1
|
Merks H, Boone R, Janecko N, Viswanathan M, Dixon BR. Foodborne protozoan parasites in fresh mussels and oysters purchased at retail in Canada. Int J Food Microbiol 2023; 399:110248. [PMID: 37210953 DOI: 10.1016/j.ijfoodmicro.2023.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Studies worldwide have reported the presence of protozoan parasites in a variety of commercial bivalve shellfish. The uptake of these parasites by shellfish occurs during filter feeding in faecally-contaminated waters. The objective of the present study was to determine the prevalence of Giardia, Cryptosporidium and Toxoplasma in fresh, live shellfish purchased in three Canadian provinces as part of the retail surveillance activities led by FoodNet Canada (Public Health Agency of Canada). Packages containing mussels (n = 253) or oysters (n = 130) were purchased at grocery stores in FoodNet Canada sentinel sites on a biweekly basis throughout 2018 and 2019, and shipped in coolers to Health Canada for testing. A small number of packages were not tested due to insufficient quantity or poor quality. Following DNA extraction from homogenized, pooled tissues, nested PCR and DNA sequencing were used to detect parasite-specific sequences. Epifluorescence microscopy was used to confirm the presence of intact cysts and oocysts in sequence-confirmed PCR-positive samples. Giardia duodenalis DNA was present in 2.4 % of 247 packages of mussels and 4.0 % of 125 packages of oysters, while Cryptosporidium parvum DNA was present in 5.3 % of 247 packages of mussels and 7.2 % of 125 packages of oysters. Toxoplasma gondii DNA was only found in mussels in 2018 (1.6 % of 249 packages). Parasite DNA was detected in shellfish purchased in all three Canadian provinces sampled, and there was no apparent seasonal variation in prevalence. While the present study did not test for viability, parasites are known to survive for long periods in the marine environment, and these findings suggest that there is a risk of infection, especially when shellfish are consumed raw.
Collapse
Affiliation(s)
- Harriet Merks
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Ryan Boone
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom; Food-borne Disease and Antimicrobial Resistance Surveillance Division, Public Health Agency of Canada, 370 Speedvale Avenue West, Suite #201, Guelph, Ontario N1H 7M7, Canada
| | - Mythri Viswanathan
- Food-borne Disease and Antimicrobial Resistance Surveillance Division, Public Health Agency of Canada, 370 Speedvale Avenue West, Suite #201, Guelph, Ontario N1H 7M7, Canada
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada.
| |
Collapse
|
2
|
Ghozzi K, Nakbi A, Challouf R, Dhiab RB. A review on microbial contamination cases in Tunisian coastal marine areas. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2142-2158. [PMID: 37186620 PMCID: wst_2023_123 DOI: 10.2166/wst.2023.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Microbial pollution in marine environments is one of the critical issues with regard to the sanitary status of recreational activities and seafood harvesting due to a potential contamination by pathogenic microorganisms. This review's objectives were to identify instances of bacterial, viral and protozoan parasite pollution in the Tunisian coastal region and to make recommendations for further research. Fecal indicators such as Escherichia coli and Salmonella spp. were detected in samples of clams and mussels. Vibrionaceae species were also recorded in seawater, sediment, fish and clams in different sites from north to south with the dominance of Vibrio alginolyticus. Bivalve mollusks collected from the Tunisian coast have been revealed to harbor viruses as well as protozoan parasites. Furthermore, the isolation of multidrug-resistant bacterial strains from Tunisian coastlines proves the significant spread and circulation of antibiotic resistance caused by the massive use of antibiotics. In conclusion, we suggest intensive monitoring and cutting-edge wastewater treatment technologies to enhance seawater quality and preserve the biodiversity of aquatic life. Rapid detection techniques for the most important pathogenic microorganisms in seafood and seawater must be also developed to reduce human health risk.
Collapse
Affiliation(s)
- Khemissa Ghozzi
- Laboratoire de Biodiversité Marine, Institut National des Sciences et Technologies de la Mer, Monastir, Tunisie E-mail:
| | - Amel Nakbi
- Laboratoire de Biodiversité Marine, Institut National des Sciences et Technologies de la Mer, Monastir, Tunisie E-mail:
| | - Rafika Challouf
- Laboratoire de Biodiversité Marine, Institut National des Sciences et Technologies de la Mer, Monastir, Tunisie E-mail:
| | - Rym Ben Dhiab
- Laboratoire de Biodiversité Marine, Institut National des Sciences et Technologies de la Mer, Monastir, Tunisie E-mail:
| |
Collapse
|
3
|
de Souza RV, Moresco V, Miotto M, Souza DSM, de Campos CJA. Prevalence, distribution and environmental effects on faecal indicator bacteria and pathogens of concern in commercial shellfish production areas in a subtropical region of a developing country (Santa Catarina, Brazil). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:286. [PMID: 35303750 DOI: 10.1007/s10661-022-09950-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This paper reviews recent literature on the abundance and distribution of faecal indicator bacteria and pathogens in shellfish production areas in the state of Santa Catarina, on the subtropical coast of Brazil. This state supplies > 95% of the national production of shellfish. Microbiological monitoring data were mapped using GIS and the results compared with those from other countries. Coastal human population is the main predictive parameter for faecal bacteria in the production areas. Temporal variations of the bacteria can also be predicted by solar radiation and rainfall. The prevalence of pathogens such as hepatitis A virus, human norovirus, Salmonella spp. and Vibrio spp. does not differ substantially from that in developed countries. The information reported here can be used to inform development of microbiological risk profiles for shellfish production areas.
