1
|
Cheng Y, Wang R, Wu Q, Chen J, Wang A, Wu Z, Sun F, Zhu S. Advancements in Research on Duck Tembusu Virus Infections. Viruses 2024; 16:811. [PMID: 38793692 PMCID: PMC11126125 DOI: 10.3390/v16050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus's transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.
Collapse
Affiliation(s)
- Yuting Cheng
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Ruoheng Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Qingguo Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Jinying Chen
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Anping Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Zhi Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Fang Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Shanyuan Zhu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| |
Collapse
|
2
|
Yang Q, Ding Y, Yao W, Chen S, Jiang Y, Yang L, Bao G, Yang K, Fan S, Du Q, Wang Q, Wang G. Pathogenicity and Interspecies Transmission of Cluster 3 Tembusu Virus Strain TMUV HQ-22 Isolated from Geese. Viruses 2023; 15:2449. [PMID: 38140690 PMCID: PMC10747935 DOI: 10.3390/v15122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Since 2010, the Tembusu virus (TMUV) has been highly prevalent in China, causing significant economic losses to the poultry industry. In 2022, a suspected outbreak of TMUV occurred at a goose farm located in Anhui Province. A strain of TMUV, TMUV HQ-22, was isolated from the infected geese. Phylogenetic analysis using the E gene of the HQ-22 strain demonstrated its affiliation with cluster 3, a less commonly reported cluster in comparison to the main circulating cluster, cluster 2. Through a comparison of the envelope (E) protein of HQ-22 with other typical TMUV strains, a mutation at the 157th amino acid position was identified, wherein valine (V) in cluster 3 changed to alanine (A), a characteristic that is unique to cluster 2. These findings highlight the diversity and complexity of the TMUV strains circulating in China. In our experimental analysis, an injection of TMUV HQ-22 into the muscles of 3-day-old goslings resulted in severe neurological symptoms and a mortality rate of 60%. Similarly, the intracranial or intranasal infection of 3-week-old ICR mice with TMUV HQ-22 led to severe neurological symptoms and respective mortality rates of 100% or 10%. In summary, our study isolated a TMUV strain, TMUV HQ-22, from geese that belongs to cluster 3 and exhibits significant pathogenicity in both goslings and ICR mice. These results emphasize the genetic diversity of the TMUV circulating in China and expand the host range beyond mosquitoes to include ducks, chickens, geese, and even mice. It is crucial to not underestimate the risk of TMUV infection in mammals, warranting our utmost attention.
Collapse
Affiliation(s)
- Qing Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Yingying Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Weiping Yao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Shuyue Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Yaqian Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Linping Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Guangbin Bao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Kang Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Shinuo Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Qingqing Du
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Qing Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China
| |
Collapse
|
3
|
Huang J, Yu T, Long Z, Wang M, Liu M, Zhu D, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Ou X, Mao S, Tian B, Gao Q, Sun D, Jia R, Cheng A. Duck IL-7 as a novel adjuvant improves the humoral immune response to an inactivated duck tembusu virus vaccine. Vet Microbiol 2023; 279:109665. [PMID: 36716633 DOI: 10.1016/j.vetmic.2023.109665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Duck tembusu virus (DTMUV), belonging to the Flavivirus genus, Flaviviridae family, has caused huge economic losses in the duck industry. However, the inactivated DTMUV vaccine requires multiple immunizations and has incomplete effectiveness. The humoral immune response is a key factor in the control of DTMUV infection. IL-7 derived from mammals has the ability to enhance antibody production. Whether duck IL-7 (duIL-7) possesses the ability to improve the humoral immunity of inactivated DTMUV vaccine has not yet been declared. Here, a beta-propiolactone (BPL)-inactivated DTMUV vaccine was employed to characterize the adjuvant property of duIL-7 in humoral immune responses. Intramuscular injection of DTMUV inactivated vaccine with or without duIL-7 was administered twice to the ducks. The results showed that duIL-7 was able to promote rapid antibody responses and enhance DTMUV-specific IgG and neutralizing antibody production to the vaccine. T follicular helper (Tfh) cells play a key role in assisting long humoral immunity. It was found that duIL-7 upregulated duIl-6 and duIl-21 gene expression at 3 w post first vaccination, which encode Tfh cell differentiation-related cytokines duIL-6 and duIL-21, respectively. This may be the reason that duIL-7 could prolong the humoral immune response to the inactivated DTMUV vaccine. Next, the ability of duIL-7 to simplify the immunization procedure of the inactivated DTMUV vaccine was tested. When ducks were immunized once, the titers of neutralizing antibodies in ducks from the inactivated DTMUV vaccine supplemented with duIL-7 group were significantly higher than those of ducks from the inactivated DTMUV vaccine group (P < 0.05). In addition, duIL-7 could assist the inactivated DTMUV vaccine in maintaining neutralizing antibodies at high levels during the whole experimental period. The viral titers in the ducks immunized with the inactivated DTMUV vaccine and duIL-7 were lower than those in the ducks immunized with the inactivated DTMUV vaccine alone at 3 days post infection (3 dpi, P < 0.05). Overall, duIL-7 possessed the ability to promote and prolong humoral immune responses to the inactivated DTMUV vaccine, even at one dose. This study provides a new efficient adjuvant for inactivated DTMUV vaccine development.