1
|
Klinhom S, Kunasol C, Sriwichaiin S, Kerdphoo S, Chattipakorn N, Chattipakorn SC, Thitaram C. Characteristics of gut microbiota profiles in Asian elephants (Elephas maximus) with gastrointestinal disorders. Sci Rep 2025; 15:1327. [PMID: 39779898 PMCID: PMC11711614 DOI: 10.1038/s41598-025-85495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Colic and diarrhea are common gastrointestinal (GI) disorders in captive Asian elephants, which can severely impact health and lead to mortality. Gut dysbiosis, indicated by alterations in gut microbiome composition, can be observed in individuals with GI disorders. However, changes in gut microbial profiles of elephants with GI disorders have never been investigated. Thus, this study aimed to elucidate the profiles of gut microbiota in captive elephants with different GI symptoms. Fecal samples were collected from eighteen elephants in Chiang Mai, Thailand, including seven healthy individuals, seven with impaction colic, and four with diarrhea. The samples were subjected to DNA extraction and amplification targeting the V3-V4 region of 16S rRNA gene for next-generation sequencing analysis. Elephants with GI symptoms exhibited a decreased microbial stability, as characterized by a significant reduction in microbiota diversity within individual guts and notable differences in microbial community composition when compared with healthy elephants. These changes included a decrease in the relative abundance of specific bacterial taxa, in elephants with GI symptoms such as a reduction in genera Rubrobacter, Rokubacteria, UBA1819, Nitrospira, and MND1. Conversely, an increase in genera Lysinibacillus, Bacteroidetes_BD2-2, and the family Marinifilaceae was observed when, compared with the healthy group. Variations in taxa of gut microbiota among elephants with GI disorders indicated diverse microbial characteristics associated with different GI symptoms. This study suggests that exploring gut microbiota dynamics in elephant health and GI disorders can lead to a better understanding of food and water management for maintaining a healthy gut and ensuring the longevity of the elephants.
Collapse
Affiliation(s)
- Sarisa Klinhom
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chanon Kunasol
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirawit Sriwichaiin
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
2
|
Gomez DE, Arroyo LG, Schoster A, Renaud DL, Kopper JJ, Dunkel B, Byrne D, Toribio RE. Diagnostic approaches, aetiological agents and their associations with short-term survival and laminitis in horses with acute diarrhoea admitted to referral institutions. Equine Vet J 2024; 56:959-969. [PMID: 37984355 DOI: 10.1111/evj.14024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND An international description of the diagnostic approaches used in different institutions to diagnose acute equine diarrhoea and the pathogens detected is lacking. OBJECTIVES To describe the diagnostic approach, aetiological agents, outcome, and development of laminitis for diarrhoeic horses worldwide. STUDY DESIGN Multicentre retrospective case series. METHODS Information from horses with acute diarrhoea presenting to participating institutions between 2016 and 2020, including diagnostic approaches, pathogens detected and their associations with outcomes, were compared between institutions or geographic regions. RESULTS One thousand four hundred and thirty-eight horses from 26 participating institutions from 4 continents were included. Overall, aetiological testing was limited (44% for Salmonella spp., 42% for Neorickettsia risticii [only North America], 40% for Clostridiodes difficile, and 29% for ECoV); however, 13% (81/633) of horses tested positive for Salmonella, 13% (35/262) for N. risticii, 9% (37/422) for ECoV, and 5% (27/578) for C. difficile. C. difficile positive cases had greater odds of non-survival than horses negative for C. difficile (OR: 2.69, 95%CI: 1.23-5.91). In addition, horses that were positive for N. risticii had greater odds of developing laminitis than negative horses (OR: 2.76, 95%CI: 1.12-6.81; p = 0.029). MAIN LIMITATIONS Due to the study's retrospective nature, there are missing data. CONCLUSIONS This study highlighted limited diagnostic investigations in cases of acute equine diarrhoea. Detection rates of pathogens are similar to previous reports. Non-survival and development of laminitis are related to certain detected pathogens.
