1
|
Graziosi G, Lupini C, Favera FD, Martini G, Dosa G, Trevisani G, Garavini G, Mannelli A, Catelli E. Characterizing the domestic-wild bird interface through camera traps in an area at risk for avian influenza introduction in Northern Italy. Poult Sci 2024; 103:103892. [PMID: 38865769 PMCID: PMC11223120 DOI: 10.1016/j.psj.2024.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Direct or indirect interactions between sympatric wildlife and poultry can lead to interspecies disease transmission. Particularly, avian influenza (AI) is a viral epidemic disease for which the poultry-wild bird interface shapes the risks of new viral introductions into poultry holdings. Given this background, the study hereby presented aimed to identify wild bird species in poultry house surroundings and characterize the spatiotemporal patterns of these visits. Eight camera traps were deployed for a year (January to December 2021) in 3 commercial chicken layer farms, including free-range and barn-type setups, located in a densely populated poultry area in Northern Italy at high risk for AI introduction via wild birds. Camera traps' positions were chosen based on wildlife signs identified during preliminary visits to the establishments studied. Various methods, including time series analysis, correspondence analysis, and generalized linear models, were employed to analyze the daily wild bird visits. A total of 1,958 camera trap days yielded 5,978 videos of wild birds from 27 different species and 16 taxonomic families. The animals were predominantly engaged in foraging activities nearby poultry houses. Eurasian magpies (Pica pica), ring-necked pheasants (Phasianus colchicus), and Eurasian collared doves (Streptopelia decaocto) were the most frequent visitors. Mallards (Anas platyrhynchos), an AI reservoir species, were observed only in a farm located next to a fishing sport lake. Time series analysis indicated that wild bird visits increased during spring and winter. Farm and camera trap location also influenced visit frequencies. Overall, the results highlighted specific species that could be prioritized for future AI epidemiological surveys. However, further research is required to assess their susceptibility and infectivity to currently circulating AI viruses, essential for identifying novel bridge hosts.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy.
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Francesco Dalla Favera
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Gabriella Martini
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), Imola, Bologna 40026, Italy
| | - Geremia Dosa
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), Imola, Bologna 40026, Italy
| | | | - Gloria Garavini
- Veterinary Services of Eurovo Group, Imola, Bologna 40026, Italy
| | - Alessandro Mannelli
- Department of Veterinary Sciences, University of Torino, Grugliasco, Turin 10095, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| |
Collapse
|
2
|
Wang Y, Wang M, Zhang H, Zhao C, Zhang Y, Shen J, Sun X, Xu H, Xie Y, Gao X, Cui P, Chu D, Li Y, Liu W, Peng P, Deng G, Guo J, Li X. Prevalence, evolution, replication and transmission of H3N8 avian influenza viruses isolated from migratory birds in eastern China from 2017 to 2021. Emerg Microbes Infect 2023; 12:2184178. [PMID: 36913241 PMCID: PMC10013397 DOI: 10.1080/22221751.2023.2184178] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The continued evolution and emergence of novel influenza viruses in wild and domestic animals poses an increasing public health risk. Two human cases of H3N8 avian influenza virus infection in China in 2022 have caused public concern regarding the risk of transmission between birds and humans. However, the prevalence of H3N8 avian influenza viruses in their natural reservoirs and their biological characteristics are largely unknown. To elucidate the potential threat of H3N8 viruses, we analyzed five years of surveillance data obtained from an important wetland region in eastern China and evaluated the evolutionary and biological characteristics of 21 H3N8 viruses isolated from 15,899 migratory bird samples between 2017 and 2021. Genetic and phylogenetic analyses showed that the H3N8 viruses circulating in migratory birds and ducks have evolved into different branches and have undergone complicated reassortment with viruses in waterfowl. The 21 viruses belonged to 12 genotypes, and some strains induced body weight loss and pneumonia in mice. All the tested H3N8 viruses preferentially bind to avian-type receptors, although they have acquired the ability to bind human-type receptors. Infection studies in ducks, chickens and pigeons demonstrated that the currently circulating H3N8 viruses in migratory birds have a high possibility of infecting domestic waterfowl and a low possibility of infecting chickens and pigeons. Our findings imply that circulating H3N8 viruses in migratory birds continue to evolve and pose a high infection risk in domestic ducks. These results further emphasize the importance of avian influenza surveillance at the wild bird and poultry interface.