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Tingting Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhiyao Long
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| |
Collapse
|
4
|
Cheng Y, Chen S, Jiang B, Chen W, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Gao Q, Sun D, Zhang L, Pan L, Cheng A. Identification of duck GSDME: Tissue distribution, proteolysis and cellular location. Cytokine 2022; 156:155925. [PMID: 35660714 DOI: 10.1016/j.cyto.2022.155925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Gasdermin E (GSDME) is a member of the gasdermin family. Cleavage of mammalian GSDME by apoptotic caspases or granzyme proteases liberates the N-terminal effector domain (GSDME-N), which is capable of forming membrane pores and executing inflammation and cell death. Herein, duck GSDME was first cloned with a total length of 1500 bp and encoding 499 amino acids (aa), which is most evolutionally related to the chicken GSDME. The tissue-distribution profiles of GSDME showed that relatively high levels of GSDME mRNA were detected in immune tissues of duckling and adult ducks. Additionally, GSDME mRNA was significantly upregulated in duck primary embryo fibroblasts (DEFs) and duck primary ovary cells after duck Tembusu virus (DTMUV) infection. Intriguingly, when duck caspase-3 was coexpressed, the duck GSDME produced two GSDME-N fragments with molecular weights of 25 kDa and 30 kDa. Furthermore, both GSDME and cleaved GSDME were observed to be located in the cytoplasm by indirect immunofluorescence assay (IFA). Taken together, our research data show that duck GSDME has similar biological characteristics to mammals. These findings highlight the role of duck GSDME in TMUV infection, indicating that cooperation between GSDME and caspase-3 promotes the proteolytic process.
Collapse
Affiliation(s)
- Yao Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Bowen Jiang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Weiqiong Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
5
|
Yang S, Wu J, Huang Y, Zhang Y, Shi Y, Yang P, Chen Q. Role of apoptosis in Duck Tembusu virus infection of duckling brains in vivo. Poult Sci 2021; 101:101636. [PMID: 34991036 PMCID: PMC8741609 DOI: 10.1016/j.psj.2021.101636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 10/26/2022] Open
Abstract
The Duck Tembusu virus (DTMUV) is a novel flavivirus that occurs mainly in poultry. DTMUV infection can cause common neurological symptoms in ducklings, but the pathogenesis of DTMUV has not been elucidated yet. In this study, a DTMUV-infected duckling model was constructed to investigate the apoptosis in the duckling brains. After DTMUV infection, apoptotic cells were observed by transmission electron microscopy. It was found that the abundances of apoptosis-related genes and proteins were not obviously changed in the early stage of infection but significantly changed in the middle and late stages of the disease. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay staining results were also consistent with the above phenomena. Interestingly, although apoptosis occurred in the duckling brains infected by DTMUV, some antiapoptotic genes in the brain increased in varying degrees. In conclusion, DTMUV infection could induce apoptosis in ducklings' brains, and the occurrence of apoptosis was accompanied by the virus infection process with certain regularity. This study provides a scientific basis for elucidating the apoptotic mechanism of brain lesions induced by DTMUV infection.
Collapse
Affiliation(s)
- Sheng Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Jingxian Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yafei Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yonghong Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
6
|
New Insights into the Biology of the Emerging Tembusu Virus. Pathogens 2021; 10:pathogens10081010. [PMID: 34451474 PMCID: PMC8398659 DOI: 10.3390/pathogens10081010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Reported for the first time in 1955 in Malaysia, Tembusu virus (TMUV) remained, for a long time, in the shadow of flaviviruses with human health importance such as dengue virus or Japanese encephalitis virus. However, since 2010 and the first large epidemic in duck farms in China, the threat of its emergence on a large scale in Asia or even its spillover into the human population is becoming more and more significant. This review aims to report current knowledge on TMUV from viral particle organization to the development of specific vaccines and therapeutics, with a particular focus on host-virus interactions.
Collapse
|