Collapse
Affiliation(s)
- Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Luis G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Angelika Schoster
- Vetsuisse Faculty, Equine Department University of Zurich, Zurich, Switzerland
- Ludwig-Maximilians-University Munich, Equine Clinic, Oberschleissheim, Germany
| | - David L Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jamie J Kopper
- Department of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, USA
| | - Bettina Dunkel
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, UK
| | - David Byrne
- College of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Ramiro E Toribio
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Ba X, Jin Y, Ning X, Gao Y, Li W, Li Y, Wang Y, Zhou J. Clostridium perfringens in the Intestine: Innocent Bystander or Serious Threat? Microorganisms 2024; 12:1610. [PMID: 39203452 PMCID: PMC11356505 DOI: 10.3390/microorganisms12081610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The Clostridium perfringens epidemic threatens biosecurity and causes significant economic losses. C. perfringens infections are linked to more than one hundred million cases of food poisoning annually, and 8-60% of susceptible animals are vulnerable to infection, resulting in an economic loss of more than 6 hundred million USD. The enzymes and toxins (>20 species) produced by C. perfringens play a role in intestinal colonization, immunological evasion, intestinal micro-ecosystem imbalance, and intestinal mucosal disruption, all influencing host health. In recent decades, there has been an increase in drug resistance in C. perfringens due to antibiotic misuse and bacterial evolution. At the same time, traditional control interventions have proven ineffective, highlighting the urgent need to develop and implement new strategies and approaches to improve intervention targeting. Therefore, an in-depth understanding of the spatial and temporal evolutionary characteristics, transmission routes, colonization dynamics, and pathogenic mechanisms of C. perfringens will aid in the development of optimal therapeutic strategies and vaccines for C. perfringens management. Here, we review the global epidemiology of C. perfringens, as well as the molecular features and roles of various virulence factors in C. perfringens pathogenicity. In addition, we emphasize measures to prevent and control this zoonotic disease to reduce the transmission and infection of C. perfringens.
Collapse
Affiliation(s)
- Xuli Ba
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Youshun Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Xuan Ning
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Yidan Gao
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Wei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
| | - Yunhui Li
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Yihan Wang
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| |
Collapse
|
4
|
Rodriguez-Diaz C, Seyboldt C, Rupnik M. Non-human Clostridioides difficile Reservoirs and Sources: Animals, Food, Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:329-350. [PMID: 38175482 DOI: 10.1007/978-3-031-42108-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile is ubiquitous and is found in humans, animals and in variety of environments. The substantial overlap of ribotypes between all three main reservoirs suggests the extensive transmissions. Here we give the overview of European studies investigating farm, companion and wild animals, food and environments including water, soil, sediment, wastewater treatment plants, biogas plants, air, and households. Studies in Europe are more numerous especially in last couple of years, but are still fragmented in terms of countries, animal species, or type of environment covered. Soil seem to be the habitat of divergent unusual lineages of C. difficile. But the most important aspect of animals and environment is their role in C. difficile transmissions and their potential as a source for human infection is discussed.
Collapse
Affiliation(s)
- Cristina Rodriguez-Diaz
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Laboratory of Food Microbiology, Fundamental and Applied Research for Animals and Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, NLZOH, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| |
Collapse
|
5
|
Stummer M, Frisch V, Glitz F, Hinney B, Spergser J, Krücken J, Diekmann I, Dimmel K, Riedel C, Cavalleri JMV, Rümenapf T, Joachim A, Lyrakis M, Auer A. Presence of Equine and Bovine Coronaviruses, Endoparasites, and Bacteria in Fecal Samples of Horses with Colic. Pathogens 2023; 12:1043. [PMID: 37624003 PMCID: PMC10458731 DOI: 10.3390/pathogens12081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Acute abdominal pain (colic) is one of the major equine health threats worldwide and often necessitates intensive veterinary medical care and surgical intervention. Equine coronavirus (ECoV) infections can cause colic in horses but are rarely considered as a differential diagnosis. To determine the frequency of otherwise undetected ECoV infections in horses with acute colic, fresh fecal samples of 105 horses with acute colic and 36 healthy control horses were screened for viruses belonging to the Betacoronavirus 1 species by RT-PCR as well as for gastrointestinal helminths and bacteria commonly associated with colic. Horses with colic excreted significantly fewer strongyle eggs than horses without colic. The prevalence of anaerobic, spore-forming, gram-positive bacteria (Clostridium perfringens and Clostridioides difficile) was significantly higher in the feces of horses with colic. Six horses with colic (5.7%) and one horse from the control group (2.8%) tested positive for Betacoronaviruses. Coronavirus-positive samples were sequenced to classify the virus by molecular phylogeny (N gene). Interestingly, in three out of six coronavirus-positive horses with colic, sequences closely related to bovine coronaviruses (BCoV) were found. The pathogenic potential of BCoV in horses remains unclear and warrants further investigation.
