1
|
Cui K, Wang S, Pei Y, Zhou B. Occurrence and distribution of antibiotic pollution and antibiotic resistance genes in seagrass meadow sediments based on metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173438. [PMID: 38782270 DOI: 10.1016/j.scitotenv.2024.173438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Seagrass meadows are one of the most important coastal ecosystems that provide essential ecological and economic services. The contamination levels of antibiotic and antibiotic resistance genes (ARGs) in coastal ecosystems are severely elevated owing to anthropogenic disturbances, such as terrestrial input, aquaculture effluent, and sewage discharge. However, few studies have focused on the occurrence and distribution of antibiotics and their corresponding ARGs in this habitat. Thus, we investigated the antibiotic and ARGs profiles, microbial communities, and ARG-carrying host bacteria in typical seagrass meadow sediments collected from Swan Lake, Caofeidian shoal harbor, Qingdao Bay, and Sishili Bay in the Bohai Sea and northern Yellow Sea. The total concentrations of 30 detected antibiotics ranged from 99.35 to 478.02 μg/kg, tetracyclines were more prevalent than other antibiotics. Metagenomic analyses showed that 342 ARG subtypes associated with 22 ARG types were identified in the seagrass meadow sediments. Multidrug resistance genes and RanA were the most dominant ARG types and subtypes, respectively. Co-occurrence network analysis revealed that Halioglobus, Zeaxanthinibacter, and Aureitalea may be potential hosts at the genus level, and the relative abundances of these bacteria were higher in Sishili Bay than those in other areas. This study provided important insights into the pollution status of antibiotics and ARGs in typical seagrass meadow sediments. Effective management should be performed to control the potential ecological health risks in seagrass meadow ecosystems.
Collapse
Affiliation(s)
- Kaixuan Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Shumin Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yanzhao Pei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bin Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Wu X, Ge J, Song G, Liu Y, Gao P, Tian T, Li X, Xu J, Chu Y, Zheng F. The GE296_RS03820 and GE296_RS03830 genes are involved in capsular polysaccharide biosynthesis in Riemerella anatipestifer. FASEB J 2024; 38:e23763. [PMID: 38954404 DOI: 10.1096/fj.202302694rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Riemerella anatipestifer is a pathogenic bacterium that causes duck serositis and meningitis, leading to significant harm to the duck industry. To escape from the host immune system, the meningitis-causing bacteria must survive and multiply in the bloodstream, relying on specific virulence factors such as capsules. Therefore, it is essential to study the genes involved in capsule biosynthesis in R. anatipestifer. In this study, we successfully constructed gene deletion mutants Δ3820 and Δ3830, targeting the GE296_RS03820 and GE296_RS03830 genes, respectively, using the RA-LZ01 strain as the parental strain. The growth kinetics analysis revealed that these two genes contribute to bacterial growth. Transmission and scanning electron microscopy (TEM and SEM) and silver staining showed that Δ3820 and Δ3830 produced the altered capsules and compounds of capsular polysaccharides (CPSs). Serum resistance test showed the mutants also exhibited reduced C3b deposition and decreased resistance serum killing. In vivo, Δ3820 and Δ3830 exhibited markedly declining capacity to cross the blood-brain barrier, compared to RA-LZ01. These findings indicate that the GE296_RS03820 and GE296_RS03830 genes are involved in CPSs biosynthesis and play a key role in the pathogenicity of R. anatipestifer. Furthermore, Δ3820 and Δ3830 mutants presented a tendency toward higher survival rates from RA-LZ01 challenge in vivo. Additionally, sera from ducklings immunized with the mutants showed cross-immunoreactivity with different serotypes of R. anatipestifer, including 1, 2, 7 and 10. Western blot and SDS-PAGE assays revealed that the altered CPSs of Δ3820 and Δ3830 resulted in the exposure of some conserved proteins playing the key role in the cross-immunoreactivity. Our study clearly demonstrated that the GE296_RS03820 and GE296_RS03830 genes are involved in CPS biosynthesis in R. anatipestifer and the capsule is a target for attenuation in vaccine development.
