1
|
Filip-Hutsch K, Laskowski Z, Myczka AW, Czopowicz M, Moskwa B, Demiaszkiewicz AW. The occurrence and molecular identification of Thelazia spp. in European bison (Bison bonasus) in the Bieszczady Mountains. Sci Rep 2022; 12:22508. [PMID: 36581768 PMCID: PMC9800370 DOI: 10.1038/s41598-022-27191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Infection with Thelazia nematodes results in eye disease in wild and domestic animals. The aim of the present study was to describe the occurrence of Thelazia nematodes in European bison, and to subject the isolated parasites to molecular identification and phylogenetical analysis. The eyeballs of 18 European bison from the Bieszczady Mountains, culled due to dysfunctional vision, were collected for study. The conjunctival sacs, tear ducts, corneal surface and nictitating membrane were rinsed with a saline solution. Any obtained nematodes were isolated under a stereoscopic microscope, and then identified as T. gulosa or T. skrjabini by molecular analysis of partial cox1 sequences. The prevalence of infection with Thelazia spp. was found to be 61%, with a 95% confidence interval (CI 95%) of 39-80%. Thelazia skrjabini was isolated from 56% (CI 95% 34-75%) of examined animals; T. gulosa was significantly less common (p = 0.038) with the prevalence of infection reaching 22% (CI 95% 9-45%). Three European bison were cross-infected with both T. gulosa and T. skrjabini. Phylogenetic analysis found the obtained sequences to be similar to those of Thelazia species from domestic ungulates in Europe. Infection intensity ranged from 1 to 16 nematodes per individual (median of three nematodes), and was significantly higher in females (6 nematodes) than in males (1 nematode; p = 0.019). A tendency for seasonal occurrence of nematodes in European bison was also observed. Our study provides further information regarding the patterns of Thelazia transmission in European bison in Poland.
Collapse
Affiliation(s)
- Katarzyna Filip-Hutsch
- grid.13276.310000 0001 1955 7966Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences–SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Zdzisław Laskowski
- grid.413454.30000 0001 1958 0162Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Anna W. Myczka
- grid.413454.30000 0001 1958 0162Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Michał Czopowicz
- grid.13276.310000 0001 1955 7966Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences–SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Bożena Moskwa
- grid.413454.30000 0001 1958 0162Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Aleksander W. Demiaszkiewicz
- grid.413454.30000 0001 1958 0162Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| |
Collapse
|
2
|
Bonde CS, Bornancin L, Lu Y, Simonsen HT, Martínez-Valladares M, Peña-Espinoza M, Mejer H, Williams AR, Thamsborg SM. Bio-Guided Fractionation and Molecular Networking Reveal Fatty Acids to Be Principal Anti-Parasitic Compounds in Nordic Seaweeds. Front Pharmacol 2021; 12:674520. [PMID: 34149425 PMCID: PMC8206555 DOI: 10.3389/fphar.2021.674520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 01/25/2023] Open
Abstract
Widespread use of antimicrobial drugs has led to high levels of drug-resistance in pathogen populations and a need for novel sources of anti-bacterial and anti-parasitic compounds. Macroalgae (seaweed) are potentially a rich source of bioactive compounds, and several species have traditionally been used as vermifuges. Here, we investigated the anti-parasitic properties of four common cold-water Nordic seaweeds; Palmaria palmata (Rhodophyta), Laminaria digitata, Saccharina latissima and Ascophyllum nodosum (Ochrophyta, Phaeophyceae). Screening of organic extracts against helminths of swine (Ascaris suum) and sheep (Teladorsagia circumcincta) revealed that S. latissima and L. digitata had particularly high biological activity. A combination of molecular networking and bio-guided fractionation led to the isolation of six compounds from extracts of these two species identified in both fermented and non-fermented samples. The six isolated compounds were tentatively identified by using MS-FINDER as five fatty acids and one monoglyceride: Stearidonic acid (1), Eicosapentaenoic acid (2), Alpha-Linolenic acid (3), Docosahexaenoic acid (4), Arachidonic acid (5), and Monoacylglycerol (MG 20:5) (6). Individual compounds showed only modest activity against A. suum, but a clear synergistic effect was apparent when selected compounds were tested in combination. Collectively, our data reveal that fatty acids may have a previously unappreciated role as natural anti-parasitic compounds, which suggests that seaweed products may represent a viable option for control of intestinal helminth infections.