Collapse
Affiliation(s)
- Moritz Stummer
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| | - Vicky Frisch
- Clinical Unit of Equine Internal Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (V.F.); (J.-M.V.C.)
| | | | - Barbara Hinney
- Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (B.H.); (A.J.)
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (J.K.); (I.D.)
| | - Irina Diekmann
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (J.K.); (I.D.)
| | - Katharina Dimmel
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| | - Christiane Riedel
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, 69364 Lyon, France;
| | | | - Till Rümenapf
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| | - Anja Joachim
- Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (B.H.); (A.J.)
| | - Manolis Lyrakis
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Angelika Auer
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| |
Collapse
|
6
|
Taylor SD. Potomac Horse Fever. Vet Clin North Am Equine Pract 2023; 39:37-45. [PMID: 36737286 DOI: 10.1016/j.cveq.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Potomac horse fever (PHF) is a common cause of equine colitis in endemic areas. Until recently, the only causative agent known to cause PHF was Neorickettsia risticii. However, N. findlayensis has been isolated from affected horses. Horses typically become infected upon ingestion of Neorickettsia spp.-infected trematodes within aquatic insects. The most common clinical signs include diarrhea, fever, anorexia, lethargy and colic. The diagnostic test of choice for PHF is PCR of blood and feces. Tetracyclines remain an effective treatment. Supportive care, including fluid therapy, colloid administration, NSAID and anti-endotoxin medication, and digital cryotherapy, is also necessary in some cases.
Collapse
Affiliation(s)
- Sandra D Taylor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Asin J, Nyaoke AC, Samol MA, Arthur RM, Uzal FA. Clostridioides ( Clostridium) difficile-associated disease, epiploic foramen entrapment, and gastric rupture in a Thoroughbred racehorse: case report and literature review. J Vet Diagn Invest 2022; 34:913-917. [PMID: 35949155 PMCID: PMC9446299 DOI: 10.1177/10406387221118039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epiploic foramen entrapment (EFE) is a common cause of small intestinal colic in horses and may lead to intestinal strangulation. Strangulating intestinal obstruction impairs the gastrointestinal outflow and can lead to secondary gastric rupture and endotoxemia. Clostridioides difficile can cause enterotyphlocolitis with colic in horses of all ages, and the process is commonly referred to as C. difficile-associated disease (CDAD). Here we report the results of the postmortem examination of a 7-y-old Thoroughbred racehorse with concurrent CDAD, EFE, and gastric rupture that was euthanized following a history of colic over several days. A segment of distal jejunum and proximal ileum had passed through the epiploic foramen, and the intestinal wall was thickened and dark-red. The remaining small intestinal loops were distended and filled with blood-tinged contents. Peritonitis had resulted from escape of gastric contents into the abdominal cavity through a tear in the major curvature of the stomach. Histologically, the incarcerated segment had acute transmural hemorrhage with congestion and mucosal necrosis; neutrophilic infiltrates with fibrin thrombi were in the mucosa of the non-incarcerated small intestinal segments. C. difficile toxins were detected in the small intestinal contents, and C. difficile was isolated from the small intestine, colon, and cecum.