Collapse
Affiliation(s)
- Xiaoni Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiazhen Ge
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guodong Song
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yijian Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tongtong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuerui Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jian Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Fuying Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
3
|
Liu M, Wang M, Huang M, Gao Q, Zhu D, Wang M, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Tian B, Sun D, Cheng A. Iron efflux by IetA enhances β-lactam aztreonam resistance and is linked to oxidative stress through cellular respiration in Riemerella anatipestifer. J Antimicrob Chemother 2024; 79:1385-1396. [PMID: 38629469 DOI: 10.1093/jac/dkae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/20/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Riemerella anatipestifer encodes an iron acquisition system, but whether it encodes the iron efflux pump and its role in antibiotic resistance are largely unknown. OBJECTIVES To screen and identify an iron efflux gene in R. anatipestifer and determine whether and how the iron efflux gene is involved in antibiotic resistance. METHODS In this study, gene knockout, streptonigrin susceptibility assay and inductively coupled plasma mass spectrometry were used to screen for the iron efflux gene ietA. The MIC measurements, scanning electron microscopy and reactive oxygen species (ROS) detection were used to verify the role of IetA in aztreonam resistance and its mechanism. Mortality and colonization assay were used to investigate the role of IetA in virulence. RESULTS The deletion mutant ΔietA showed heightened susceptibility to streptonigrin, and prominent intracellular iron accumulation was observed in ΔfurΔietA under excess iron conditions. Additionally, ΔietA exhibited increased sensitivity to H2O2-produced oxidative stress. Under aerobic conditions with abundant iron, ΔietA displayed increased susceptibility to the β-lactam antibiotic aztreonam due to heightened ROS production. However, the killing efficacy of aztreonam was diminished in both WT and ΔietA under anaerobic or iron restriction conditions. Further experiments demonstrated that the efficiency of aztreonam against ΔietA was dependent on respiratory complexes Ⅰ and Ⅱ. Finally, in a duckling model, ΔietA had reduced virulence compared with the WT. CONCLUSION Iron efflux is critical to alleviate oxidative stress damage and β-lactam aztreonam killing in R. anatipestifer, which is linked by cellular respiration.
Collapse
Affiliation(s)
- Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mi Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sai Mao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Wen M, Chen S, Zhang Y, Liu Y, Tang C, Zhang J, Sun J, Li X, Ding Y, Lu L, Long K, Nie Y, Li X, Li M, Ge L, Ma J. Diversity and host interaction of the gut microbiota in specific pathogen-free pigs. Front Microbiol 2024; 15:1402807. [PMID: 38800748 PMCID: PMC11122924 DOI: 10.3389/fmicb.2024.1402807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Pigs are widely used as animal models in various studies related to humans. The interaction between the gut microbiota and the host has significant effects on the host's health and disease status. However, although there have been many studies investigating the pig gut microbiota, the findings have been inconsistent due to variations in rearing conditions. Interactions between the gut microbiota and host have not been fully explored in pigs. Specific pathogen-free (SPF) pigs are ideal non-primate large animals to study the interactions between the gut microbiota and the host. In this study, we performed high-throughput sequencing analysis of the gut microbiota and the gut tissue transcriptome of six SPF pigs to provide a systematic understanding of the composition, function, and spatial distribution of gut microbiota in SPF pigs. We identified significant differences in microbial diversity and functionality among different gastrointestinal tract sites. Metagenomics data analysis revealed significant differences in alpha diversity and beta diversity of microbiota in different gastrointestinal sites of SPF pigs. Additionally, transcriptomic data indicated significant differences in gene expression as well as KEGG and GO functional enrichment between the small intestine and large intestine. Furthermore, by combining microbial metagenomics and host transcriptomics analyses, specific correlations were found between gut microbiota and host genes. These included a negative correlation between the TCN1 gene and Prevotella dentalis, possibly related to bacterial metabolic pathways involving vitamin B12, and a positive correlation between the BDH1 gene and Roseburia hominis, possibly because both are involved in fatty acid metabolism. These findings lay the groundwork for further exploration of the co-evolution between the microbiota and the host, specifically in relation to nutrition, metabolism, and immunity. In conclusion, we have elucidated the diversity of the gut microbiota in SPF pigs and conducted a detailed investigation into the interactions between the gut microbiota and host gene expression. These results contribute to our understanding of the intricate dynamics between the gut microbiota and the host, offering important references for advancements in life science research, bioproduct production, and sustainable development in animal husbandry.