Collapse
Affiliation(s)
- Robson Ventura de Souza
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (Epagri), Rodovia Admar Gonzaga, 1.188, Itacorubi, Caixa Postal 502, Florianópolis, SC, CEP 88034-901, Brazil.
| | - Vanessa Moresco
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521-0001, USA
| | - Marilia Miotto
- Departamento de Ciência e Tecnologia de Alimentos, Centro de Tecnologia de Alimentos, Universidade Federal de Santa Catarina (UFSC), Rodovia Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil
| | - Doris Sobral Marques Souza
- Departamento de Ciência e Tecnologia de Alimentos, Centro de Tecnologia de Alimentos, Universidade Federal de Santa Catarina (UFSC), Rodovia Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil
- Laboratório de Virologia Aplicada, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Trindade, CEP 88040-900, Florianópolis, Santa Catarina, 88034-001, Brazil
| | | |
Collapse
|
4
|
Moratal S, Dea-Ayuela MA, Cardells J, Marco-Hirs NM, Puigcercós S, Lizana V, López-Ramon J. Potential Risk of Three Zoonotic Protozoa ( Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii) Transmission from Fish Consumption. Foods 2020; 9:E1913. [PMID: 33371396 PMCID: PMC7767443 DOI: 10.3390/foods9121913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
In recent decades, worldwide fish consumption has increased notably worldwide. Despite the health benefits of fish consumption, it also can suppose a risk because of fishborne diseases, including parasitic infections. Global changes are leading to the emergence of parasites in new locations and to the appearance of new sources of transmission. That is the case of the zoonotic protozoa Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii; all of them reach aquatic environments and have been found in shellfish. Similarly, these protozoa can be present in other aquatic animals, such as fish. The present review gives an overview on these three zoonotic protozoa in order to understand their potential presence in fish and to comprehensively revise all the evidences of fish as a new potential source of Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii transmission. All of them have been found in both marine and freshwater fishes. Until now, it has not been possible to demonstrate that fish are natural hosts for these protozoa; otherwise, they would merely act as mechanical transporters. Nevertheless, even if fish only accumulate and transport these protozoa, they could be a "new" source of infection for people.
Collapse
Affiliation(s)
- Samantha Moratal
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| | - M. Auxiliadora Dea-Ayuela
- Farmacy Department, Universidad CEU-Cardenal Herrera, Santiago Ramón y Cajal St, 46115 Alfara del Patriarca, Valencia, Spain
| | - Jesús Cardells
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, 08193 Bellaterra, Barcelona, Spain
| | - Naima M. Marco-Hirs
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| | - Silvia Puigcercós
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| | - Víctor Lizana
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, 08193 Bellaterra, Barcelona, Spain
| | - Jordi López-Ramon
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| |
Collapse
|
5
|
Torrecillas C, Fajardo MA, Córdoba MA, Sánchez M, Mellado I, Garrido B, Aleixandre-Górriz I, Sánchez-Thevenet P, Carmena D. First Report of Zoonotic Genotype of Giardia duodenalis in Mussels ( Mytilus edulis) from Patagonia Argentina. Vector Borne Zoonotic Dis 2020; 21:92-97. [PMID: 33074789 DOI: 10.1089/vbz.2020.2645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Blue mussels (Mytilus edulis) are among the most consumed fishery products globally. Foodborne outbreaks of mussel-associated infections by viral, bacterial, and parasitic pathogens have been reported in the last years. In this study, we investigated the occurrence, genetic diversity, and zoonotic potential of the diarrhea-causing enteric protozoan Giardia duodenalis in blue mussels from Caleta Córdova in Chubut Province, southeast Patagonia, Argentina. A total of 344 free-living blue mussels were collected and distributed in 53 aliquots of pooled mussel tissue (each containing 5‒7 specimens) during the period 2015‒2018. Conventional optical microscopy was used as screening method for the detection of G. duodenalis cysts in pooled, homogenized tissues. Samples with a positive result were assessed by a multilocus sequence genotyping scheme based on the amplification of partial fragments of the glutamate dehydrogenase and β-giardin genes of the parasite. G. duodenalis cysts were found in 30.2% (16/53) of the aliquots of pooled mussel tissue tested. PCR and sequencing analyses revealed the presence of G. duodenalis subassemblage BIV in selected aliquots. To the best of our knowledge, this is the first description of zoonotic subassemblage BIV from blue mussels in Argentina.
Collapse
Affiliation(s)
- Claudia Torrecillas
- Departamento de Bioquímica, Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| | - María Angélica Fajardo
- Departamento de Bioquímica, Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| | | | - Marco Sánchez
- Departamento de Bioquímica, Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| | - Ivana Mellado
- Departamento de Bioquímica, Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| | - Betiana Garrido
- Departamento de Bioquímica, Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| | - Isabel Aleixandre-Górriz
- Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Castellón de la Plana, Spain
| | - Paula Sánchez-Thevenet
- Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Castellón de la Plana, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Spain
| |
Collapse
|
6
|
Ligda P, Claerebout E, Casaert S, Robertson LJ, Sotiraki S. Investigations from Northern Greece on mussels cultivated in areas proximal to wastewaters discharges, as a potential source for human infection with Giardia and Cryptosporidium. Exp Parasitol 2020; 210:107848. [PMID: 32004534 DOI: 10.1016/j.exppara.2020.107848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 11/27/2022]
Abstract
Marine bivalves are usually cultivated in shallow, estuarine waters where there is a high concentration of nutrients. Many micro-pollutants, including the protozoan parasites Giardia duodenalis and Cryptosporidium spp., which also occur in such environments, may be concentrated in shellfish tissues during their feeding process. Shellfish can thus be considered as vehicles for foodborne infections, as they are usually consumed lightly cooked or raw. Therefore, the main objective of this study was to investigate the presence of both parasites in Mediterranean mussels, Mytilus galloprovincialis that are cultivated in Thermaikos Gulf, North Greece, which is fed by four rivers that are contaminated with both protozoa. Moreover, the occurrence of these protozoa was monitored in treated wastewaters from 3 treatment plants that discharge into the gulf. In order to identify potential sources of contamination and to estimate the risk for human infection, an attempt was made to genotype Giardia and Cryptosporidium in positive samples. Immunofluorescence was used for detection and molecular techniques were used for both detection and genotyping of the parasites. In total, 120 mussel samples, coming from 10 farms, were examined for the presence of both protozoa over the 6-month farming period. None of them were found positive by immunofluorescence microscopy for the presence of parasites. Only in 3 mussel samples, PCR targeting the GP60 gene detected Cryptosporidium spp. DNA, but sequencing was not successful. Thirteen out of 18 monthly samples collected from the 3 wastewater treatment plants, revealed the presence of Giardia duodenalis cysts belonging to sub-assemblage AII, at relatively low counts (up to 11.2 cysts/L). Cryptosporidium oocysts (up to 0.9 oocysts/L) were also detected in 4 out of 8 samples, although sequencing was not successful at any of the target genes. At the studied location and under the sampling conditions described, mussels tested were not found to be harboring Giardia cysts and the presence of Cryptosporidium was found only in few cases (by PCR detection only). Our results suggest that the likelihood that mussels from these locations act as vehicles of human infection for Giardia and Cryptosporidium seems low.