Collapse
Affiliation(s)
- Javier Asin
- California Animal Health and Food Safety Laboratory, San
Bernardino branch, University of California–Davis, Davis, CA, USA
| | - Akinyi C. Nyaoke
- California Animal Health and Food Safety Laboratory, San
Bernardino branch, University of California–Davis, Davis, CA, USA
| | - Monika A. Samol
- California Animal Health and Food Safety Laboratory, San
Bernardino branch, University of California–Davis, Davis, CA, USA
| | - Rick M. Arthur
- School of Veterinary Medicine, University of
California–Davis, Davis, CA, USA
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory, San
Bernardino branch, University of California–Davis, Davis, CA, USA
| |
Collapse
|
8
|
Durie I, Galen GV. Can the use of antimicrobials in adult equine patients with acute colitis be justified in the era of antimicrobial stewardship? EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Inge Durie
- Evidensia Specialisthästsjukhuset Strömsholm Strömsholm Sweden
| | - Gaby van Galen
- University of Sydney School of Veterinary Science University of Sydney Sydney New South Wales Australia
| |
Collapse
|
9
|
Paruch L, Paruch AM. Molecular Identification of Infectious Enteropathogens in Faeces of Healthy Horses. Microbiol Insights 2022; 15:11786361221089005. [PMID: 35431557 PMCID: PMC9008849 DOI: 10.1177/11786361221089005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/27/2022] [Indexed: 11/18/2022] Open
Abstract
Zoogenic faecal contamination of the environment is one of the indices included
in the evaluation of ecological threats, health hazards and adverse impacts on
various ecosystems. The risks and environmental concerns are associated with the
fact that faeces of wild and domesticated animals constitute the largest source
of environmental loading of enteropathogens associated with transmission of
zoonotic diseases (enteric zoonoses). Although sick animals are more likely to
transmit pathogens, healthy ones can also be the carriers and defecate them into
the environment. This is of particular importance given the close human-animal
interactions and health effects resulting from human and ecological exposures to
faecal hazards from companion and farm animals. We have therefore set out to
investigate whether healthy equines can carry and defecate human infectious
pathogens. For this purpose, we set up a pilot study to examine the faecal DNA
of horses using culture-independent molecular diagnostics – fluorescent
probe-based quantitative real-time PCR. Our results revealed that among a total
of 23 horses, 6 were found to carry Campylobacter jejuni
(C. jejuni), and 5 had Salmonella enterica
serovar Typhimurium (S. Typhimurium). Moreover,
Enterococcus faecalis (E. faecalis) was
found in 14 horses, while 19 were positive for Clostridium
perfringens (C. perfringens). Furthermore, the
frequently reported protozoan parasites in livestock, Cryptosporidium
parvum (C. parvum) and Giardia
lamblia (G. lamblia), were discovered in 8 and 7
samples, respectively. This pilot study shed new light on the phenomenon of
healthy horses carrying C. jejuni and other
human-health-related enteropathogens.
Collapse
Affiliation(s)
- Lisa Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Aas, Norway
| | - Adam M Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Aas, Norway
| |
Collapse
|
10
|
Aleman M, Sheldon SA, Jospin G, Coil D, Stratton‐Phelps M, Eisen J. Caecal microbiota in horses with trigeminal‐mediated headshaking. Vet Med Sci 2022; 8:1049-1055. [PMID: 35060350 PMCID: PMC9122421 DOI: 10.1002/vms3.735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Trigeminal‐mediated headshaking (TMHS) in horses is a form of neuropathic pain of undetermined cause that often results in euthanasia. The role of microbiota in TMHS has not been investigated in diseased horses. Objective To investigate if gastrointestinal microbiota in the cecum is different in horses with TMHS compared to a control population, during a summer season with clinical manifestations of disease. Animals Ten castrated horses: five with TMHS and five neurologically normal controls. Methods All horses were sourced from our institution and kept under the same husbandry and dietary conditions. All horses were fed orchard grass hay for 30 days and then were euthanized due to chronic untreatable conditions including TMHS and orthopedic disease (control group). Caecal samples for microbiota analysis were collected within 20 min after euthanasia. Sequencing was performed using an Illumina MiSeq platform and the microbiome was analyzed. Results The caecal microbiota of horses with TMHS was similar to control horses in terms of diversity but differed significantly with Methanocorpusculum spp. having higher abundance in horses with TMHS. Conclusions and clinical importance Methanocorpusculum spp. was more abundant in the cecum of horses with TMHS. However, its role in disease is unknown. Furthermore, it could also represent an incidental finding due to our small population size.