Collapse
Affiliation(s)
- Mingxing Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuangshuang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yali Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chuang Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Xiaokai Li
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, China
| | - Xuewei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Yang Z, Wang M, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, He Y, Wu Z, Zhu D, Cheng A. Genome-based assessment of antimicrobial resistance reveals the lineage specificity of resistance and resistance gene profiles in Riemerella anatipestifer from China. Microbiol Spectr 2024; 12:e0313223. [PMID: 38169285 PMCID: PMC10846147 DOI: 10.1128/spectrum.03132-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/12/2023] [Indexed: 01/05/2024] Open
Abstract
Riemerella anatipestifer (R. anatipestifer) is an important pathogen that causes severe systemic infections in domestic ducks, resulting in substantial economic losses for China's waterfowl industry. Controlling R. anatipestifer with antibiotics is extremely challenging due to its multidrug resistance. Notably, large-scale studies on antimicrobial resistance (AMR) and the corresponding genetic determinants in R. anatipestifer remain scarce. To solve this dilemma, more than 400 nonredundant R. anatipestifer isolates collected from 22 provinces in China between 1994 and 2021 were subjected to broth dilution antibiotic susceptibility assays, and their resistance-associated genetic determinants were characterized by whole-genome sequencing. While over 90% of the isolates was resistant to sulfamethoxazole, kanamycin, gentamicin, ofloxacin, norfloxacin, and trimethoprim, 88.48% of the isolates was resistant to the last-resort drug (tigecycline). Notably, R. anatipestifer resistance to oxacillin, norfloxacin, ofloxacin, and tetracycline was found to increase relatively over time. Genome-wide analysis revealed the alarmingly high prevalence of blaOXA-like (93.05%) and tet(X) (90.64%) genes and the uneven distribution of resistance genes among lineages. Overall, this study reveals a serious AMR situation regarding R. anatipestifer in China, with a high prevalence and high diversity of antimicrobial resistance genes, providing important data for the rational use of antibiotics in veterinary practice.IMPORTANCERiemerella anatipestifer (R. anatipestifer), an important waterfowl pathogen, has caused substantial economic losses worldwide, especially in China. Antimicrobial resistance (AMR) is a major challenge in controlling this pathogen. Although a few studies have reported antimicrobial resistance in R. anatipestifer, comprehensive data remain a gap. This study aims to address the lack of information on R. anatipestifer AMR and its genetic basis. By analyzing more than 400 isolates collected over two decades, this study reveals alarming levels of resistance to several antibiotics, including drugs of last resort. The study also revealed the lineage-specificity of resistance profiles and resistance gene profiles. Overall, this study provides new insights and updated data support for understanding AMR and its genetic determinants in R. anatipestifer.
Collapse
Affiliation(s)
- Zhishuang Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Yu He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Zhen Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Lai JL, Li ZG, Wang Y, Xi HL, Luo XG. Tritium and Carbon-14 Contamination Reshaping the Microbial Community Structure, Metabolic Network, and Element Cycle in the Seawater Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5305-5316. [PMID: 36952228 DOI: 10.1021/acs.est.3c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The potential ecological risks caused by entering radioactive wastewater containing tritium and carbon-14 into the sea require careful evaluation. This study simulated seawater's tritium and carbon-14 pollution and analyzed the effects on the seawater and sediment microenvironments. Tritium and carbon-14 pollution primarily altered nitrogen and phosphorus metabolism in the seawater environment. Analysis by 16S rRNA sequencing showed changes in the relative abundance of microorganisms involved in carbon, nitrogen, and phosphorus metabolism and organic matter degradation in response to tritium and carbon-14 exposure. Metabonomics and metagenomic analysis showed that tritium and carbon-14 exposure interfered with gene expression involving nucleotide and amino acid metabolites, in agreement with the results seen for microbial community structure. Tritium and carbon-14 exposure also modulated the abundance of functional genes involved in carbohydrate, phosphorus, sulfur, and nitrogen metabolic pathways in sediments. Tritium and carbon-14 pollution in seawater adversely affected microbial diversity, metabolic processes, and the abundance of nutrient-cycling genes. These results provide valuable information for further evaluating the risks of tritium and carbon-14 in marine environments.