Collapse
Affiliation(s)
- Panagiota Ligda
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium; Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| | - Edwin Claerebout
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Stijn Casaert
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Lucy J Robertson
- Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 369, Sentrum, 0102, Oslo, Norway.
| | - Smaragda Sotiraki
- Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| |
Collapse
|
7
|
|
8
|
Protocol standardization for the detection of Giardia cysts and Cryptosporidium oocysts in Mediterranean mussels (Mytilus galloprovincialis). Int J Food Microbiol 2019; 298:31-38. [PMID: 30903916 DOI: 10.1016/j.ijfoodmicro.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/24/2022]
Abstract
Marine bivalve shellfish are of public health interest because they can accumulate pollutants in their tissues. As they are usually consumed raw or lightly cooked, they are considered to be a possible source of foodborne infections, including giardiosis and cryptosporidiosis. Although data indicating contamination of shellfish with Giardia cysts and Cryptosporidium oocysts have been published, comparing results from different studies is difficult, as there is no standardized protocol for the detection and quantification of these parasites in mussels, and different researchers have used different analytical approaches. The aim of this study was to identify and characterize the most sensitive protocol for the detection of Giardia cysts and Cryptosporidium oocysts in shellfish. In an effort to test the sensitivity and the detection limits of the protocol, every step of the process was investigated, from initial preparation of the mussel matrix through detection of the parasites. Comparative studies were conducted, including several methods previously applied by other researchers, on commercial mussels Mytilus galloprovincialis spiked with a known number of (oo)cysts of both parasites. As preparation of the mussel matrix plays an important role in the sensitivity of the method, different techniques were tested. These included: (ia) removal of the coarse particles from the matrix with sieving, (ib) extraction of the lipids with diethyl ether, and (ic) artificial digestion of the matrix with pepsin digestion solution, and (ii) the use or not of immunomagnetic separation (IMS) for the concentration of the (oo)cysts. Pre-treatment of the mussel homogenate with pepsin digestion solution, followed by IMS, then detection with a direct immunofluorescence assay, achieved the highest sensitivity: 32.1% (SD: 21.1) of Giardia cysts and 61.4% (SD: 26.2) Cryptosporidium oocysts were recovered, with a detection limit of 10 (oo)cysts per g of mussel homogenate. The outcome of the current study was the standardization of a protocol, with defined detection limits, for the detection of these two protozoan transmission stages in mussels, in order to be used as a reference technique in future studies. Further advantages of this protocol are that it uses the whole mussel as a starting material and does not require difficult handling procedures. The method has potential to be applied in larger surveys and, potentially, to other species of shellfish for the detection of these parasites. However, the composition (lipid to protein ratio) may be of relevance for detection efficiency for some other species of shellfish.
Collapse
|
9
|
Tedde T, Marangi M, Papini R, Salza S, Normanno G, Virgilio S, Giangaspero A. Toxoplasma gondii and Other Zoonotic Protozoans in Mediterranean Mussel ( Mytilus galloprovincialis) and Blue Mussel ( Mytilus edulis): A Food Safety Concern? J Food Prot 2019; 82:535-542. [PMID: 30810381 DOI: 10.4315/0362-028x.jfp-18-157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mediterranean mussels ( Mytilus galloprovincialis) and blue mussels ( Mytilus edulis) are among the most consumed fishery products, but they are frequent vehicles of foodborne infection worldwide. In this study, we investigated the occurrence and seasonality of zoonotic protozoans in mussels farmed or sold at retail outlets in Italy. We collected and tested 1,440 M. galloprovincialis and 180 M. edulis. Pooled samples were molecularly tested for Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii and then sequenced. Sixty-two (45.9%; 95% confidence interval, 37.5 to 54.3%) mussel pools tested positive for one or more of the investigated pathogens. Both Mytilus species and samples from all the investigated areas harbored pathogens. Mussels were statistically more contaminated by Cryptosporidium spp., followed by T. gondii and G. duodenalis assemblage A, and M. galloprovincialis was more contaminated than M. edulis ( P < 0.01). Contamination was more likely in mussels at retail outlets ( P < 0.05) than in those from farms and in mussels collected in spring ( P < 0.01) than in other seasons. This is the first report of T. gondii found in M. galloprovincialis in Italy and in M. edulis in Europe. The detection of zoonotic protozoans in a widely consumed food source indicates the need for a more detailed microbiological risk analysis, especially considering that bivalve mollusks are often consumed raw worldwide.
