1
|
Wang Y, Xu S, Chen X, Dou Y, Yang X, Hu Z, Wu S, Wang X, Hu J, Liu X. Single dose of recombinant baculovirus vaccine expressing sigma B and sigma C genes provides good protection against novel duck reovirus challenge in ducks. Poult Sci 2024; 104:104565. [PMID: 39631275 DOI: 10.1016/j.psj.2024.104565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The novel duck reovirus (NDRV) disease causes high economic losses, resulting in substantial economic losses in waterfowl industry. However, currently, no commercial vaccines are available to alleviate NDRV infection throughout the world. Here, we developed two subunit vaccine candidates for NDRV based on the insect cell-baculovirus expression system (IC-BEVS). Two recombinant viruses, namely rBac-σB and rBac-σC, were successfully generated based on the consensus sequence of NDRV. Then, the σB and σC subunit vaccine candidates were prepared by directly inactivating the recombinant virus infected-Sf9 cell suspension. The double antibody-sandwich ELISA was used for quantitative of σB or σC protein in the inactivated crude antigen. Protective efficacy results revealed that, compared with the whole virus inactivated vaccine, a single dose of 160 ng σB or σC protein showed advantages in inducing serum antibodies, elevating weight, alleviating liver and spleen injury, restraining viral shedding and viral replication in ducklings. To be noted, the subunit σC or the combination of subunit σB and σC vaccine candidates had better protective efficacies, especially the combined σB and σC vaccine group. Therefore, our study provides useful information for developing effective vaccine against NDRV infection.
Collapse
Affiliation(s)
- Yufei Wang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Siyi Xu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Chen
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yunlong Dou
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xingzhu Yang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shuang Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Wang X, Yu H, Zhang W, Fu L, Wang Y. Molecular Detection and Genetic Characterization of Vertically Transmitted Viruses in Ducks. Animals (Basel) 2023; 14:6. [PMID: 38200736 PMCID: PMC10777988 DOI: 10.3390/ani14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
To investigate the distribution and genetic variation in four vertically transmitted duck pathogens, including duck hepatitis B virus (DHBV), duck circovirus (DuCV), duck hepatitis A virus 3 (DHAV-3), and avian reoviruses (ARV), we conducted an epidemiology study using PCR and RT-PCR assays on a duck population. We found that DHBV was the most prevalent virus (69.74%), followed by DuCV (39.48%), and then ARV (19.92%) and DHAV-3 (8.49%). Among the 271 duck samples, two, three or four viruses were detected in the same samples, indicating that the coinfection of vertical transmission agents is common in ducks. The genetic analysis results showed that all four identified DuCV strains belonged to genotype 1, the DHAV-3 strain was closely clustered with previously identified strains from China, and the ARV stain was clustered under genotype 1. These indicate that different viral strains are circulating among the ducks. Our findings will improve the knowledge of the evolution of DuCV, DHAV-3, and ARV, and help choose suitable strains for vaccination.
Collapse
Affiliation(s)
- Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Haidong Yu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150068, China
| | - Wenli Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150068, China
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing 408599, China;
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Peng Z, Zhang H, Zhang X, Wang H, Liu Z, Qiao H, Lv Y, Bian C. Identification and molecular characterization of novel duck reoviruses in Henan Province, China. Front Vet Sci 2023; 10:1137967. [PMID: 37065255 PMCID: PMC10098080 DOI: 10.3389/fvets.2023.1137967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Novel Duck reovirus (NDRV) is an ongoing non-enveloped virus with ten double-stranded RNA genome segments that belong to the genus Orthoreovirus, in the family Reoviridae. NDRV-associated spleen swelling, and necrosis disease have caused considerable economic losses to the waterfowl industry worldwide. Since 2017, a significant number of NDRV outbreaks have emerged in China. Herein, we described two cases of duck spleen necrosis disease among ducklings on duck farms in Henan province, central China. Other potential causative agent, including Muscovy duck reovirus (MDRV), Duck hepatitis A virus type 1 (DHAV-1), Duck hepatitis A virus type 3 (DHAV-3), Newcastle disease virus (NDV), and Duck tembusu virus (DTMUV), were excluded by reverse transcription-polymerase chain reaction (RT-PCR), and two NDRV strains, HeNXX-1/2021 and HNJZ-2/2021, were isolated. Sequencing and phylogenetic analysis of the σC genes revealed that both newly identified NDRV isolates were closely related to DRV/SDHZ17/Shandong/2017. The results further showed that Chinese NDRVs had formed two distinct clades, with late 2017 as the turning point, suggesting that Chinese NDRVs have been evolving in different directions. This study identified and genetic characteristics of two NDRV strains in Henan province, China, indicating NDRVs have evolved in different directions in China. This study provides an insight into the ongoing emerged duck spleen necrosis disease and enriches our understanding of the genetic diversity and evolution of NDRVs.