Collapse
Affiliation(s)
- Jin-Long Lai
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhan-Guo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
7
|
Quan H, Gong X, Chen Q, Zheng F, Yu Y, Liu D, Wang W, Chu Y. Functional Characterization of a Novel SMR-Type Efflux Pump RanQ, Mediating Quaternary Ammonium Compound Resistance in Riemerella anatipestifer. Microorganisms 2023; 11:microorganisms11040907. [PMID: 37110330 PMCID: PMC10142375 DOI: 10.3390/microorganisms11040907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Riemerella anatipestifer (R. anatipestifer) is a multidrug-resistant bacterium and an important pathogen responsible for major economic losses in the duck industry. Our previous study revealed that the efflux pump is an important resistance mechanism of R. anatipestifer. Bioinformatics analysis indicated that the GE296_RS02355 gene (denoted here as RanQ), a putative small multidrug resistance (SMR)-type efflux pump, is highly conserved in R. anatipestifer strains and important for the multidrug resistance. In the present study, we characterized the GE296_RS02355 gene in R. anatipestifer strain LZ-01. First, the deletion strain RA-LZ01ΔGE296_RS02355 and complemented strain RA-LZ01cΔGE296_RS02355 were constructed. When compared with that of the wild-type (WT) strain RA-LZ01, the mutant strain ΔRanQ showed no significant influence on bacterial growth, virulence, invasion and adhesion, morphology biofilm formation ability, and glucose metabolism. In addition, the ΔRanQ mutant strain did not alter the drug resistance phenotype of the WT strain RA-LZ01 and displayed enhanced sensitivity toward structurally related quaternary ammonium compounds, such as benzalkonium chloride and methyl viologen, which show high efflux specificity and selectivity. This study may help elucidate the unprecedented biological functions of the SMR-type efflux pump in R. anatipestifer. Thus, if this determinant is horizontally transferred, it could cause the spread of quaternary ammonium compound resistance among bacterial species.
Collapse
Affiliation(s)
- Heng Quan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xiaowei Gong
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Correspondence: (Q.C.); (W.W.)
| | - Fuying Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yongfeng Yu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Donghui Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (Q.C.); (W.W.)
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| |
Collapse
|
8
|
Pei M, Liu K, Qu X, Wang K, Chen Q, Zhang Y, Wang X, Wang Z, Li X, Chen F, Qin H, Zhang Y. Enzyme-catalyzed synthesis of selenium-doped manganese phosphate for synergistic therapy of drug-resistant colorectal cancer. J Nanobiotechnology 2023; 21:72. [PMID: 36859296 PMCID: PMC9976439 DOI: 10.1186/s12951-023-01819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The development of multidrug resistance (MDR) during postoperative chemotherapy for colorectal cancer substantially reduces therapeutic efficacy. Nanostructured drug delivery systems (NDDSs) with modifiable chemical properties are considered promising candidates as therapies for reversing MDR in colorectal cancer cells. Selenium-doped manganese phosphate (Se-MnP) nanoparticles (NPs) that can reverse drug resistance through sustained release of selenium have the potential to improve the chemotherapy effect of colorectal cancer. RESULTS Se-MnP NPs had an organic-inorganic hybrid composition and were assembled from smaller-scale nanoclusters. Se-MnP NPs induced excessive ROS production via Se-mediated activation of the STAT3/JNK pathway and a Fenton-like reaction due to the presence of manganese ions (Mn2+). Moreover, in vitro and in vivo studies demonstrated Se-MnP NPs were effective drug carriers of oxaliplatin (OX) and reversed multidrug resistance and induced caspase-mediated apoptosis in colorectal cancer cells. OX@Se-MnP NPs reversed MDR in colorectal cancer by down-regulating the expression of MDR-related ABC (ATP binding cassette) transporters proteins (e.g., ABCB1, ABCC1 and ABCG2). Finally, in vivo studies demonstrated that OX-loaded Se-MnP NPs significantly inhibited proliferation of OX-resistant HCT116 (HCT116/DR) tumor cells in nude mice. CONCLUSIONS OX@Se-MnP NPs with simple preparation and biomimetic chemical properties represent promising candidates for the treatment of colorectal cancer with MDR.