Collapse
Affiliation(s)
- Tiziana Tedde
- 1 Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Marianna Marangi
- 2 Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, 71122 Foggia, Italy
| | - Roberto Papini
- 3 Dipartimento di Scienze Veterinarie, Università di Pisa, 56124 Pisa, Italy
| | - Sara Salza
- 1 Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Giovanni Normanno
- 2 Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, 71122 Foggia, Italy
| | - Sebastiano Virgilio
- 1 Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Annunziata Giangaspero
- 2 Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, 71122 Foggia, Italy
| |
Collapse
|
10
|
Ryan U, Hijjawi N, Feng Y, Xiao L. Giardia: an under-reported foodborne parasite. Int J Parasitol 2018; 49:1-11. [PMID: 30391227 DOI: 10.1016/j.ijpara.2018.07.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/26/2022]
Abstract
Foodborne zoonotic pathogens are a serious public health issue and result in significant global economic losses. Despite their importance to public health, epidemiological data on foodborne diseases including giardiasis caused by the enteric parasite, Giardia duodenalis, are lacking. This parasite is estimated to cause ∼28.2 million cases of diarrhoea each year due to contamination of food, but very few foodborne outbreaks have been documented due to the limitations of current detection as well as surveillance methods. The current method for the recovery of Giardia cysts from food matrices using immunomagnetic separation requires further standardisation and cost reduction before it can be widely used. It also should incorporate downstream molecular procedures for genotyping, and traceback and viability analyses. Foodborne giardiasis can be potentially controlled through improvements in national disease surveillance systems and the establishment of Hazard Analysis and Critical Control Point interventions across the food chain. Studies are needed to assess the true prevalence and public health impact of foodborne giardiasis.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University PO Box 150459, Zarqa 13115, Jordan
| | - Yaoyu Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Hamilton KA, Waso M, Reyneke B, Saeidi N, Levine A, Lalancette C, Besner MC, Khan W, Ahmed W. Cryptosporidium and Giardia in Wastewater and Surface Water Environments. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1006-1023. [PMID: 30272766 DOI: 10.2134/jeq2018.04.0132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
and spp. are significant contributors to the global waterborne disease burden. Waterways used as sources of drinking water and for recreational activity can become contaminated through the introduction of fecal materials derived from humans and animals. Multiple studies have reported the occurence or concentrations of these pathogens in the environment. However, this information has not been comprehensively reviewed. Quantitative microbial risk assessment (QMRA) for and can be beneficial, but it often relies on the concentrations in environmental sources reported from the literature. A thorough literature review was conducted to develop an inventory of reported and concentrations in wastewater and surface water available in the literature. This information can be used to develop QMRA inputs. and (oo)cyst concentrations in untreated wastewater were up to 60,000 oocysts L and 100,000 cysts L, respectively. The maximum reported concentrations for and in surface water were 8400 oocysts L and 1000 cysts L, respectively. A summary of the factors for interpretation of concentration information including common quantification methods, survival and persistence, biofilm interactions, genotyping, and treatment removal is provided in this review. This information can help in identifying assumptions implicit in various QMRA parameters, thus providing the context and rationale to guide model formulation and application. Additionally, it can provide valuable information for water quality practitioners striving to meet the recreational water quality or treatment criteria. The goal is for the information provided in the current review to aid in developing source water protection and monitoring strategies that will minimize public health risks.
Collapse
|
12
|
Couso-Pérez S, Ares-Mazás E, Gómez-Couso H. Identification of a novel piscine Cryptosporidium genotype and Cryptosporidium parvum in cultured rainbow trout (Oncorhynchus mykiss). Parasitol Res 2018; 117:2987-2996. [PMID: 29987411 DOI: 10.1007/s00436-018-5995-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 11/28/2022]
Abstract
This study reports for the first time the presence and molecular characterization of Cryptosporidium in farmed rainbow trout (Oncorhynchus mykiss Walbaum, 1792). A total of 360 fish, with no apparent clinical signs of disease, were collected and classified into groups according to their size. Cryptosporidium oocysts were detected by immunofluorescence microscopy in 33 specimens (9.2%), which were located in pyloric caeca samples (42.4%), intestinal scrapings (39.4%), or at both locations (18.2%). In the smallest (youngest) fish group, a higher percentage of positive samples were detected in the pyloric caeca relative to the intestinal location (58.8 vs. 17.6%; P = 0.01), including a cluster with more than 10 oocysts observed in the pyloric caeca of one specimen. PCR amplification and sequencing of fragments of SSU-rDNA and hsp70 genes identified a novel Cryptosporidium piscine genotype (genotype 9) in two specimens and Cryptosporidium parvum in seven fish, including the specimen in which the oocyst cluster was observed. Moreover, Cryptosporidium oocysts were detected in farm water samples (41.7 and 16.7% from influent and effluent, respectively). Although Giardia was not found in gastrointestinal samples, Giardia cysts were observed in 50.0 and 33.3% of the influent and effluent water samples, respectively. The results support the existence of natural infections by C. parvum in freshwater cultured fish, suggesting that the rainbow trout could shed infectious oocysts in aquatic environments and it may be a potential source of human infection when this edible fish is handled.
