1
|
Alonso-Cerda MJ, García-Soto MJ, Miranda-López A, Segura-Velázquez R, Sánchez-Betancourt JI, González-Ortega O, Rosales-Mendoza S. Layered Double Hydroxides (LDH) as Delivery Vehicles of a Chimeric Protein Carrying Epitopes from the Porcine Reproductive and Respiratory Syndrome Virus. Pharmaceutics 2024; 16:841. [PMID: 39065539 PMCID: PMC11279870 DOI: 10.3390/pharmaceutics16070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) causes reproductive failure and respiratory symptoms, leading to huge economic losses for the pig farming industry. Although several vaccines against PRRSV are available in the market; they show an overall low efficacy, and several countries have the need for vaccines covering the local, circulating variants. This project aims at developing a new chimeric antigen targeting specific epitopes from PRRSV and evaluating two test adjuvants to formulate a vaccine candidate. The test antigen was called LTB-PRRSV, which was produced recombinantly in Escherichia coli and consisted of the heat labile enterotoxin B subunit from E. coli (LTB) and four epitopes from PRRSV. LTB-PRRSV was rescued as inclusion bodies and methods for its solubilization, IMAC-based purification, and refolding were standardized, leading to mean yields of 18 mg of pure protein per liter culture. Layered double hydroxides (LDH) have been used as vaccine adjuvants given their biocompatibility, low cost, and positive surface charge that allows an efficient adsorption of negatively charged biomolecules. Therefore, LDH were selected as delivery vehicles of LTB-PRRSV. Pure LTB-PRRSV was adsorbed onto LDH by incubation at different LDH:LTB-PRRSV mass ratios (1:0.25, 1:0.5, 1:1, and 1:2) and at pH 9.5. The best adsorption occurred with a 1:2 mass ratio, and in a sucrose-tween solution. The conjugates obtained had a polydispersity index of 0.26, a hydrodynamic diameter of 192 nm, and a final antigen concentration of 64.2 μg/mL. An immunogenicity assessment was performed by injecting mice with LDH:LTB-PRRSV, Alum/LTB-PRRSV, or LTB-PRRSV in a scheme comprising three immunizations at two-week intervals and two dose levels (1 and 5 μg). LTB-PRRSV was capable of inducing strong humoral responses, which lasted for a longer period when LDH was used as the delivery vehicle/adjuvant. The potential of LDH to serve as an attractive carrier for veterinary vaccines is discussed.
Collapse
Affiliation(s)
- María José Alonso-Cerda
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, San Luis Potosí 78210, Mexico; (M.J.A.-C.); (M.J.G.-S.); (A.M.-L.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
| | - Mariano J. García-Soto
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, San Luis Potosí 78210, Mexico; (M.J.A.-C.); (M.J.G.-S.); (A.M.-L.)
| | - Arleth Miranda-López
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, San Luis Potosí 78210, Mexico; (M.J.A.-C.); (M.J.G.-S.); (A.M.-L.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
| | - René Segura-Velázquez
- Unidad de Investigación, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - José Ivan Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, San Luis Potosí 78210, Mexico; (M.J.A.-C.); (M.J.G.-S.); (A.M.-L.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, San Luis Potosí 78210, Mexico; (M.J.A.-C.); (M.J.G.-S.); (A.M.-L.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
| |
Collapse
|
2
|
Dutta T, Sengupta S, Adhya S, Saha A, Sengupta D, Mondal R, Naskar S, Bhattacharjee S, Sengupta M. Identification of TNF-α as Major Susceptible Risk Locus for Vitiligo: A Systematic Review and Meta-Analysis Study in the Asian Population. Dermatology 2024; 240:376-386. [PMID: 38377977 DOI: 10.1159/000536480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
INTRODUCTION Vitiligo is a common depigmentation disorder characterized by defined white patches on the skin and affecting around 0.5% to 2% of the general population. Genetic association studies have identified several pre-disposing genes and single nucleotide polymorphisms (SNPs) for vitiligo pathogenesis; nonetheless, the reports are often conflicting and rarely conclusive. This comprehensive meta-analysis study was designed to evaluate the effect of the risk variants on vitiligo aetiology and covariate stratified vitiligo risk in the Asian population, considering all the studies published so far. METHODS We followed a systematic and comprehensive search to identify the relevant vitiligo-related candidate gene association studies in PubMed using specific keywords. After data extraction, we calculated, for the variants involved, the study-level unadjusted odds ratio, standard errors, and 95% confidence intervals by using logistic regression with