Collapse
Affiliation(s)
- Manman Pei
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China.,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Kaiyuan Liu
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Xiao Qu
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Kairuo Wang
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Qian Chen
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Yuanyuan Zhang
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Xinyue Wang
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Zheng Wang
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China.,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Xinyao Li
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Feng Chen
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China. .,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China.
| | - Huanlong Qin
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China.
| | - Yang Zhang
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China. .,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China. .,Precision Medicine Center, Taizhou Central Hospital, 999 Donghai Road, Taizhou, 318000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
9
|
OmpA is involved in the invasion of duck brain microvascular endothelial cells by Riemerella anatipestifer. Vet Microbiol 2023; 280:109692. [PMID: 36863175 DOI: 10.1016/j.vetmic.2023.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/25/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Bacterial meningitis is a major cause of morbidity and mortality. Despite advances in antimicrobial chemotherapy, the disease remains detrimental to humans, livestock, and poultry. Riemerella anatipestifer is a gram-negative bacterium causing duckling serositis and meningitis. However, the virulence factors contributing to its binding and invasion of duck brain microvascular endothelial cells (DBMECs) and penetration of the blood-brain barrier (BBB) have never been reported. In this study, immortalized DBMECs were successfully generated and used as an in vitro-model of duck BBB. Furthermore, ompA gene deletion mutant of the pathogen and multiple complemented strains carrying the complete ompA gene and its truncated forms were constructed. Bacterial growth, invasion, and adhesion assays and animal experiments were performed. The results show that the OmpA protein of R. anatipestifer had no effect on bacterial growth and adhesion ability to DBMECs. The role of OmpA in the invasion of R. anatipestifer into DBMECs and duckling BBB was confirmed. The amino acids 230-242 of OmpA represents a key domain involved in R. anatipestifer invasion. In addition, another OmpA1164 protein constituted by the amino acids 102-488 within OmpA could function as a complete OmpA. The signal peptide sequence from amino acids 1-21 had no significant effect on OmpA functions. In conclusion, this study illustrated that OmpA is an important virulence factor mediating R. anatipestifer invasion of DBMECs and penetration of the duckling BBB.
Collapse
|
10
|
Liu S, Liu J, Fu N, Kornmatitsuk B, Yan Z, Luo J. Phenylalanine-arginine β-naphthylamide could enhance neomycin-sensitivity on Riemerella anatipestifer in vitro and in vivo. Front Microbiol 2023; 13:985789. [PMID: 36713163 PMCID: PMC9873997 DOI: 10.3389/fmicb.2022.985789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Riemerella anatipestifer is an important duck pathogen responsible for septicemia and infectious serositis, which has caused great economic losses to the duck industry. Phenylalanine-arginine β-naphthylamide (PAβN) is an efflux pump inhibitor, which mainly reduces the efflux effect by competing with antibiotics for efflux pump channels. Here, we found that R. anatipestifer strain GD2019 showed resistances to gentamicin, amikacin, kanamycin, and neomycin. Notably, PAβN could significantly reduce the Minimal inhibitory concentrations (MICs) of neomycin on the GD2019 strain. Moreover, PAβN combined with neomycin significantly decreased bacterial loads, relieved pathological injury and increase survival rate (p < 0.05) for the ducks lethally challenged by the GD2019 strain. Therefore, our results suggested, in vitro and in vivo, PAβN could reduce neomycin-resistant of R. anatipestifer. Importantly, finding of this study provide a new approach for treating antibiotic-resistant R. anatipestifer infection.