Collapse
Affiliation(s)
- Seila Couso-Pérez
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain
| | - Elvira Ares-Mazás
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain
| | - Hipólito Gómez-Couso
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain. .,Institute of Food Research and Analysis, University of Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
13
|
Leal DAG, Souza DSM, Caumo KS, Fongaro G, Panatieri LF, Durigan M, Rott MB, Barardi CRM, Franco RMB. Genotypic characterization and assessment of infectivity of human waterborne pathogens recovered from oysters and estuarine waters in Brazil. WATER RESEARCH 2018; 137:273-280. [PMID: 29550730 DOI: 10.1016/j.watres.2018.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/02/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Waterborne, food-borne and sewage-borne pathogens are a major global concern, with the annual recurrence, most notably during the summer, of outbreaks of gastroenteritis of unconfirmed etiology associated with recreational activities in marine environments. The consumption of contaminated water-based foodstuffs is also related to outbreaks of human illness. The main goals of the present study were: i) to identify the genetic assemblages of Giardia duodenalis cysts in growing and depurated oysters destined for human consumption on the southern coast of São Paulo, Brazil; ii) to verify the main circulating G. duodenalis assemblages and their subtypes in different brackish waters used for the production of mollusks and for recreational purposes; iii) to track the contamination of growing and depurated oysters by the human adenovirus and identify the infectivity of adenoviral particles recovered from oysters before and after depuration; iv) to evaluate the occurrence and genotype of the free-living amoebae of the genus Acanthamoeba in brackish water and oysters from all the sites described above. Four sampling sites in the Cananeia estuary were selected to search for pathogenic and amphizoic protozoa (Giardia and Acanthamoeba respectively): site 1: oyster growth, site 2: catchment water (before UV depuration procedure), site 3: filter backwash (filtration stage of water treatment) and site 4: oyster depuration tank. Oysters at sites 1 and 4 were evaluated for the presence of adenovirus (HAdV). Analysis consisted of conventional microbiological as well as molecular methods. Giardia duodenalis were detected in all the water sites analyzed and the molecular analysis revealed that sub-assemblage AII was the most frequently distributed throughout the estuarine environment, although one sample was identified as belonging to the assemblage C. Acanthamoeba were also isolated from different locations of the estuarine area, and were detected at all the analyzed sites. The majority of isolates belonged to the T3 genotype, while the T4 genotype was identified once. The sequencing reaction of Giardia duodenalis revealed the contamination of three batches of depurated oysters by the sub-assemblage AII. With respect to viruses, seven batches of oysters (four growing and three depurated) were found to be harboring infectious HAdV particles when submitted to plaque assay. Overall, the results of the sequencing reactions combined with the plaque assay revealed that the isolates of Giardia duodenalis and the infectious HAdV particles identified in oyster tissues have the potential to infect humans and pose a threat if consumed raw or lightly cooked. This is the first report on the sub-assemblage AII identified in oysters which are submitted to a cleaning and disinfection procedure prior to human consumption in Brazil. Acanthamoeba specific genotypes were also identified for the first time in a recreational estuarine area in Brazil, contributing to knowledge of their molecular and environmental epidemiology, which is considered scarce even in marine and estuarine areas of the world.
Collapse
Affiliation(s)
- Diego Averaldo Guiguet Leal
- Universidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Departamento de Patologia Básica, Laboratório de Parasitologia Ambiental, Curitiba, Paraná PO Box: 19031, CEP: 81531-980, Brazil.
| | - Doris Sobral Marques Souza
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Biológicas, Departamento de Microbiologia e Parasitologia, Laboratório de Virologia Aplicada, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - Karin Silva Caumo
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências da Saúde, Departamento de Análises Clínicas, Laboratório de Estudos de Protozoários Emergentes, Florianópolis, Santa Catarina CEP: 88040-970, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, Rio Grande do Sul CEP: 900035-190, Brazil
| | - Gislaine Fongaro
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Biológicas, Departamento de Microbiologia e Parasitologia, Laboratório de Virologia Aplicada, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - Lua Ferreira Panatieri
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, Rio Grande do Sul CEP: 900035-190, Brazil
| | | | - Marilise Brittes Rott
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, Rio Grande do Sul CEP: 900035-190, Brazil
| | - Célia Regina Monte Barardi
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Biológicas, Departamento de Microbiologia e Parasitologia, Laboratório de Virologia Aplicada, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - Regina Maura Bueno Franco
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Laboratório de Protozoologia, Campinas, São Paulo CEP 13083-970, Brazil
| |
Collapse
|
14
|
First report of Toxoplasma gondii sporulated oocysts and Giardia duodenalis in commercial green-lipped mussels (Perna canaliculus) in New Zealand. Parasitol Res 2018; 117:1453-1463. [DOI: 10.1007/s00436-018-5832-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/06/2018] [Indexed: 12/29/2022]
|
15
|
Imre K, Sala C, Morar A, Ilie MS, Plutzer J, Imre M, Hora FȘ, Badea C, Herbei MV, Dărăbuș G. Giardia duodenalis and Cryptosporidium spp. as contaminant protozoa of the main rivers of western Romania: genetic characterization and public health potential of the isolates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:18672-18679. [PMID: 28653194 DOI: 10.1007/s11356-017-9543-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to establish the prevalence, contamination level, and public health significance of Giardia duodenalis and Cryptosporidium spp. in the primary rivers of western Romania. A total of 53 sampling points in the 24 most important western Romanian rivers in four counties (Arad, Bihor, Caraș-Severin, and Timiș) were investigated from March to September 2016. Surface water samples were collected by microfiber filtration. Cryptosporidium and Giardia (oo)cysts were isolated using immunomagnetic separation (IMS) according to the USEPA 1623 method and, after staining with fluorescently labeled (FITC) monoclonal antibodies, were identified and counted under a microscope. The Cryptosporidium and Giardia (oo)cysts were identified to species and assemblage/sub-assemblage level through the nested PCR-RFLP procedure targeting the 18S ribosomal RNA and gdh genes, respectively. PCR-based techniques were utilized for all water samples. Overall, 22 samples (41.5%) were determined to be positive for Giardia cysts (ranging from 0.05 to 300 cysts per liter), and four samples (7.5%) tested positive for Cryptosporidium oocysts (0.17-48 oocysts/l). G. duodenalis was molecularly identified in 13 water samples (24.5%), indicating the presence of the sub-assemblage A-II (n = 12) and assemblage E (n = 1). PCR-RFLP showed that two samples (3.8%) contained Cryptosporidium DNA, and the identified species were Cryptosporidium parvum and Cryptosporidium canis. All positive results were successfully confirmed by DNA sequencing. Subtyping of the zoonotic C. parvum isolate based on sequence analysis of the GP60 gene revealed the occurrence of the IIaA16G1R1 subtype. The results of this study highlight considerable contamination of river waters with pathogenic Giardia spp. and Cryptosporidium spp., suggesting a potential risk for the public and animal health. This report presents the first extended published description of the presence of Giardia spp. and Cryptosporidium spp. in the aquatic environment in Romania.