Collapse
Affiliation(s)
- Charlotte Smith Bonde
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Louis Bornancin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Yi Lu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Department of Animal Health, León, Spain
| | - Miguel Peña-Espinoza
- Instituto de Farmacologia y Morfofisiologia, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
3
|
Comparison of Three Feeding Regimens on Blood Fatty Acids Metabolites of Wujumqin Sheep in Inner Mongolia. Animals (Basel) 2021; 11:ani11041080. [PMID: 33920167 PMCID: PMC8070206 DOI: 10.3390/ani11041080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The traditional sheep feeding system in Inner Mongolia, based on pasture grazing, is gradually transforming into a semi-grazing plus supplementation or feedlot approach, as grassland ecological protection becomes increasingly important. The fatty acid composition of the animals’ tissues changes with transformation of the feeding system. However, the changes to blood fatty acid metabolites in sheep as a result of alterations to the feeding regimen are unknown. In this study, pasture feeding, pasture feeding plus corn supplementation, and barn feeding were carried out to explore the effects of feeding regimens on blood fatty acid composition and metabolic pathways of sheep using a metabolomic approach. The results revealed that compared to grazing, concentrate supplement feeding regimens, including either grazing plus supplements or feeding indoors, down-regulated blood n-3 PUFA biosynthesis and up-regulated blood inflammatory compound metabolism by n-6 PUFA. These data suggest that under different feeding regimens, an appropriate ratio of n-6/n-3 PUFA in ruminant diets will contribute to increasingly high-quality animal production and improved immunocompetence. Abstract Feeding regimens influence the fatty acid composition of animal-derived products. However, there is limited information on the effect of feeding regimens on the blood fatty acid composition and metabolic pathways of ruminant animals. In this study, 30 Wujumqin sheep were randomly assigned to three groups, PF (pasture feeding), PSF (pasture feeding plus corn supplementation) and BF (barn feeding), to examine the effects of feeding regimens on blood fatty acid composition and metabolic pathways through a metabolomic approach. The results showed that the BF sheep had increased serum n-6 polyunsaturated fatty acids levels, while the PF and PSF sheep had increased serum n-3 PUFA levels. Compared to the BF and PSF sheep that were fed ground corn, the PF sheep that only ate natural grass had up-regulated serum DHA levels. Meanwhile, blood metabolites from linoleic acid and arachidonic acid, including pro-inflammatory products (20-HETE, LTs, TX etc.) and anti-inflammatory products (LXB4, DHETs, HPETEs etc.) were elevated in the BF group. It was found that, compared to grazing, concentrate supplement feeding regimens, including either grazing plus supplements or feeding indoors, down-regulated blood n-3 PUFA biosynthesis and up-regulated the blood inflammatory compound metabolism by n-6 PUFA.
