr in oral fluids, nasal and oropharyngeal swabs were evaluated by qPCR. At 6 wpi, pigs were euthanized and evaluated for gross lesions consistent with Mhr and bacterial colonization in tonsils by qPCR. No clinical signs or gross lesions consistent with Mhr-associated disease were observed throughout the study. For Mhr 2 group, the presence of IgA and IgG in serum and oral fluids were detected at 2 and 4 weeks post-inoculation (wpi), respectively, while in Mhr 1, only IgA was detected in oral fluids at 6 wpi. The proportion of animals shedding Mhr in nasal secretions varied from 20 to 40 % in the Mhr 1 and 62.5-100% in the Mhr 2 group. However, the proportion of animals shedding Mhr in oropharyngeal swabs was consistent through the study (60 %) in Mhr 1 and fluctuated from 20 % to 87.5 % in Mhr 2 group. The lack of clinical signs and the presence of Mhr specific humoral response and bacterial colonization indicates that the multiple inoculation experimental model may mimic subclinical natural infection in the field. In addition, the humoral and transient cellular response did not result in bacterial clearance. Based on these results, animals would have to be exposed multiple times to mount a detectable immune response.
Collapse
|
7
|
Ferreira MM, Mechler-Dreibi ML, Sonalio K, Almeida HMDS, Ferraz MES, Jacintho APP, Maes D, de Oliveira LG. Co-infections by Mycoplasma hyopneumoniae, Mycoplasma hyorhinis and Mycoplasma flocculare in macroscopic lesions of lung consolidation of pigs at slaughter. Vet Microbiol 2021; 258:109123. [PMID: 34023636 DOI: 10.1016/j.vetmic.2021.109123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Infections with Mycoplasma hyopneumoniae (Mhyo), Mycoplasma hyorhinis (Mhr) and Mycoplasma flocculare (Mfloc) are common in swine. However, the degree of co-infections and the correlations between these mycoplasma co-infection and the severity of macroscopic lung consolidation lesions (MLCL) have not yet been explored in Brazil.The objectives were to quantify Mhyo, Mhr, and Mfloc in MLCL of slaughter pigs in Brazil, and to assess correlations with the degree of MLCL in slaughter pigs. To this end, five groups of lungs were made based on severity of lung lesions, and 80 lungs were collected for each group (400 lungs in total). The Mycoplasmas were quantified using a multiplex qPCR. Statistical differences and comparison between the groups were evaluated, respectively, by the Kruskal-Wallis test (p < 0.05) and Dunn's test (p < 0.05), and the correlation between the data was performed by Spearman's method (p < 0.05). The results revealed that the extent of MLCL showed a positive correlation with the Mhyo estimate (rho = 0.26; p < 0.05), a negative correlation with the Mfloc estimate (rho= -0.15; p < 0.05), and no significant correlation with the Mhr estimate (p = 0, 12). The extension of MLCL showed a positive correlation with the co-infection by Mfloc and Mhr (rho = 0.17; p < 0.05), and no significant correlation with Mhyo and Mhr (p = 0.87), and a negative correlation with Mhyo and Mfloc (rho= -0.28; p < 0.05). This study allowed to infer that, regarding the extension of MLCL, Mhr and Mfloc did not present opportunistic activity in relation to primary infection by Mhyo, but revealed some potential aggravation of these lesions. In addition, Mhyo expressed inhibitory behavior towards Mfloc, suggesting that one can compete with the other's presence.