additive, dominant effect, and recessive models using R software package (R, 3.4.2) "metafor." Subgroup analysis was performed using logistic regression (generalized linear model; "glm") of disease status on subgroup-specific genotype counts. For a better understanding of the likely biological function of vitiligo-associated variant obtained through the meta-analysis, in silico functional analyses, through standard publicly available web tools, were also conducted. RESULTS Thirty-one vitiligo-associated case-control studies on eleven SNPs were analysed in our study. In the fixed-effect meta-analysis, one variant upstream of TNF-α gene: rs1800629 was found to be associated with vitiligo risk in the additive (p = 4.26E-06), dominant (p = 1.65E-7), and recessive (p = 0.000453) models. After Benjamini-Hochberg false discovery rate (FDR) correction, rs1800629/TNF-α was found to be significant at 5% FDR in the dominant (padj = 1.82E-6) and recessive models (padj = 0.0049). In silico characterization revealed the prioritized variant to be regulatory in nature and thus having potential to contribute towards vitiligo pathogenesis. CONCLUSION Our study constitutes the first comprehensive meta-analysis of candidate gene-based association studies reported in the whole of the Asian population, followed by an in silico analysis of the vitiligo-associated variant. According to the findings of our study, TNF-α single nucleotide variant rs1800629G>A has a risk association, potentially contributing to vitiligo pathogenesis in the Asian population.
Collapse
Affiliation(s)
- Tithi Dutta
- Department of Genetics, University of Calcutta, Kolkata, India
| | | | - Suchismita Adhya
- Department of Microbiology, University of Calcutta, Kolkata, India
| | - Arpan Saha
- Department of Genetics, University of Calcutta, Kolkata, India
| | | | - Ritisri Mondal
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Swarnadru Naskar
- Department of Biotechnology, KIIT University, Bhubaneswar, India
| | | | - Mainak Sengupta
- Department of Genetics, University of Calcutta, Kolkata, India
| |
Collapse
|
3
|
Jia Z, Pan X, Zhi W, Chen H, Bai B, Ma C, Ma D. Probiotics Surface-Delivering Fiber2 Protein of Fowl Adenovirus 4 Stimulate Protective Immunity Against Hepatitis-Hydropericardium Syndrome in Chickens. Front Immunol 2022; 13:919100. [PMID: 35837390 PMCID: PMC9273852 DOI: 10.3389/fimmu.2022.919100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/27/2022] [Indexed: 12/19/2022] Open
Abstract
Background and ObjectivesHepatitis-hydropericardium syndrome (HHS) caused by Fowl adenoviruses serotype 4 (FAdV-4) leads to severe economic losses to the poultry industry. Although various vaccines are available, vaccines that effectively stimulate intestinal mucosal immunity are still deficient. In the present study, novel probiotics that surface-deliver Fiber2 protein, the major virulence determiner and efficient immunogen for FAdV-4, were explored to prevent this fecal–oral-transmitted virus, and the induced protective immunity was evaluated after oral immunization.MethodsThe probiotic Enterococcus faecalis strain MDXEF-1 and Lactococcus lactis NZ9000 were used as host strains to deliver surface-anchoring Fiber2 protein of FAdV-4. Then the constructed live recombinant bacteria were orally vaccinated thrice with chickens at intervals of 2 weeks. Following each immunization, immunoglobulin G (IgG) in sera, secretory immunoglobulin A (sIgA) in jejunum lavage, immune-related cytokines, and T-cell proliferation were detected. Following challenge with the highly virulent FAdV-4, the protective effects of the probiotics surface-delivering Fiber2 protein were evaluated by verifying inflammatory factors, viral load, liver function, and survival rate.ResultsThe results demonstrated that probiotics surface-delivering Fiber2 protein stimulated humoral and intestinal mucosal immune responses in chickens, shown by high levels of sIgA and IgG antibodies, substantial rise in mRNA levels of cytokines, increased proliferative ability of T cells in peripheral blood, improved liver function, and reduced viral load in liver. Accordingly, adequate protection against homologous challenges and a significant increase in the overall survival rate were observed. Notably, chickens orally immunized with E. faecalis/DCpep-Fiber2-CWA were completely protected from the FAdV-4 challenge, which is better than L. lactis/DCpep-Fiber2-CWA.ConclusionThe recombinant probiotics surface-expressing Fiber2 protein could evoke remarkable humoral and cellular immune responses, relieve injury, and functionally damage target organs. The current study indicates a promising method used for preventing FAdV-4 infection in chickens.