Collapse
Affiliation(s)
- Yanwen Wang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Mengjing Wang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Hong Zhang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Conghui Zhao
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Yaping Zhang
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Jinyan Shen
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xiaohong Sun
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Hongke Xu
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Yujiao Xie
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xinxin Gao
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Pengfei Cui
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Dong Chu
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang, People's Republic of China
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Peng Peng
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang, People's Republic of China
| | - Guohua Deng
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Jing Guo
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xuyong Li
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| |
Collapse
|
3
|
Jin Y, Cui H, Jiang L, Zhang C, Li J, Cheng H, Chen Z, Zheng J, Zhang Y, Fu Y, Li J, Li L, Guo Z, Lu B, Wang Z. Evidence for human infection with avian influenza A(H9N2) virus via environmental transmission inside live poultry market in Xiamen, China. J Med Virol 2023; 95:e28242. [PMID: 36261874 DOI: 10.1002/jmv.28242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023]
Abstract
H9N2 avian influenza virus (AIV) has become prevalent in the live poultry market (LPM) worldwide, and environmental transmission mode is an important way for AIVs to infect human beings in the LPM. To find evidence of human infection with the influenza A(H9N2) virus via environmental contamination, we evaluated one human isolate and three environmental isolates inside LPMs in Xiamen, China. The phylogeny, transmissibility, and pathogenicity of the four isolates were sorted out systematically. As for the H9N2 virus, which evolved alongside the "Avian-Environment-Human" spreading chain in LPMs from the summer of 2019 to the summer of 2020, its overall efficiency of contact and aerosol transmissibility improved, which might contribute to the increasing probability of human infection. This study indicated that environmental exposure might act as an important source of human infection in LPMs.
Collapse
Affiliation(s)
- Yifei Jin
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Lina Jiang
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Jingjing Li
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Hongliang Cheng
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zehui Chen
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Jing Zheng
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Yidun Zhang
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Yingying Fu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jiaming Li
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Li Li
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Bing Lu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhongyi Wang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| |
Collapse
|
4
|
Subclinical Infection and Transmission of Clade 2.3.4.4 H5N6 Highly Pathogenic Avian Influenza Virus in Mandarin Duck ( Aix galericulata) and Domestic Pigeon ( Columbia livia domestica). Viruses 2021; 13:v13061069. [PMID: 34199847 PMCID: PMC8227613 DOI: 10.3390/v13061069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/29/2023] Open
Abstract
Since 2014, H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses (HPAIV) have caused outbreaks in wild birds and poultry in multiple continents, including Asia, Europe, Africa, and North America. Wild birds were suspected to be the sources of the local and global spreads of HPAIV. This study evaluated the infectivity, pathogenicity, and transmissibility of clade 2.3.4.4 H5N6 HPAIV in mandarin ducks (Aixgalericulata) and domestic pigeons (Columbia livia domestica). None of the birds used in this study, 20 mandarin ducks or 8 pigeons, showed clinical signs or mortality due to H5N6 HPAI infection. Two genotypes of H5N6 HPAIV showed replication and transmission by direct and indirect contact between mandarin ducks. H5N6 HPAIV replicated and transmitted by direct contact between pigeons, although the viral shedding titer and duration were relatively lower and shorter than those in mandarin ducks. Influenza virus antigen was detected in various internal organs of infected mandarin ducks and pigeons, indicating systemic infection. Therefore, our results indicate mandarin ducks and pigeons can be subclinically infected with clade 2.3.4.4 H5N6 HPAIV and transfer the virus to adjacent birds. The role of mandarin ducks and pigeons in the spread and prevalence of clade 2.3.4.4 H5N6 viruses should be carefully monitored.
Collapse
|
5
|
A Review of Avian Influenza A Virus Associations in Synanthropic Birds. Viruses 2020; 12:v12111209. [PMID: 33114239 PMCID: PMC7690888 DOI: 10.3390/v12111209] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Avian influenza A viruses (IAV) have received significant attention due to the threat they pose to human, livestock, and wildlife health. In this review, we focus on what is known about IAV dynamics in less common avian species that may play a role in trafficking IAVs to poultry operations. Specifically, we focus on synanthropic bird species. Synanthropic species, otherwise known as peridomestic, are species that are ecologically associated with humans and anthropogenically modified landscapes, such as agricultural and urban areas. Aquatic birds such as waterfowl and shorebirds are the species most commonly associated with avian IAVs, and are generally considered the reservoir or maintenance hosts in the natural ecology of these viruses. Waterfowl and shorebirds are occasionally associated with poultry facilities, but are uncommon or absent in many areas, especially large commercial operations. In these cases, spillover hosts that share resources with both maintenance hosts and target hosts such as poultry may play an important role in introducing wild bird viruses onto farms. Consequently, our focus here is on what is known about IAV dynamics in synanthropic hosts that are commonly found on both farms and in nearby habitats, such as fields, lakes, wetlands, or riparian areas occupied by waterfowl or shorebirds.
Collapse
|