Collapse
Affiliation(s)
- Marcela Manduca Ferreira
- São Paulo State University, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Marina Lopes Mechler-Dreibi
- São Paulo State University, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Karina Sonalio
- São Paulo State University, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | | | | | - Ana Paula Prudente Jacintho
- São Paulo State University, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University- Ghent, Belgium
| | - Luís Guilherme de Oliveira
- São Paulo State University, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
8
|
Poeta Silva APS, Magtoto RL, Souza Almeida HM, McDaniel A, Magtoto PD, Derscheid RJ, Merodio MM, Matias Ferreyra FS, Gatto IRH, Baum DH, Clavijo MJ, Arruda BL, Zimmerman JJ, Giménez-Lirola LG. Performance of Commercial Mycoplasma hyopneumoniae Serum Enzyme-Linked Immunosorbent Assays under Experimental and Field Conditions. J Clin Microbiol 2020; 58:e00485-20. [PMID: 32967897 PMCID: PMC7685885 DOI: 10.1128/jcm.00485-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023] Open
Abstract
Mycoplasma hyopneumoniae is an economically significant pathogen of swine. M. hyopneumoniae serum antibody detection via commercial enzyme-linked immunosorbent assays (ELISAs) is widely used for routine surveillance in commercial swine production systems. Samples from two studies were used to evaluate assay performance. In study 1, 6 commercial M. hyopneumoniae ELISAs were compared using serum samples from 8-week-old cesarean-derived, colostrum-deprived (CDCD) pigs allocated to the following 5 inoculation groups of 10 pigs each: (i) negative control, (ii) Mycoplasma flocculare (strain 27399), (iii) Mycoplasma hyorhinis (strain 38983), (iv) Mycoplasma hyosynoviae (strain 34428), and (v) M. hyopneumoniae (strain 232). Weekly serum and daily oral fluid samples were collected through 56 days postinoculation (dpi). The true status of pigs was established by PCR testing on oral fluids samples over the course of the observation period. Analysis of ELISA performance at various cutoffs found that the manufacturers' recommended cutoffs were diagnostically specific, i.e., produced no false positives, with the exceptions of 2 ELISAs. An analysis based on overall misclassification error rates found that 4 ELISAs performed similarly, although one assay produced more false positives. In study 2, the 3 best-performing ELISAs from study 1 were compared using serum samples generated under field conditions. Ten 8-week-old pigs were intratracheally inoculated with M. hyopneumoniae Matched serum and tracheal samples (to establish the true pig M. hyopneumoniae status) were collected at 7- to 14-day intervals through 98 dpi. Analyses of sensitivity and specificity showed similar performance among these 3 ELISAs. Overall, this study provides an assessment of the performance of current M. hyopneumoniae ELISAs and an understanding of their use in surveillance.
Collapse
Affiliation(s)
- Ana Paula S Poeta Silva
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Ronaldo L Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | | | - Aric McDaniel
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Precy D Magtoto
- Pampanga State Agricultural University, Pampanga, Philippines
| | - Rachel J Derscheid
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Maria M Merodio
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Franco S Matias Ferreyra
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Igor R H Gatto
- Universidade Estadual de São Paulo, Jaboticabal, São Paulo, Brazil
| | - David H Baum
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Maria J Clavijo
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
- PIC North America, Hendersonville, Tennessee, USA
| | - Bailey L Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
9
|
Li G, Obeng E, Shu J, Shu J, Chen J, Wu Y, He Y. Genomic Variability and Post-translational Protein Processing Enhance the Immune Evasion of Mycoplasma hyopneumoniae and Its Interaction With the Porcine Immune System. Front Immunol 2020; 11:510943. [PMID: 33117335 PMCID: PMC7575705 DOI: 10.3389/fimmu.2020.510943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/27/2020] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) is a geographically widespread and economically devastating pathogen that colonizes ciliated epithelium; the infection of Mhp can damnify the mucociliary functions as well as leading to Mycoplasma pneumonia of swine (MPS). MPS is a chronic respiratory infectious disease with high infectivity, and the mortality can be increased by secondary infections as the host immunity gets down-regulated during Mhp infection. The host immune responses are regarded as the main driving force for the disease development, while MPS is prone to attack repeatedly in farms even with vaccination or other treatments. As one of the smallest microorganisms with limited genome scale and metabolic pathways, Mhp can use several mechanisms to achieve immune evasion effect and derive enough nutrients from its host, indicating that there is a strong interaction between Mhp and porcine organism. In this review, we summarized the immune evasion mechanisms from genomic variability and post-translational protein processing. Besides, Mhp can induce the immune cells apoptosis by reactive oxygen species production, excessive nitric oxide (NO) release and caspase activation, and stimulate the release of cytokines to regulate inflammation. This article seeks to provide some new points to reveal the complicated interaction between the pathogen and host immune system with Mhp as a typical example, further providing some new strategies for the vaccine development against Mhp infection.