Collapse
|
4
|
Zhu La ALT, Pierce K, Liu W, Gao S, Bu D, Ma L. Supplementation with Schizochytrium sp. enhances growth performance and antioxidant capability of dairy calves before weaning. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Choudhary RK, Hundal JS, Wadhwa M, Choudhary S, Neetika. Expression of lipogenic and milk protein genes in milk fat layer of goat after dietary supplementation of omega-3 rich linseed and chia oils. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
McDonnell RP, O' Doherty JV, Earley B, Clarke AM, Kenny DA. Effect of supplementation with n-3 polyunsaturated fatty acids and/or β-glucans on performance, feeding behaviour and immune status of Holstein Friesian bull calves during the pre- and post-weaning periods. J Anim Sci Biotechnol 2019; 10:7. [PMID: 30719285 PMCID: PMC6350401 DOI: 10.1186/s40104-019-0317-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022] Open
Abstract
Background Previous research in both calves and other species has suggested n-3 polyunsaturated fatty acids (PUFA) and β-glucans may have positive effects on immune function. This experiment measured performance, behaviour, metabolite and immunological responses to pre-weaning supplementation of dairy bull calves with n-3 PUFA in the form of fish oil and β-glucans derived from seaweed extract. 44 Holstein Friesian bull calves, aged 13.7 ± 2.5 d and weighing 48.0 ± 5.8 kg were artificially reared using an electronic feeding system. Each calf was offered 5 L (120 g/L) per day of milk replacer (MR) and assigned to one of four treatments included in the MR, (1) Control (CON); (2) 40 g n-3 PUFA per day (FO); (3) 1 g β-glucans per day (GL) and (4) 40 g n-3 PUFA per day & 1 g/d β-glucans (FOGL) in a 2 × 2 factorial design. Milk replacer and concentrate was offered from d 0–62 (pre-weaning), while concentrate provision continued for a further 31 d post-weaning period. Individual daily feed intake and feeding behaviour was recorded throughout, while bodyweight and blood analyte data were collected at regular intervals. Results Overall mean concentrate DMI from d 0–93 was 1.39, 1.27, 1.00 and 0.72 kg/d for CON, FO, GL and FOGL calves, respectively (SEM = 0.037; P < 0.0001). Calves supplemented with GL were significantly lighter (P < 0.0001) at both weaning (d 62) and turnout to pasture (d 93) than un-supplemented calves, with a similar effect (P < 0.0001) evident for calves receiving FO compared to un-supplemented contemporaries. Supplementation with GL reduced the number of unrewarded visits where milk was not consumed (P < 0.0001) while supplementation with FO increased mean drinking speed (P < 0.0001). Supplementation with GL resulted in greater concentrations of haptoglobin (P = 0.034), greater serum osmolality (P = 0.021) and lower lymphocyte levels (P = 0.027). In addition, cells from GL supplemented calves exhibited a lower response than un-supplemented contemporaries to both Phytohaemagglutinin A stimulated IFN-γ (P = 0.019) and Concanavalin A stimulated IFN-γ (P = 0.012) following in vitro challenges. Conclusions Pre-weaning supplementation of bull calves with either n-3 PUFA or β-glucan resulted in reduced voluntary feed intake of concentrate and consequently poorer pre-weaning calf performance. There was no evidence for any beneficial effect of either supplementation strategy on calves’ immune responses.