Collapse
Affiliation(s)
- Zhifeng Peng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Han Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haiyan Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zihan Liu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongxing Qiao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yujin Lv
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Chuanzhou Bian
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- *Correspondence: Chuanzhou Bian
| |
Collapse
|
4
|
Yin YW, Xiong C, Shi KC, Xie SY, Long F, Li J, Zheng M, Wei XK, Feng S, Qu S, Lu W, Zhou H, Zhao K, Sun W, Li Z. Development and application of a multiplex qPCR assay for the detection of duck circovirus, duck Tembusu virus, Muscovy duck reovirus, and new duck reovirus. Virus Genes 2023; 59:91-99. [PMID: 36258144 DOI: 10.1007/s11262-022-01946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/07/2022] [Indexed: 01/13/2023]
Abstract
A multiplex qPCR assay was developed to simultaneously detect duck circovirus (DuCV), duck Tembusu virus (DTMUV), Muscovy duck reovirus (MDRV), and novel duck reovirus (NDRV), but it did not amplify other viruses, including duck virus enteritis (DVE), infectious bursal disease virus (IBDV), avian reovirus (ARV), H5 avian influenza virus (H5 AIV), H7 avian influenza virus (H7 AIV), H9 avian influenza virus (H9 AIV), Newcastle disease virus (NDV), and Muscovy duck parvovirus (MDPV), and the detection limit for DuCV, DTMUV, MDRV, and NDRV was 1.51 × 101 copies/μL. The intra- and interassay coefficients of variation were less than 1.54% in the repeatability test with standard plasmid concentrations of 1.51 × 107, 1.51 × 105, and 1.51 × 103 copies/μL. The developed multiple qPCR assay was used to examine 404 clinical samples to verify its practicability. The positivity rates for DuCV, DTMUV, MDRV, and NDRV were 26.0%, 9.9%, 4.0%, and 4.7%, respectively, and the mixed infection rates for DuCV + DTMUV, DuCV + MDRV, DuCV + NDRV, MDRV + NDRV, DTMUV + MDRV, and DTMUV + NDRV were 2.7%, 1.2%, 1.2%, 1.0%, 0.5%, and 0.7%, respectively.
Collapse
Affiliation(s)
- Yan Wen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Chenyong Xiong
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Kai Chuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Shou Yu Xie
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Jun Li
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Min Zheng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Xian Kai Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Sujie Qu
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Wenjun Lu
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Hongjin Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Kang Zhao
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China.
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
5
|
Lin R, Zhi C, Su Y, Chen J, Gao D, Li S, Shi D. Effect of Echinacea on gut microbiota of immunosuppressed ducks. Front Microbiol 2023; 13:1091116. [PMID: 36687592 PMCID: PMC9849568 DOI: 10.3389/fmicb.2022.1091116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Immunosuppression puts animals in a susceptible state and disrupts the balance of intestinal flora, which can increase the risk of disease and cause serious harm to the farm. Echinacea can exert its immunomodulatory effect in various ways, but its influence on intestinal flora is unclear. Methods Therefore, we investigated the effect of Echinacea extract (EE) on gut microbiota in immunosuppressed ducks by 16s-RNA sequencing in this experiment. Results The results showed that EE significantly improved the weight gain of immunosuppressed ducks (p<0.001). It also increased the immune organ index (p<0.01) and upregulated the levels of TNF-α and IFN-γ (p<0.05) as well as IL-2 in the serum. The lesions of the bursa were evident compared to the spleen and thymus. After treatment in the EE group, the lymphocyte count of the bursa returned to healthy levels and the lesions were significantly improved. The diversity analysis showed that neither of the alpha-diversity indices showed a significant difference (p>0.05). However, the EE group had a trend closer to the healthy group compared to the M group. β-diversity analysis revealed a high degree of sample separation between the healthy and immunosuppressed groups. The sequencing result showed a significantly higher relative abundance of Prevotella and Prevotella_UCG_001 in the dexamethasone-treated group, which could be potential biomarkers of dexamethasone-induced immunosuppression. EE increased the relative abundance of Akkermansia, Bacteroides, and Alistipes and significantly decreased the relative abundance of Megamonas, Streptococcus, and Enterococcus (p<0.05). Conclusion The results showed that Echinacea extract improves the development of immunosuppressed ducks and modulates intestinal immune function by increasing the abundance of beneficial bacterial genera in the intestine.