Collapse
Affiliation(s)
- Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinghui Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Zhi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bingrong Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin, China
- *Correspondence: Chunli Ma, ; Dexing Ma,
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
- *Correspondence: Chunli Ma, ; Dexing Ma,
| |
Collapse
|
4
|
Jin S, Wang T, Zhao Y, Liu X, Wang Y, Jiang L, Zhang Q. The heat-labile toxin B subunit of E. coli fused with VP6 from GCRV (Grass carp reovirus) was expressed and folded into an active protein in rice calli. Protein Expr Purif 2022; 197:106099. [PMID: 35525405 DOI: 10.1016/j.pep.2022.106099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
Abstract
Grass carp reovirus (GCRV) is one of the most serious pathogens threatening grass carp (Ctenopharyngon idellus) production in China. VP6 could be suitable for developing vaccine for the control of GCRV. Transgenic plants are an attractive bioreactor for their safety and ability to make economical vaccines. The B subunit of Escherichia coli heat-labile enterotoxin (LTB) fused to VP6 (LTB-VP6) was transformed into rice calli by Agrobacterium tumefaciens-mediated gene transformation. Transgenic rice calli was confirmed by PCR analysis separately. The copy numbers of LTB-VP6 inserted into the rice genome are between 1 and 2. The expression level of LTB-VP6 in rice calli was 0.0005-0.0019%, an average of 0.0011% of the TSP(total soluble proteins). LTB-VP6 was folded and assembled into a pentameric form of approximately 305 kDa capable of binding monosialoganglioside (GM1). The suitable concentration of LTB-VP6 in TSP was 0.4 μg/μl. LTB-VP6 is stable and highly active at room temperature. LTB-VP6 binding to GM1 is affected with different affinities under different temperatures. LTB-VP6 had a strong binding affinity at 25 °C and pH 8.4. Our results showed that LTB-VP6 is capable of forming an active pentameric form protein. It provides an ideal alternative to plant-based vaccines against GCRV in aquaculture.
Collapse
Affiliation(s)
- Shanshan Jin
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Tongtong Wang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Yan Zhao
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Xue Liu
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Yichen Wang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Lingchuan Jiang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Qiusheng Zhang
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| |
Collapse
|
5
|
Yin D, He L, Zhu E, Fang T, Yue J, Wen M, Wang K, Cheng Z. A fowl adenovirus serotype 4 (FAdV-4) Fiber2 subunit vaccine candidate provides complete protection against challenge with virulent FAdV-4 strain in chickens. Vet Microbiol 2021; 263:109250. [PMID: 34649009 DOI: 10.1016/j.vetmic.2021.109250] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/02/2021] [Indexed: 12/21/2022]
Abstract
Hypervirulent fowl adenovirus serotype 4 (FAdV-4)-induced hepatitis-hydropericardium syndrome (HHS) with high mortality causes huge economic losses to the poultry industry worldwide. However, commercially available vaccines against FAdV-4 infection remain scarce. Here, we prepared a subunit vaccine candidate derived from the bacterially expressed recombinant Fiber2 protein (termed as rFiber2 subunit vaccine) of FAdV-4 GZ-QL strain (a hypervirulent strain isolated in Guizhou province) and a recombinant plasmid pVAX1-Fiber2 as DNA vaccine candidate (termed as Fiber2 DNA vaccine). The immune effects of different dosages (50, 100, and 150 μg) of these were evaluated through immunization and challenge studies in chickens. Three injections of the rFiber2 subunit vaccine or the Fiber2 DNA vaccine induced robust humoral and cellular immune responses in chickens, which was assessed based on the secretion of high-level neutralizing antibodies, Th1- (IL-2, IFN-γ) and Th2-type cytokines (IL-4, IL-6). Importantly, the efficacy of the rFiber2 subunit vaccine was significantly higher (80 %-100 %) compared with the Fiber2 DNA vaccine (50 %-60 %) and a commercial inactivated vaccine (80 %). Collectively, these results suggest that the rFiber2 subunit and Fiber2 DNA vaccine candidate induced remarkable humoral and cellular immune responses, while the rFiber2 subunit vaccine candidate possesses better potential in the fight against FAdV-4 infection, laying foundations for the effective control of HHS in chickens.