Collapse
Affiliation(s)
- Shiqi Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China,Jinzhai County Agriculture and Rural Bureau, Jinzhai, Anhui, China
| | - Junfa Liu
- Wen's Group Academy, Xinxing, Guangdong, China
| | - Ning Fu
- Chifeng Institute of Agricultural Sciences, Chifeng, China
| | - Bunlue Kornmatitsuk
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | | | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China,*Correspondence: Junrong Luo, ✉
| |
Collapse
|
11
|
Wang F, Wei D, Zhang L, Huang W, Fang S, Cheng X, Cao J, Wu Y, Su Y, Luo J. Unveiling the risks and critical mechanisms of polyhexamethylene guanidine on the antibiotic resistance genes propagation during sludge fermentation process. BIORESOURCE TECHNOLOGY 2022; 359:127488. [PMID: 35724912 DOI: 10.1016/j.biortech.2022.127488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
This study mainly investigated the environmental risks of polyhexamethylene guanidine (PHMG) occurred in waste activated sludge (WAS) on the antibiotic resistance genes (ARGs) spread during anaerobic fermentation, and disclosed the critical mechanisms. The total ARGs abundance was increased by 32.2-46.4% at different stressing levels of PHMG. The main resistance mechanism categories of ARGs shifted to the target alternation and efflux pump. PHMG disintegrated WAS structure and increased the cell permeability, which benefitted the mobile genetic elements (MGEs) release and horizontal transfer of ARGs. Besides, PHMG induced the enrichment of potential ARGs hosts (i.e., Burkholderia, Bradyrhizobium and Aeromonas). Moreover, PHMG upregulated the metabolic pathways (i.e., two-component system, quorum sensing, and ATP-binding cassette transporters) and critical genes expression (i.e., metN, metQ, rpfF, rstA and rstB) related with ARGs generation and dissemination. Structural equation model analysis revealed that microbial community structure was the predominant contributor to the ARGs propagation.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Du Wei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, China.
| |
Collapse
|
12
|
Damas MSF, Ferreira RL, Campanini EB, Soares GG, Campos LC, Laprega PM, Soares da Costa A, Freire CCDM, Pitondo-Silva A, Cerdeira LT, da Cunha AF, Pranchevicius MCDS. Whole genome sequencing of the multidrug-resistant Chryseobacterium indologenes isolated from a patient in Brazil. Front Med (Lausanne) 2022; 9:931379. [PMID: 35966843 PMCID: PMC9366087 DOI: 10.3389/fmed.2022.931379] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Chryseobacterium indologenes is a non-glucose-fermenting Gram-negative bacillus. This emerging multidrug resistant opportunistic nosocomial pathogen can cause severe infections in neonates and immunocompromised patients. This study aimed to present the first detailed draft genome sequence of a multidrug-resistant C. indologenes strain isolated from the cerebrospinal fluid of an infant hospitalized at the Neonatal Intensive Care Unit of Brazilian Tertiary Hospital. We first analyzed the susceptibility of C. indologenes strain to different antibiotics using the VITEK 2 system. The strain demonstrated an outstanding resistance to all the antibiotic classes tested, including β-lactams, aminoglycosides, glycylcycline, and polymyxin. Next, C. indologenes was whole-genome-sequenced, annotated using Prokka and Rapid Annotation using Subsystems Technology (RAST), and screened for orthologous groups (EggNOG), gene ontology (GO), resistance genes, virulence genes, and mobile genetic elements using different software tools. The draft genome contained one circular chromosome of 4,836,765 bp with 37.32% GC content. The genomic features of the chromosome present numerous genes related to cellular processes that are essential to bacteria. The MDR C. indologenes revealed the presence of genes that corresponded to the resistance phenotypes, including genes to β-lactamases (blaIND–13, blaCIA–3, blaTEM–116, blaOXA–209, blaVEB–15), quinolone (mcbG), tigecycline (tet(X6)), and genes encoding efflux pumps which confer resistance to aminoglycosides (RanA/RanB), and colistin (HlyD/TolC). Amino acid substitutions related to quinolone resistance were observed in GyrA (S83Y) and GyrB (L425I and K473R). A mutation that may play a role in the development of colistin resistance was detected in lpxA (G68D). Chryseobacterium indologenes isolate harbored 19 virulence factors, most of which were involved in infection pathways. We identified 13 Genomic Islands (GIs) and some elements associated with one integrative and conjugative element (ICEs). Other elements linked to mobile genetic elements (MGEs), such as insertion sequence (ISEIsp1), transposon (Tn5393), and integron (In31), were also present in the C. indologenes genome. Although plasmids were not detected, a ColRNAI replicon type and the most resistance genes detected in singletons were identified in unaligned scaffolds. We provided a wide range of information toward the understanding of the genomic diversity of C. indologenes, which can contribute to controlling the evolution and dissemination of this pathogen in healthcare settings.