Collapse
Affiliation(s)
- Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, Calea Aradului no. 119, 300645, Timisoara, Romania.
| | - Claudia Sala
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, Calea Aradului no. 119, 300645, Timisoara, Romania
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, Calea Aradului no. 119, 300645, Timisoara, Romania
| | - Marius S Ilie
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, Calea Aradului no. 119, 300645, Timisoara, Romania
| | - Judit Plutzer
- Department of Water Hygiene, National Public Health Center, Albert Flórián út 2-6, Budapest, 1096, Hungary
| | - Mirela Imre
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, Calea Aradului no. 119, 300645, Timisoara, Romania
| | - Florin Ș Hora
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, Calea Aradului no. 119, 300645, Timisoara, Romania
| | - Corina Badea
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, Calea Aradului no. 119, 300645, Timisoara, Romania
| | - Mihai V Herbei
- Department of Sustainable Development and Environmental Engineering, Faculty of Agriculture, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, Calea Aradului no. 119, Timisoara, Romania
| | - Gheorghe Dărăbuș
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, Calea Aradului no. 119, 300645, Timisoara, Romania
| |
Collapse
|
16
|
Ghozzi K, Marangi M, Papini R, Lahmar I, Challouf R, Houas N, Ben Dhiab R, Normanno G, Babba H, Giangaspero A. First report of Tunisian coastal water contamination by protozoan parasites using mollusk bivalves as biological indicators. MARINE POLLUTION BULLETIN 2017; 117:197-202. [PMID: 28168979 DOI: 10.1016/j.marpolbul.2017.01.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
In order to establish seawater contamination by emerging protozoan parasites, we used qPCR to molecularly characterize and evaluate the parasitic burden of Giardia duodenalis, Cryptosporidium spp., Toxoplasma gondii, and Cyclospora cayetanensis in 1255 wild bivalve mollusks collected along the Tunisian coasts. T. gondii, G. duodenalis and C. cayetanensis were detected in 6.9% (99% CI=1.6-12.2%) pools of Ruditapes decussatus. None of the samples were found positive to Cryptosporidium spp.; 6.6% pools of R. decussatus were positive for T. gondii Type I, 1.6% for G. duodenalis assemblage A, and 1.6% for the association T. gondii Type I/C. cayetanensis/G. duodenalis assemblage A. R. decussatus harbored up to 77500 oocysts/sample of T. gondii, up to 395 cysts/sample of G. duodenalis, and 526 oocysts/sample of C. cayetanensis. These results provide the first evidence that the Tunisian coasts are contaminated by zoonotic protozoan parasites that can constitute a direct or indirect risk for human health.
Collapse
Affiliation(s)
- Khemissa Ghozzi
- Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (code LR12ES08), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisia; Laboratoire de Biodiversité et de Biotechnologie Marine, Institut National des Sciences et Technologies de la Mer, Monastir, Tunisia
| | - Marianna Marangi
- Department of Science of Agriculture, Food and Environment, University of Foggia, 71121 Foggia, Italy
| | - Roberto Papini
- Department of Veterinary Sciences, University of Pisa, 56120 Pisa, Italy
| | - Ibtissem Lahmar
- Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (code LR12ES08), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Rafika Challouf
- Laboratoire de Biodiversité et de Biotechnologie Marine, Institut National des Sciences et Technologies de la Mer, Monastir, Tunisia
| | - Najoua Houas
- Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (code LR12ES08), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Rym Ben Dhiab
- Laboratoire de Biodiversité et de Biotechnologie Marine, Institut National des Sciences et Technologies de la Mer, Monastir, Tunisia
| | - Giovanni Normanno
- Department of Science of Agriculture, Food and Environment, University of Foggia, 71121 Foggia, Italy
| | - Hamouda Babba
- Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (code LR12ES08), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Annunziata Giangaspero
- Department of Science of Agriculture, Food and Environment, University of Foggia, 71121 Foggia, Italy.
| |
Collapse
|
17
|
Llarena-Reino M, Abollo E, Regueira M, Rodríguez H, Pascual S. Horizon scanning for management of emerging parasitic infections in fishery products. Food Control 2015. [DOI: 10.1016/j.foodcont.2013.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Abstract
Faecal samples were obtained from 433 wild birds being treated in wildlife recovery centres in Galicia (Northwest Spain), between February 2007 and September 2009. The birds belonged to 64 species representing 17 different orders. Giardia cysts and Cryptosporidium oocysts were detected by an immunofluorescence antibody test and identified at the molecular level by established PCR-sequencing methods. The overall prevalence of Giardia was 2·1% and that of Cryptosporidium, 8·3%. To our knowledge, this is the first description of Giardia sp. in Tyto alba and Caprimulgus europaeus; and of Cryptosporidium sp. in Apus apus, Athene noctua, C. europaeus, Falco tinnunculus, Morus bassanus, Parabuteo unicinctus and Strix aluco. Furthermore, the first PCR-sequence confirmed detection of Giardia duodenalis assemblage B in, Buteo buteo, Coturnix coturnix and Pica pica; G. duodenalis assemblage D in Garrulus glandarius; and G. duodenalis assemblage F in Anas platyrhynchos; Cryptosporidium parvum in Accipiter nisus, B. buteo, Milvus migrans, Pernis apivorus and P. pica; and Cryptosporidium meleagridis in Streptopelia turtur. The study findings demonstrate the wide spread of Giardia and Cryptosporidium between wild birds.
Collapse
|
19
|
Castro-Hermida JA, González-Warleta M, Mezo M. Cryptosporidium spp. and Giardia duodenalis as pathogenic contaminants of water in Galicia, Spain: The need for safe drinking water. Int J Hyg Environ Health 2015; 218:132-8. [DOI: 10.1016/j.ijheh.2014.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
|
20
|
Giardia and Cryptosporidium in cetaceans on the European Atlantic coast. Parasitol Res 2014; 114:693-8. [PMID: 25418072 DOI: 10.1007/s00436-014-4235-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
The occurrence of Giardia and Cryptosporidium was investigated in cetacean specimens stranded on the northwestern coast of Spain (European Atlantic coast) by analysis of 65 samples of large intestine from eight species. The parasites were identified by direct immunofluorescence antibody test (IFAT) and by PCR amplification of the β-giardin gene, the ITS1-5.8S-ITS2 region and the SSU-rDNA gene of Giardia and the SSU-rDNA gene of Cryptosporidium. Giardia and Cryptosporidium were detected in 7 (10.8 %) and 9 samples (13.8 %), respectively. In two samples, co-infection with both parasites was observed. Giardia duodenalis assemblages A, C, D and F, and Cryptosporidium parvum were identified. This is the first report of G. duodenalis in Balaenoptera acutorostrata, Kogia breviceps and Stenella coeruleoalba and also the first report of Cryptosporidium sp. in B. acutorostrata and of C. parvum in S. coeruleoalba and Tursiops truncatus. These results extend the known host range of these waterborne enteroparasites.