Collapse
Affiliation(s)
- Dejing Yin
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ling He
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tian Fang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jun Yue
- Animal Disease Prevention and Control Center of Guizhou Province, Guiyang, 550001, China
| | - Ming Wen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kaigong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Wang YX, Yang GH, Zhang LL, Wang J, Wang JF. Melatonin as Immune Potentiator for Enhancing Subunit Vaccine Efficacy against Bovine Viral Diarrhea Virus. Vaccines (Basel) 2021; 9:vaccines9091039. [PMID: 34579276 PMCID: PMC8473004 DOI: 10.3390/vaccines9091039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a pathogen associated with substantial economic losses in the dairy cattle industry. Currently, there are no effective vaccines against BVDV. Melatonin (MT) has been shown to have anti-inflammatory and anti-viral properties, and the use of MF59 in vaccines significantly enhances vaccine efficiency. Here, MT and MF59 were added into the Erns-LTB vaccine. Subsequently, their inhibitory activity on the NF-κB signaling pathway in Mardin-Darby Bovine Kidney cells and the hippocampus was assessed using western blot and quantitative reverse transcription PCR. The findings revealed that MT in the Erns-LTB vaccine decreases the phosphorylation of p65 proteins caused by BVDV infection. In addition, MT decreased the mRNA levels of IL-1β and IL-6 in vitro, but increased the production of IFN-α, IFN-β, Mx1 in vitro, brain-derived neurotrophic factor, cyclic amp response element-binding protein, and the stem cell factor in vivo. Furthermore, treatment with Erns-LTB + MF59 + MT stimulated the production of T lymphocytes, alleviated pathological damage, decreased expressions of BVDV antigen, and tight junction proteins in mice. These findings imply that MT has potential for use in the Erns-LTB vaccine to inhibit BVDV infection and regulate the immune responses of T-cells by inhibiting the NF-κB signaling pathway.
Collapse
|
7
|
Yang G, Zhang J, Wang S, Wang J, Wang J, Zhu Y, Wang J. Gypenoside Inhibits Bovine Viral Diarrhea Virus Replication by Interfering with Viral Attachment and Internalization and Activating Apoptosis of Infected Cells. Viruses 2021; 13:v13091810. [PMID: 34578391 PMCID: PMC8473207 DOI: 10.3390/v13091810] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) causes a severe threat to the cattle industry due to ineffective control measures. Gypenoside is the primary component of Gynostemma pentaphyllum, which has potential medicinal value and has been widely applied as a food additive and herbal supplement. However, little is known about the antiviral effects of gypenoside. The present study aimed to explore the antiviral activities of gypenoside against BVDV infection. The inhibitory activity of gypenoside against BVDV was assessed by using virus titration and performing Western blotting, quantitative reverse transcription PCR (RT-qPCR), and immunofluorescence assays in MDBK cells. We found that gypenoside exhibited high anti-BVDV activity by interfering with the viral attachment to and internalization in cells. The study showed that BVDV infection inhibits apoptosis of infected cells from escaping the innate defense of host cells. Our data further demonstrated that gypenoside inhibited BVDV infection by electively activating the apoptosis of BVDV-infected cells for execution, as evidenced by the regulation of the expression of the apoptosis-related protein, promotion of caspase-3 activation, and display of positive TUNEL staining; no toxicity was observed in non-infected cells. Collectively, the data identified that gypenoside exerts an anti-BVDV-infection role by inhibiting viral attachment and internalization and selectively purging virally infected cells. Therefore, our study will contribute to the development of a novel prophylactic and therapeutic strategy against BVDV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiufeng Wang
- Correspondence: ; Tel.: +86-010-6273-1094; Fax: +86-010-6273-1274
| |
Collapse
|