Collapse
Affiliation(s)
- Ruairi P McDonnell
- 1School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Present address: GippsDairy, 71 Korumburra-Warragul Road, Warragul, VIC 3820 Australia
| | - John V O' Doherty
- 1School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bernadette Earley
- Teagasc Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre (AGRIC), Grange, Dunsany, Co. Meath, Ireland
| | - Anne Marie Clarke
- 1School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Kenny
- 1School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Teagasc Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre (AGRIC), Grange, Dunsany, Co. Meath, Ireland
| |
Collapse
|
7
|
Zhang YQ, He DC, Meng QX, Wang DC. Effect of steam-flaked corn and soybeans on muscle and intramuscular fatty acid composition in Holstein calves. J Anim Sci 2015; 93:5812-8. [PMID: 26641191 DOI: 10.2527/jas.2014-8857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the effects of steam-flaked corn grains and soybeans on muscle fatty acid composition. Thirty Holstein bull calves (21 ± 3 d) were divided into 3 groups according to birth date and BW and were randomly assigned to receive fresh milk and a commercial pelleted starter diet containing extruded corn and soybean (ECS), steam-flaked corn and soybean (SFCS), or ground corn and raw soybean (GCS). The calves were fed the designated diet from 3 to 13 wk of age, after which they were slaughtered. The supraspinatus (CTM), longissimus lumborum (RLM), and spinalis dorsi (ERM) were analyzed to determine the chemical and intramuscular fatty acid composition. The fatty acid composition of muscle and its deposition differed among calves fed different starter feeds. Medium-chain fatty acid levels of the RLM and CTM were greater in GCS-fed calves than in ECS- and SFCS-fed calves ( < 0.05). Extruded processing increased the content of linoleic, linolenic, and arachidonic acids of the RLM ( < 0.05). The palmitoleic and -vaccenic acid content of the ERM were greater in GCS-fed calves than in ECS- or SFCS-fed calves ( < 0.05). No significant differences were observed among the 3 diets with respect to the stearic, oleic, linoleic, -9 -11 CLA, or arachidonic acid content of the ERM ( > 0.05). The levels of -3 and -6 fatty acids were similar among the 3 groups; a lower -6:-3 PUFA ratio was observed in GCS-fed calves ( < 0.05). The cereal processing method of the calf starter feed had no significant effect on the chemical composition of the CTM, RLM, or ERM. Therefore, different methods of processing corn and soybean in calf starter feeds had no effect on the chemical composition of the RLM, CTM, or ERM but had a significant effect on the intramuscular fatty acid composition.
Collapse
|
8
|
Splice variants and regulatory networks associated with host resistance to the intestinal worm Cooperia oncophora in cattle. Vet Parasitol 2015; 211:241-50. [PMID: 26025321 DOI: 10.1016/j.vetpar.2015.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/27/2015] [Accepted: 05/09/2015] [Indexed: 11/21/2022]
Abstract
To elucidate the molecular mechanism of host resistance, we characterized the jejunal transcriptome of Angus cattle selected for parasite resistance for over 20 years in response to infection caused by the intestinal worm Cooperia oncophora. The transcript abundance of 56 genes, such as that of mucin 12 (MUC12) and intestinal alkaline phosphatase (ALPI), was significantly higher in resistant cattle. Novel splicing variants, exon skipping events, and gene fusion events, were also detected. An algorithm for the reconstruction of accurate cellular networks (ARACNE) was used to infer de novo regulatory molecular networks in the interactome between the parasite and host. Under a combined cutoff of an error tolerance (ϵ = 0.10) and a stringent P-value threshold of mutual information (1.0 × 10(-5)), a total of 229,100 direct interactions controlled by 20,288 hub genes were identified. Among these hub genes, 7651 genes had ≥ 100 direct neighbors while the top 9778 hub genes controlled more than 50% of total direct interactions. Three lysozyme genes (LYZ1, LYZ2, and LYZ3), which are co-located in bovine chromosome 5 in tandem and are strongly upregulated in resistant cattle, shared a common regulatory network of 55 genes. These ancient antimicrobials were likely involved in regulating host-parasite interactions by affecting host gut microbiome. Notably, ALPI, known as a gut mucosal defense factor, controlled a molecular network consisting 410 genes, including 14 transcription factors (TF) and 10 genes that were significantly regulated in resistant cattle. Several large regulatory networks were controlled by TF, such as STAT6, SREBF1, and ELF4. Gene ontology (GO) processes significantly enriched in the regulatory network controlled by STAT6 included lipid metabolism. Our findings provide insights into the immune regulation of host-parasite interactions and the molecular mechanisms of host resistance in cattle.