Collapse
Affiliation(s)
- Renzhao Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chanping Zhi
- Guangdong Maoming Agriculture and Forestry Technical College, Maoming, China
| | - Yalin Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Debao Gao
- Guangzhou Technician College, Guangzhou, China
| | - Sihan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,*Correspondence: Dayou Shi, ✉
| |
Collapse
|
6
|
Yun T, Hua J, Ye W, Ni Z, Chen L, Zhu Y, Zhang C. Intergrated Transcriptomic and Proteomic Analysis Revealed the Differential Responses to Novel Duck Reovirus Infection in the Bursa of Fabricius of Cairna moschata. Viruses 2022; 14:v14081615. [PMID: 35893682 PMCID: PMC9332436 DOI: 10.3390/v14081615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
The bursa of Fabricius is an immunologically organ against the invasion of duck reovirus (DRV), which is a fatal bird virus belonging to the Reoviridae family. However, responses of the bursa of Fabricius of Cairna moschata to novel DRV (NDRV) infection are largely unknown. Transcriptomes and proteomes of the samples from control and two NDRV strain (HN10 and JDm10) with different virulence were analyzed. Differentially expressed genes and differential accumulated proteins were enriched in the serine protease system and innate immune response clusters. Most of the immune-related genes were up-regulated under both JDm10/HN10 infections. However, the immune-related proteins were only accumulated under HN10 infection. For the serine protease system, coagulation factor IX, three chains of fibrinogen, and complements C8, C5, and C2s were significantly up-regulated by the HN10 infection, suggesting that the serine protease-mediated immune system might be involved in the resistance to NDRV infection. For the innate and adaptive immune system, RIG-I, MDA5, MAPK20, and IRF3 were significantly up-regulated, indicating their important roles against invaded virus. TLR-3 and IKBKB were only up-regulated in the liver cells, MAPK20 was only up-regulated in the bursa of Fabricius cells, and IRAK2 was only up-regulated in the spleen samples. Coagulation factor IX was increased in the bursa of Fabricius, not in the liver and spleen samples. The data provides a detailed resource for studying the proteins participating in the resistances of the bursa of Fabricius of duck to NDRV infections.
Collapse
Affiliation(s)
- Tao Yun
- Correspondence: (T.Y.); (C.Z.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Fu Z, Yang H, Xiao Y, Wang X, Yang C, Lu L, Wang W, Lyu W. Ileal Microbiota Alters the Immunity Statues to Affect Body Weight in Muscovy Ducks. Front Immunol 2022; 13:844102. [PMID: 35222437 PMCID: PMC8866836 DOI: 10.3389/fimmu.2022.844102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
The ileum is mainly responsible for food absorption and nutrients transportation. The microbes in its intestinal lumen play an essential role in the growth and health of the host. However, it is still unknown how the ileal microbes affect the body weight of the host. In this study, we used Muscovy ducks as an animal model to investigate the relationship between the ileal microbes and body weight and further explore the potential mechanism. The ileum tissue and ileal contents of 200 Muscovy ducks were collected for mRNA extraction and real-time quantitative PCR, as well as DNA separation and 16S rRNA gene sequencing. With body weight being ranked, the bottom 20% (n = 40) and top 20% (n = 40) were set as the low and high groups, respectively. Our results showed that in the ileum of Muscovy ducks, the Bacteroides, Firmicutes, and Proteobacteria were the predominant phyla with the 10 most abundant genera, namely Candidatus Arthromitus, Bacteroides, Streptococcus, Vibrio, Romboutsia, Cetobacterium, Clostridium sensu stricto 1, Terrisporobacter, Escherichia-Shigella, and Lactobacillus. We identified Streptococcus, Escherichia-Shigella, Candidatus Arthromitus, Bacteroides, Faecalibacterium, and Oscillospira were closely correlated to the growth of Muscovy ducks. Streptococcus and Escherichia-Shigella were negatively related to body weight (BW), while Candidatus Arthromitus, Bacteroides, Faecalibacterium, and Oscillospira were positively associated with BW. In addition, we found that the relative expression levels of tight junction proteins (Claudin 1, Claudin 2, ZO-1 and ZO-2) in the high group showed an upward trend, although this trend was not significant (P > 0.05). The expression of pro-inflammatory factors (IL-1β, IL-2 and TNF-α) decreased in the high group, while the anti-inflammatory factor IL-10 increased. Of course, except IL-2, these differences were not significant (P > 0.05). Finally, the correlation analysis showed that Escherichia-Shigella was significantly positively correlated with IL-1β (P < 0.05). These findings may provide fundamental data for the development of next-generation probiotics and assist the development of strategies for changing the gut microbiota to promote the growth performance in the duck industry.
Collapse
Affiliation(s)
- Zixian Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,College of Animal Science, Zhejiang A&F University, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Caimei Yang
- College of Animal Science, Zhejiang A&F University, Hangzhou, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|