Collapse
Affiliation(s)
- Monica Aleman
- Department of Medicine and Epidemiology University of California Davis Davis California USA
| | - Shara. A. Sheldon
- Department of Medicine and Epidemiology University of California Davis Davis California USA
| | - Guillaume Jospin
- The Genome Center University of California Davis Davis California USA
| | - David Coil
- The Genome Center University of California Davis Davis California USA
| | | | - Jonathan Eisen
- The Genome Center University of California Davis Davis California USA
| |
Collapse
|
11
|
Hain‐Saunders N, Knight DR, Bruce M, Riley TV. Clostridioides difficile
infection and One Health: An Equine Perspective. Environ Microbiol 2022; 24:985-997. [PMID: 35001483 PMCID: PMC9304292 DOI: 10.1111/1462-2920.15898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
Clostridioides (Clostridium) difficile presents a significant health risk to humans and animals. The complexity of the bacterial–host interaction affecting pathogenesis and disease development creates an ongoing challenge for epidemiological studies, control strategies and prevention planning. The recent emergence of human disease caused by strains of C. difficile found in animals adds to mounting evidence that C. difficile infection (CDI) may be a zoonosis. In equine populations, C. difficile is a known cause of diarrhoea and gastrointestinal inflammation, with considerable mortality and morbidity. This has a significant impact on both the well‐being of the animal and, in the case of performance and production animals, it may have an adverse economic impact on relevant industries. While C. difficile is regularly isolated from horses, many questions remain regarding the impact of asymptomatic carriage as well as optimization of diagnosis, testing and treatment. This review provides an overview of our understanding of equine CDI while also identifying knowledge gaps and the need for a holistic One Health approach to a complicated issue.
Collapse
Affiliation(s)
- Natasza Hain‐Saunders
- Biosecurity and One Health Research Centre, Harry Butler Institute Murdoch University Murdoch Western Australia Australia
| | - Daniel R. Knight
- Biosecurity and One Health Research Centre, Harry Butler Institute Murdoch University Murdoch Western Australia Australia
- School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre Nedlands 6009 WA Australia
| | - Mieghan Bruce
- School of Veterinary Medicine, Centre for Biosecurity and One Health Murdoch University Murdoch Western Australia Australia
| | - Thomas V. Riley
- Biosecurity and One Health Research Centre, Harry Butler Institute Murdoch University Murdoch Western Australia Australia
- School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre Nedlands 6009 WA Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia Australia
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre Nedlands Western Australia Australia
| |
Collapse
|
12
|
Gut microbiota features associated with Clostridioides difficile colonization in dairy calves. PLoS One 2021; 16:e0251999. [PMID: 34910727 PMCID: PMC8673638 DOI: 10.1371/journal.pone.0251999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/24/2021] [Indexed: 01/04/2023] Open
Abstract
Diarrheal disease, a major cause of morbidity and mortality in dairy calves, is strongly associated with the health and composition of the gut microbiota. Clostridioides difficile is an opportunistic pathogen that proliferates and can produce enterotoxins when the host experiences gut dysbiosis. However, even asymptomatic colonization with C. difficile can be associated with differing degrees of microbiota disruption in a range of species, including people, swine, and dogs. Little is known about the interaction between C. difficile and the gut microbiota in dairy calves. In this study, we sought to define microbial features associated with C. difficile colonization in pre-weaned dairy calves less than 2 weeks of age. We characterized the fecal microbiota of 80 calves from 23 different farms using 16S rRNA sequencing and compared the microbiota of C. difficile-positive (n = 24) and C. difficile-negative calves (n = 56). Farm appeared to be the greatest source of variability in the gut microbiota. When controlling for calf age, diet, and farm location, there was no significant difference in Shannon alpha diversity (P = 0.50) or in weighted UniFrac beta diversity (P = 0.19) between C. difficile-positive and–negative calves. However, there was a significant difference in beta diversity as assessed using Bray-Curtiss diversity (P = 0.0077), and C. difficile-positive calves had significantly increased levels of Ruminococcus (gnavus group) (Adj. P = 0.052), Lachnoclostridium (Adj. P = 0.060), Butyricicoccus (Adj. P = 0.060), and Clostridium sensu stricto 2 compared to C. difficile-negative calves. Additionally, C. difficile-positive calves had fewer microbial co-occurrences than C. difficile–negative calves, indicating reduced bacterial synergies. Thus, while C. difficile colonization alone is not associated with dysbiosis and is therefore unlikely to result in an increased likelihood of diarrhea in dairy calves, it may be associated with a more disrupted microbiota.