Collapse
|
21
|
Protozoan Parasites. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Detection and molecular characterization of Giardia and Cryptosporidium in common dolphins (Delphinus delphis) stranded along the Galician coast (Northwest Spain). Vet Parasitol 2014; 202:132-7. [PMID: 24704342 DOI: 10.1016/j.vetpar.2014.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 11/22/2022]
Abstract
The ubiquitous protozoan parasites Giardia and Cryptosporidium have been detected from many species of captive and free-living wildlife, representing most mammalian orders. Twenty species of marine mammals have been reported to inhabit Galician waters and the region has one of the highest rates of stranding in Europe. Evidence from stranding, reported by-catches and sightings, suggests that the common dolphin (Delphinus delphis) is the most abundant cetacean on the Galician coast (Northwest Spain). The objective of this study was to detect and molecularly characterize isolates of Giardia and Cryptosporidium obtained from common dolphins stranded in this area. Between 2005 and 2012, sections of large intestine from 133 common dolphins stranded along the Galician coast were collected by the personnel of the Galician Stranding Network (Coordinadora para o Estudo dos Mamíferos Mariños, CEMMA). Using direct immunofluorescence antibody test (IFAT) and PCR amplification and sequencing of the SSU-rDNA, β-giardin genes and the ITS1-5.8S-ITS2 region, Giardia and Cryptosporidium were detected in 8 (6.0%) and 12 samples (9.0%), respectively. In two samples, co-infection by both parasites was observed. The molecular characterization revealed the presence of Giardia duodenalis assemblages A (genotypes A1 and A2) and B and Cryptosporidium parvum in these samples. This constitutes the first study in which the presence of Giardia and Cryptosporidium has been investigated in common dolphins on the European Atlantic coast, and it is also the first report of C. parvum in this host. Our findings indicate that these animals could act as reservoir of these waterborne parasites or could be victims of the contamination originated by anthropogenic activities.
Collapse
|
23
|
Hohweyer J, Dumètre A, Aubert D, Azas N, Villena I. Tools and methods for detecting and characterizing giardia, cryptosporidium, and toxoplasma parasites in marine mollusks. J Food Prot 2013; 76:1649-57. [PMID: 23992514 DOI: 10.4315/0362-028x.jfp-13-002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Foodborne infections are of public health importance and deeply impact the global economy. Consumption of bivalve mollusks generates risk for humans because these filtering aquatic invertebrates often concentrate microbial pathogens from their environment. Among them, Giardia, Cryptosporidium, and Toxoplasma are major parasites of humans and animals that may retain their infectivity in raw or undercooked mollusks. This review aims to detail current and future tools and methods for ascertaining the load and potential infectivity of these parasites in marine bivalve mollusks, including sampling strategies, parasite extraction procedures, and their characterization by using microscopy and/or molecular techniques. Method standardization should lead to better risk assessment of mollusks as a source of these major environmental parasitic pathogens and to the development of safety regulations, similar to those existing for bacterial and viral pathogens encountered in the same mollusk species.
Collapse
Affiliation(s)
- Jeanne Hohweyer
- Université de Reims Champagne-Ardenne, Laboratoire de Parasitologie-Mycologie, EA 3800, Protozooses Transmises par l'Alimentation, Faculté de Médecine, SFR Cap-Santé Fed 4231, 51 Rue Cognacq-Jay, 51096 Reims, France
| | | | | | | | | |
Collapse
|
24
|
Global occurrence of Cryptosporidium and Giardia in shellfish: Should Canada take a closer look? Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Grigorakis K, Rigos G. Aquaculture effects on environmental and public welfare - the case of Mediterranean mariculture. CHEMOSPHERE 2011; 85:899-919. [PMID: 21821276 DOI: 10.1016/j.chemosphere.2011.07.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/07/2011] [Accepted: 07/10/2011] [Indexed: 05/08/2023]
Abstract
Aquatic farming has been considered, during the last decades, as the fastest growing food production industry powered by governmental and technological impulsion. Compensation for fisheries decline, creation of new jobs and source of financial windfall are the most important benefits. However, similar to most of the human food-production activities, aquaculture raised several issues related to the environmental welfare and consumer safety. An effort to record the aquaculture-environment and -human safety interactions with regard to the Mediterranean mariculture, is attempted herein. We focused on this geographical area due to its individualities in both the hydrological and physicochemical characteristics and the forms of aquaculture activities. The cage farming of euryhaline marine fish species and more recently of bluefin tuna and mollusk farming are the dominating aquaculture activities. The impacts of these activities to the environment, through wastes offloads, introduction of alien species, genetic interactions, disease transfer, release of chemicals, use of wild recourses, alterations of coastal habitats and disturbance of wildlife, are analytically considered. Also the consumer safety issues related to the farming are assessed, including generation of antibiotic-resistant microorganisms, contaminants transferred to humans though food chain and other hazards from consumption of aquacultured items. Within these, the major literature findings are critically examined and suggestions for scientific areas that need further development are made. The major tasks for future aquaculture development in this region are: (i) to ensure sustainability and (ii) to balance the risks to public or environmental health with the substantial economical benefits. In regard with monitoring, tools must be created or adapted to predict the environmental costs and estimate consumer impact. At a canonistic and legal basis, the establishment of appropriate legal guidelines and common policies from all countries involved should be mandatory.