Collapse
Affiliation(s)
| | - Roumayne Lopes Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | - Pedro Mendes Laprega
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Andrea Soares da Costa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | - André Pitondo-Silva
- Programa de Pós-graduação em Odontologia e Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | | | - Maria-Cristina da Silva Pranchevicius
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- Centro de Ciências Biológicas e da Saúde, Biodiversidade Tropical - BIOTROP, Universidade Federal de São Carlos, São Carlos, Brazil
- *Correspondence: Maria-Cristina da Silva Pranchevicius,
| |
Collapse
|
13
|
Ali N, Lin Y, Jiang L, Ali I, Ahmed I, Akhtar K, He B, Wen R. Biochar and Manure Applications Differentially Altered the Class 1 Integrons, Antimicrobial Resistance, and Gene Cassettes Diversity in Paddy Soils. Front Microbiol 2022; 13:943880. [PMID: 35847108 PMCID: PMC9277118 DOI: 10.3389/fmicb.2022.943880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Integrons are genetic components that are critically involved in bacterial evolution and antimicrobial resistance by assisting in the propagation and expression of gene cassettes. In recent decades, biochar has been introduced as a fertilizer to enhance physiochemical properties and crop yield of soil, while manure has been used as a fertilizer for centuries. The current study aimed to investigate the impact of biochar, manure, and a combination of biochar and manure on integrons, their gene cassettes, and relative antimicrobial resistance in paddy soil. Field experiments revealed class 1 (CL1) integrons were prevalent in all samples, with higher concentration and abundance in manure-treated plots than in biochar-treated ones. The gene cassette arrays in the paddy featured a broad pool of cassettes with a total of 35% novel gene cassettes. A majority of gene cassettes encoded resistance to aminoglycosides, heat shock protein, heavy metals, pilus secretory proteins, and twin-arginine translocases (Tat), TatA, TatB, and TatC. Both in combination and solo treatments, the diversity of gene cassettes was increased in the manure-enriched soil, however, biochar reduced the gene cassettes’ diversity and their cassettes array. Manure considerably enhanced CL1 integrons abundance and antimicrobial resistance, whereas biochar amendments significantly reduced integrons and antimicrobial resistance. The results highlighted the differential effects of biochar and manure on integrons and its gene cassette arrays, showing increased abundance of integrons and antibiotic resistance upon manure application and decrease of the same with biochar. The use of biochar alone or in combination with manure could be a beneficial alternative to mitigate the spread of antimicrobial resistance and bacterial evolution in the environment, specifically in paddy soils.
Collapse
Affiliation(s)
- Niyaz Ali
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yinfu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ligeng Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Izhar Ali
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Ishtiaq Ahmed
- Department of Regional Science Operations, La Trobe Rural Health School, Albury-Wodonga, VIC, Australia
| | - Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- *Correspondence: Bing He,
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning, China
- Ronghui Wen,
| |
Collapse
|
14
|
Andriyanov PA, Zhurilov PA, Kashina DD, Tutrina AI, Liskova EA, Razheva IV, Kolbasov DV, Ermolaeva SA. Antimicrobial Resistance and Comparative Genomic Analysis of Elizabethkingia anophelis subsp. endophytica Isolated from Raw Milk. Antibiotics (Basel) 2022; 11:648. [PMID: 35625292 PMCID: PMC9137776 DOI: 10.3390/antibiotics11050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Elizabethkingia anophelis is an emerging multidrug-resistant pathogen that causes severe nosocomial and community-acquired infections worldwide. We report the first case of E. anophelis isolation in Russia and the first isolation from raw cow's milk. The ML-44 demonstrated resistance to 28 antimicrobials of 33 tested in the disk-diffusion test. Whole genome-based phylogeny showed ML-44 strain clustered together with the F3201 strain isolated from a human patient in Kuwait in 1982. Both strains were a part of the "endophytica" clade. Another clade was formed by subsp. anophelis strains. Each of the E. anophelis compared genomes carried 18 to 21 antibiotic resistance determinants. The ML-44 chromosome harbored nine efflux system genes and three beta-lactamase genes, along with six other antimicrobial resistance genes. In total, 72 virulence genes were revealed. The set of virulence factors was quite similar between different E. anophelis strains and included LPS and capsule encoded genes, type IV pili, oxidative stress response genes, and genes encoding TIVSS and TVISS effectors. The particular interest caused the mip and zmp1 gene homologs, which can be essential for intracellular survival. In sum, our findings suggest that raw milk might be a source of E. anophelis harboring a set of virulence factors and a broad resistance to generally used antimicrobials.