Collapse
|
13
|
Uzal FA, Arroyo LG, Navarro MA, Gomez DE, Asín J, Henderson E. Bacterial and viral enterocolitis in horses: a review. J Vet Diagn Invest 2021; 34:354-375. [PMID: 34763560 DOI: 10.1177/10406387211057469] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enteritis, colitis, and enterocolitis are considered some of the most common causes of disease and death in horses. Determining the etiology of these conditions is challenging, among other reasons because different causes produce similar clinical signs and lesions, and also because some agents of colitis can be present in the intestine of normal animals. We review here the main bacterial and viral causes of enterocolitis of horses, including Salmonella spp., Clostridium perfringens type A NetF-positive, C. perfringens type C, Clostridioides difficile, Clostridium piliforme, Paeniclostridium sordellii, other clostridia, Rhodococcus equi, Neorickettsia risticii, Lawsonia intracellularis, equine rotavirus, and equine coronavirus. Diarrhea and colic are the hallmark clinical signs of colitis and enterocolitis, and the majority of these conditions are characterized by necrotizing changes in the mucosa of the small intestine, colon, cecum, or in a combination of these organs. The presumptive diagnosis is based on clinical, gross, and microscopic findings, and confirmed by detection of some of the agents and/or their toxins in the intestinal content or feces.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, USA
| | - Luis G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Mauricio A Navarro
- California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, USA.,Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Javier Asín
- California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, USA
| | - Eileen Henderson
- California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, USA
| |
Collapse
|
14
|
Weese JS, Slovis N, Rousseau J. Clostridioides (Clostridium) difficile in neonatal foals and mares at a referral hospital. J Vet Intern Med 2021; 35:1140-1146. [PMID: 33656757 PMCID: PMC7995440 DOI: 10.1111/jvim.16094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Understanding the epidemiology of Clostridium difficile is important for the development and assessment of infection prevention and control practices, as well as surveillance methods and interpretation of diagnostic testing results. OBJECTIVE Our objective was to longitudinally evaluate C. difficile shedding in neonatal foals and mares admitted to a referral hospital neonatal intensive care unit. ANIMALS Foals admitted to a neonatal intensive care unit, along with their dams. METHODS Rectal swabs were collected from mares and foals at admission, and then approximately every 3 days, when possible. Selective culture for C. difficile was performed and isolates were characterized by toxin gene PCR and ribotyping. RESULTS Clostridium difficile was isolated from 103/409 (25%) samples; 65/208 (31%) from foals and 38/201 (19%) from mares. Cumulatively, C. difficile was isolated from at least 1 sample from 50/113 (44%) foals and 30/97 (31%) mares. No association was found between hospitalization day and isolation of C. difficile (P = .13). Twenty-three different ribotypes were identified, with ribotype 078 predominating. Fifteen foals had 2 positive samples during hospitalization. In only 6/15 (40%) foals was the same strain identified both times (5 ribotype 078 and 1 ribotype 012). CONCLUSIONS AND CLINICAL IMPORTANCE Clostridium difficile is an important pathogen in adult horses and foals, and our findings highlight the complexity surrounding the epidemiology of this opportunistic pathogen. It can be found commonly, transiently, and cluster within a facility in the absence of identifiable disease occurrences or clusters.