Collapse
|
9
|
Fairfax KC, Harrison LM, Cappello M. Molecular cloning and characterization of a nematode polyprotein antigen/allergen from the human and animal hookworm Ancylostoma ceylanicum. Mol Biochem Parasitol 2014; 198:37-44. [PMID: 25481749 DOI: 10.1016/j.molbiopara.2014.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 11/30/2022]
Abstract
Nematodes are unable to synthesize fatty acids de novo and must acquire them from the environment or host. It is hypothesized that two unique classes of fatty acid and retinol binding proteins that nematodes produce (fatty acid and retinol binding (FAR) and nematode polyprotein antigen/allergen (NPA)) are used to meet this need. A partial cDNA has been cloned corresponding to four subunits of a putative Ancylostoma ceylanicum NPA (AceNPA). The translated amino acid sequence of AceNPA shares sequence identity with similar proteins from Dictyocaulus viviparus, Ascaris suum, and Ostertagia ostertagi. Immunoblot experiments using a polyclonal anti-AceNPA IgG revealed proteins corresponding to the expected sizes of single, as well as two or three un-cleaved NPA subunits in adult excretory/secretory proteins and soluble adult worm extracts. Immunohistochemistry experiments localize AceNPA to the cuticle, pseudocoelomic space and testes suggesting a role in hookworm biology that is distinct from what has previously been defined for other hookworm lipid binding proteins. A single recombinant subunit of AceNPA (rAceNPAb) demonstrated binding in vitro to fluorescent fatty acids DAUDA, cis-parinaric acid, as well as retinol, at equilibrium dissociation constants in the low micromolar range. Further, in vitro data reveal that rAceNPAb binds fatty acids with chain lengths of C12-C22, with the greatest affinities for arachidonic, linoleic (C18), and eicosapentaenoic (C20) acids.
Collapse
Affiliation(s)
- Keke C Fairfax
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - Lisa M Harrison
- Infectious Diseases Section and Program in International Child Health, Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Michael Cappello
- Infectious Diseases Section and Program in International Child Health, Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Li RW, Choudhary RK, Capuco AV, Urban JF. Exploring the host transcriptome for mechanisms underlying protective immunity and resistance to nematode infections in ruminants. Vet Parasitol 2012; 190:1-11. [PMID: 22819588 DOI: 10.1016/j.vetpar.2012.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/08/2012] [Accepted: 06/15/2012] [Indexed: 12/11/2022]
Abstract
Nematode infections in ruminants are a major impediment to the profitable production of meat and dairy products, especially for small farms. Gastrointestinal parasitism not only negatively impacts weight gain and milk yield, but is also a major cause of mortality in small ruminants. The current parasite control strategy involves heavy use of anthelmintics that has resulted in the emergence of drug-resistant parasite strains. This, in addition to increasing consumer demand for animal products that are free of drug residues has stimulated development of alternative strategies, including selective breeding of parasite resistant ruminants. The development of protective immunity and manifestations of resistance to nematode infections relies upon the precise expression of the host genome that is often confounded by mechanisms simultaneously required to control multiple nematode species as well as ecto- and protozoan parasites, and microbial and viral pathogens. Understanding the molecular mechanisms underlying these processes represents a key step toward development of effective new parasite control strategies. Recent progress in characterizing the transcriptome of both hosts and parasites, utilizing high-throughput microarrays and RNA-seq technology, has led to the recognition of unique interactions and the identification of genes and biological pathways involved in the response to parasitism. Innovative use of the knowledge gained by these technologies should provide a basis for enhancing innate immunity while limiting the polarization of acquired immunity can negatively affect optimal responses to co-infection. Strategies for parasite control that use diet and vaccine/adjuvant combination could be evaluated by monitoring the host transcriptome for induction of appropriate mechanisms for imparting parasite resistance. Knowledge of different mechanisms of host immunity and the critical regulation of parasite development, physiology, and virulence can also selectively identify targets for parasite control. Comparative transcriptome analysis, in concert with genome-wide association (GWS) studies to identify quantitative trait loci (QTLs) affecting host resistance, represents a promising molecular technology to evaluate integrated control strategies that involve breed and environmental factors that contribute to parasite resistance and improved performance. Tailoring these factors to control parasitism without severely affecting production qualities, management efficiencies, and responses to pathogenic co-infection will remain a challenge. This review summarizes recent progress and limitations of understanding regulatory genetic networks and biological pathways that affect host resistance and susceptibility to nematode infection in ruminants.