Collapse
Affiliation(s)
- Gaojian Li
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Enoch Obeng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jinqi Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Hom-Sun Biosciences Co., Ltd., Shaoxing, China
| | - Jian Chen
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuehong Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
10
|
Persistence in Livestock Mycoplasmas—a Key Role in Infection and Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00149-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Purpose of Review
Mycoplasma, economically important pathogens in livestock, often establishes immunologically complex persistent infections that drive their pathogenesis and complicate prophylaxis and therapy of the caused diseases. In this review, we summarize some of the recent findings concerning cellular and molecular persistence mechanisms related to the pathogenesis of mycoplasma infections in livestock.
Recent Findings
Data from recent studies prove several mechanisms including intracellular lifestyle, immune dysregulation, and autoimmunity as well as microcolony and biofilm formation and apoptosis of different host cell types as important persistence mechanisms in several clinically significant Mycoplasma species, i.e., M. bovis, M. gallisepticum, M. hyopneumoniae, and M. suis.
Summary
Evasion of the immune system and the establishment of persistent infections are key features in the pathogenesis of livestock mycoplasmas. In-depth knowledge of the underlying mechanisms will provide the basis for the development of therapy and prophylaxis strategies against mycoplasma infections.
Collapse
|
11
|
Wei YW, Zhu HZ, Huang LP, Xia DL, Wu HL, Bian HQ, Feng L, Liu CM. Efficacy in pigs of a new inactivated vaccine combining porcine circovirus type 2 and Mycoplasma hyorhinis. Vet Microbiol 2020; 242:108588. [PMID: 32122592 DOI: 10.1016/j.vetmic.2020.108588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/29/2022]
Abstract
Coinfection with porcine circovirus type 2 (PCV2) and Mycoplasma hyorhinis (Mhr) can induce more-severe disease than a single infection with either. We evaluated the efficacy of a new vaccine combining inactivated PCV2 and Mhr, in a model of PCV2 and Mhr infection. Twenty-five 35-day-old PCV2- and Mhr-free pigs were randomly divided into five groups, with five pigs in each group. The pigs in groups 1 and 2 were vaccinated with the combined vaccine and then challenged with Mhr or PCV2, respectively. The pigs in groups 3 and 4 were not vaccinated and then challenged with PCV2 or Mhr, respectively, and group 5 was used as the unvaccinated unchallenged control. Two weeks after booster immunization via the intramuscular route, all the pigs except those in control group 5 were challenged with PCV2 or Mhr. All the pigs were euthanized 28 days after challenge. The pigs in vaccinated groups 1 and 2 showed a significant increase in weight after challenge with PCV2 or Mhr (P < 0.001), with an average daily gain (ADG) of 0.315 kg compared with unvaccinated groups 3 and 4 (0.279 kg). Mhr was isolated from the unvaccinated pig lungs after Mhr challenge, whereas it was not isolated from the vaccinated pigs. No PCV2 or Mhr was detected with PCR or histochemical staining in vaccinated groups 1 and 2. A statistical analysis showed that the PCV2 and Mhr combined vaccine providing protected against PCV2 infection causing viremia and inguinal lymphadenopathy (5 pigs protected out 5) or against Mhr infection causing fiber inflammation (4 pigs out 5). Thus, we have developed an effective combined vaccine for the prevention and control of PCV2 or Mhr infections in swine herds, this will help reduce prevalence of PCV2 and Mhr coinfections.
Collapse
Affiliation(s)
- Yan-Wu Wei
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Ha-ping Street, Xiang-fang Region, Harbin, 150069, China
| | - Hong-Zhen Zhu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Ha-ping Street, Xiang-fang Region, Harbin, 150069, China
| | - Li-Ping Huang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Ha-ping Street, Xiang-fang Region, Harbin, 150069, China
| | - De-Li Xia
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Ha-ping Street, Xiang-fang Region, Harbin, 150069, China
| | - Hong-Li Wu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Ha-ping Street, Xiang-fang Region, Harbin, 150069, China
| | - Hai-Qiao Bian
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Ha-ping Street, Xiang-fang Region, Harbin, 150069, China
| | - Li Feng
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Ha-ping Street, Xiang-fang Region, Harbin, 150069, China
| | - Chang-Ming Liu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Ha-ping Street, Xiang-fang Region, Harbin, 150069, China.
| |
Collapse
|