Collapse
Affiliation(s)
- Jeffrey Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Nathan Slovis
- McGee Medical Center, Hagyard Equine Medical Institute, Lexington, Kentucky, USA
| | - Joyce Rousseau
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
15
|
Thanissery R, McLaren MR, Rivera A, Reed AD, Betrapally NS, Burdette T, Winston JA, Jacob M, Callahan BJ, Theriot CM. Clostridioides difficile carriage in animals and the associated changes in the host fecal microbiota. Anaerobe 2020; 66:102279. [PMID: 33022384 PMCID: PMC10760528 DOI: 10.1016/j.anaerobe.2020.102279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/31/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023]
Abstract
The relationship between the gut microbiota and Clostridioides difficile, and its role in the severity of C. difficile infection in humans is an area of active research. Intestinal carriage of toxigenic and non-toxigenic C. difficile strains, with and without clinical signs, is reported in animals, however few studies have looked at the risk factors associated with C. difficile carriage and the role of the host gut microbiota. Here, we isolated and characterized C. difficile strains from different animal species (predominantly canines (dogs), felines (cats), and equines (horses)) that were brought in for tertiary care at North Carolina State University Veterinary Hospital. C. difficile strains were characterized by toxin gene profiling, fluorescent PCR ribotyping, and antimicrobial susceptibility testing. 16S rRNA gene sequencing was done on animal feces to investigate the relationship between the presence of C. difficile and the gut microbiota in different hosts. Here, we show that C. difficile was recovered from 20.9% of samples (42/201), which included 33 canines, 2 felines, and 7 equines. Over 69% (29/42) of the isolates were toxigenic and belonged to 14 different ribotypes including ones known to cause CDI in humans. The presence of C. difficile results in a shift in the fecal microbial community structure in both canines and equines. Commensal Clostridium hiranonis was negatively associated with C. difficile in canines. Further experimentation showed a clear antagonistic relationship between the two strains in vitro, suggesting that commensal Clostridia might play a role in colonization resistance against C. difficile in different hosts.
Collapse
Affiliation(s)
- R Thanissery
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - M R McLaren
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - A Rivera
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - A D Reed
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - N S Betrapally
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - T Burdette
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - J A Winston
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - M Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - B J Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - C M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.
| |
Collapse
|
16
|
Wang B, Hussain A, Zhou Y, Zeng Z, Wang Q, Zou P, Gong L, Zhao P, Li W. Saccharomyces boulardii attenuates inflammatory response induced by Clostridium perfringens via TLR4/TLR15-MyD8 pathway in HD11 avian macrophages. Poult Sci 2020; 99:5356-5365. [PMID: 33142452 PMCID: PMC7647824 DOI: 10.1016/j.psj.2020.07.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023] Open
Abstract
Macrophages are professional phagocytic cells that play a critical role in initiating immune responses by presenting antigen and phagocytic clearance. The macrophages can be targeted for immunomodulation by beneficial microbes, such as probiotics. The aim of this study is to investigate the protective effect of Saccharomyces boulardii against Clostridium perfringens infection in avian macrophage cell line HD11. In this study, HD11 macrophages were prestimulated with S. boulardii for 6 h and then infected with C. perfringens for 3 h. Results showed that S. boulardii enhanced phagocytosis and bactericidal capacity against C. perfringens by HD11 cells. The S. boulardii effectively promoted the mRNA expression of CD80, CD83, and CD197 cell-surface molecules in C. perfringens-infected HD11 cells. Moreover, we found that prestimulation with S. boulardii reduced the mRNA expression of CD40, toll-like receptor [TLR] 4, and TLR15 induced by C. perfringens and thereby downregulated the mRNA expression of myeloid differentiation primary response 88, TNF receptor associated factor 6, nuclear factor kappa-B p65 subunit, and c-Jun N-terminal kinase genes in HD11 cells. The upregulation of cytokines (interleukin [IL]-6, tumor necrosis factor alpha, and IL-10) and inducible nitric oxide synthase mRNA expression in C. perfringens-infected HD11 cells were noticeably inhibited by S. boulardii pretreatment. Conclusively, these results might provide a new insight into the role of S. boulardii in regulating avian immune defense against C. perfringens invasion and immune escape.
Collapse
Affiliation(s)
- Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Altaf Hussain
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Department of Poultry Science, University of Agriculture Faisakabad, Faisalabad 38000, Pakistan
| | - Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zihan Zeng
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peng Zou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province 528225, China
| | - Pengwei Zhao
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|