Collapse
Affiliation(s)
- Pavel A. Andriyanov
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Pavel A. Zhurilov
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Daria D. Kashina
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Anastasia I. Tutrina
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Elena A. Liskova
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Irina V. Razheva
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Denis V. Kolbasov
- Federal Research Center for Virology and Microbiology, 601125 Volginsky, Russia;
| | - Svetlana A. Ermolaeva
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| |
Collapse
|
15
|
Wang Y, Li S, Gong X, Chen Q, Ji G, Liu Y, Zheng F. Characterization of RaeE-RaeF-RopN, a putative RND efflux pump system in Riemerella anatipestifer. Vet Microbiol 2020; 251:108852. [PMID: 33069037 DOI: 10.1016/j.vetmic.2020.108852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022]
Abstract
Resistance-nodulation-division (RND) efflux systems are ubiquitous in Gram-negative bacteria and play a predominant role in antimicrobial resistance and other diverse phenotypes, but the knowledges of RND efflux systems are poorly understood so far in Riemerella anatipestifer. According to the sequence annotation, RIA_1117-RIA_1118-RIA_1119 operon in RA-GD strain encodes a putative tripartite RND efflux system. RIA_1117, RIA_1118 and RIA_1119 genes encode an outer member protein (OMP), an inner membrane pump protein (pump transporter), and a periplasmic membrane fusion protein (MFP), respectively. Furthermore, RIA_1119 protein is annotated as a MexE component. In this work, the biological functions of RIA_1117-RIA_1118-RIA_1119 proteins were studied. The antibiotic susceptibility testing showed that the inactivation of RIA_1117, RIA_1118 and RIA_1119 genes all raised susceptibility to amikacin, streptomycin and SDS. By induction with the above antimicrobial agents, the transcription levels of RIA_1117 and RIA_1118 genes were up-regulated significantly using qRT-PCR detection, but no significance difference was observed for the transcription level of RIA_1119 gene. CCCP inhibitor assay confirmed that RIA_1117, RIA_1118 and RIA_1119 proteins mediated amikacin, streptomycin and SDS resistance depending on proton motive force (PMF). Spot assay and streptomycin accumulation assay confirmed that RIA_1117, RIA_1118 and RIA_1119 proteins contributed to export streptomycin, and CCCP increased the accumulation of streptomycin. Furthermore, RIA_1117, RIA_1118 and RIA_1119 proteins also were involved in the fitness and virulence of RA-GD strain. These results showed that RIA_1117-RIA_1118-RIA_1119 operon encoded a RND efflux system, which has the substrate specificity for streptomycin, amikacin and SDS and contributed to the growth and virulence of RA-GD. RIA_1117-RIA_1118-RIA_1119 was designated RaeE-RaeF-RopN efflux system. Based on the above results and structural analysis, RIA_1117, RIA_1118 and RIA_1119 proteins corresponded to RopN (OMP), RaeF (pump transporter) and RaeE (MFP), respectively.
Collapse
Affiliation(s)
- Yanping Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, China
| | - Shengdou Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, China
| | - Xiaowei Gong
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, China
| | - Guo Ji
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, China
| | - Fuying Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, China.
| |
Collapse
|