Collapse
Affiliation(s)
- Robert W Li
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, MD, USA.
| | | | | | | |
Collapse
|
11
|
The effects of an abundant ectoparasite, the deer ked (Lipoptena cervi), on the health of moose (Alces alces) in Finland. Parasitol Res 2012; 111:1223-32. [DOI: 10.1007/s00436-012-2956-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/03/2012] [Indexed: 11/25/2022]
|
12
|
Li RW, Rinaldi M, Capuco AV. Characterization of the abomasal transcriptome for mechanisms of resistance to gastrointestinal nematodes in cattle. Vet Res 2011; 42:114. [PMID: 22129081 PMCID: PMC3260172 DOI: 10.1186/1297-9716-42-114] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/30/2011] [Indexed: 11/10/2022] Open
Abstract
The response of the abomasal transcriptome to gastrointestinal parasites was evaluated in parasite-susceptible and parasite-resistant Angus cattle using RNA-seq at a depth of 23.7 million sequences per sample. These cattle displayed distinctly separate resistance phenotypes as assessed by fecal egg counts. Approximately 65.3% of the 23,632 bovine genes were expressed in the fundic abomasum. Of these, 13,758 genes were expressed in all samples tested and likely represent core components of the bovine abomasal transcriptome. The gene (BT14427) with the most abundant transcript, accounting for 10.4% of sequences in the transcriptome, is located on chromosome 29 and has unknown functions. Additionally, PIGR (1.6%), Complement C3 (0.7%), and Immunoglobulin J chain (0.5%) were among the most abundant transcripts in the transcriptome. Among the 203 genes impacted, 64 were significantly over-expressed in resistant animals at a stringent cutoff (FDR < 5%). Among the 94 224 splice junctions identified, 133 were uniquely present: 90 were observed only in resistant animals, and 43 were present only in susceptible animals. Gene Ontology (GO) enrichment of the genes under study uncovered an association with lipid metabolism, which was confirmed by an independent pathway analysis. Several pathways, such as FXR/RXR activation, LXR/RXR activation, LPS/IL-1 mediated inhibition of RXR function, and arachidonic acid metabolism, were impacted in resistant animals, which are potentially involved in the development of parasite resistance in cattle. Our results provide insights into the development of host immunity to gastrointestinal nematode infection and will facilitate understanding of mechanism underlying host resistance.
Collapse
Affiliation(s)
- Robert W Li
- Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, USDA-ARS, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
13
|
Paakkonen T, Mustonen AM, Käkelä R, Kiljander T, Kynkäänniemi SM, Laaksonen S, Solismaa M, Aho J, Kortet R, Puukka K, Saarela S, Härkönen L, Kaitala A, Ylönen H, Nieminen P. Experimental infection of the deer ked (Lipoptena cervi) has no negative effects on the physiology of the captive reindeer (Rangifer tarandus tarandus). Vet Parasitol 2011; 179:180-8. [DOI: 10.1016/j.vetpar.2011.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/15/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
Affiliation(s)
- Tommi Paakkonen
- University of Eastern Finland, Faculty of Science and Forestry, Department of Biology, P.O. Box 111, 80101 Joensuu, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
A temporal shift in regulatory networks and pathways in the bovine small intestine during Cooperia oncophora infection. Int J Parasitol 2009; 39:813-24. [DOI: 10.1016/j.ijpara.2008.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 01/16/2023]
|
15
|
McClure SJ. Dietary impacts on the resistance of Merino lambs toTrichostrongylus colubriformis. N Z Vet J 2009; 57:102-8. [DOI: 10.1080/00480169.2009.36886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|