Collapse
Affiliation(s)
- K Grigorakis
- Laboratory of Fish Nutrition and Pathology, Institute of Aquaculture, Hellenic Centre for Marine Research (HCMR), Aghios Kosmas 16777, Athens, Greece
| | | |
Collapse
|
26
|
Castro-Hermida JA, García-Presedo I, Almeida A, González-Warleta M, Correia Da Costa JM, Mezo M. Cryptosporidium spp. and Giardia duodenalis in two areas of Galicia (NW Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:2451-2459. [PMID: 21489605 DOI: 10.1016/j.scitotenv.2011.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 05/30/2023]
Abstract
The aim of the present study was to investigate the environmental dispersal of Cryptosporidium spp. and Giardia duodenalis in two distinct areas (coastal and inland) in Galicia (NW Spain). Faecal samples were collected from healthy asymptomatic domestic (cows and sheep) and wild animals (deer and wild boars) in the selected areas. In each of the selected areas, samples of untreated water (influent) and of treated water (final effluent) were collected from each of the 12 drinking water treatments plants (DWTPs) and 12 wastewater treatment plants (WTPs) under study. Analysis of a single sample from each of the 635 (coastal) and 851 (inland) domestic and wild animals selected at random revealed that the prevalences of cryptosporidiosis and giardiosis in coastal area were 9.2% and 15.9% respectively, and in inland area, 13.7% and 26.7% respectively. In the coastal area, Cryptosporidium spp. oocysts were detected in influent and effluent samples from 2/12 (16.6%) DWTPs and 8/12 (66.6%) WTPs, while G. duodenalis cysts were detected in influent and effluent samples from 3/12 (25.0%) DWTPs and 12/12 (100%) WTPs. The concentrations were notably higher in WTPs; the mean parasite concentrations in the final treated effluent were 10 oocysts per litre and 137.8 cysts per litre for Cryptosporidium and Giardia, respectively. The mean concentration of G. duodenalis cysts per litre was significantly higher (P<0.05) than the mean concentration of Cryptosporidium spp. oocysts per litre in both the influent and the effluent samples from all the treatment plants. In the coastal area, C. parvum, C. hominis and G. duodenalis assemblages A (I and II) and E were most repeatedly detected. In the inland area, C. parvum, C. andersoni and G. duodenalis assemblages A (I and II), B and E were most frequently identified.
Collapse
Affiliation(s)
- José Antonio Castro-Hermida
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, Instituto Galego de Calidade Alimentaria, Xunta de Galicia, Carretera AC-542 de Betanzos a Mesón do Vento, Km 7.5, CP 15318, Abegondo (A Coruña), Spain.
| | | | | | | | | | | |
Collapse
|
27
|
Castro-Hermida JA, García-Presedo I, González-Warleta M, Mezo M. Cryptosporidium and Giardia detection in water bodies of Galicia, Spain. WATER RESEARCH 2010; 44:5887-5896. [PMID: 20673950 DOI: 10.1016/j.watres.2010.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/05/2010] [Accepted: 07/06/2010] [Indexed: 05/29/2023]
Abstract
The objective of this study was to determine the mean concentration (per litre) of Cryptosporidium oocysts and Giardia cysts in recreational river areas (n = 28), drinking water treatments plants (DWTPs; n = 52) and wastewater treatment plants (WWTPs; n = 50) in Galicia (NW Spain). Water samples from rivers and from the influent (50-100 l) and the treated effluent (100 l) of the water plants were filtered using Filta-Max filters (IDEXX Laboratories, Inc., Westbrook, ME, USA). A total of 232 samples were processed and the (oo)cysts were concentrated, clarified by IMS and then detected by IFAT. The viability was determined by applying fluorogenic vital dye (PI). In the recreational areas, infective forms of Cryptosporidium and Giardia were detected in 16 (57.1%; 1-60 oocysts per litre) and 17 (60.7%; 1-160 cysts per litre) samples, respectively. In the water flowing into the water treatment plants, oocysts were detected in 21 DWTPs (40.4%; 1-13 oocysts per litre) and cysts were observed in 22 DWTPs (42.3%; 1-7 cysts per litre). In the effluents from the treatment plants, Cryptosporidium oocysts and Giardia cysts were identified in 17 DWTPs (32.7%; 1-4 oocysts per litre) and in 19 DWTPs (36.5%; 1-5 cysts per litre), respectively. The highest concentrations of (oo)cysts were found in the WWTPs; specifically, oocysts were detected in 29 (58.0%; 1-80 oocysts per litre) and cysts in 49 (98.0%; 2-14.400 cysts per litre) WWTP effluents. Cryptosporidium and Giardia were detected in 32 (64.0%; 1-120 oocysts per litre) and 48 (96.0%; 2-6.000 cysts per litre) WWTP effluents, respectively. The percentage viability of the (oo)cysts ranged between 90.0% and 95.0%. In all samples analysed. Moreover, it was found that the effluents from coastal WWTPs were discharged directly into the sea, while inland WWTPs were discharged directly into rivers. The concentrations of both enteropathogens detected in effluents from WWTPs therefore represent a significant risk to human and animal health. These results demonstrate the wide distribution of Cryptosporidium and Giardia in the environment, the ineffectiveness of treatments in DWTPs and WWTPs in reducing/inactivating both protozoa and the need to monitor the presence, viability and infectivity of Cryptosporidium and Giardia in water bodies. In conclusion, the findings suggest the need for better monitoring of water quality and identification of sources of contamination.
Collapse
Affiliation(s)
- José Antonio Castro-Hermida
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, Instituto Galego de Calidade Alimentaria-Xunta de Galicia, Carretera AC-542 de Betanzos a Mesón do Vento, Km 7.5, CP 15318 Abegondo (A Coruña), Spain.
| | | | | | | |
Collapse
|
28
|
Giardia taxonomy, phylogeny and epidemiology: Facts and open questions. Int J Hyg Environ Health 2010; 213:321-33. [DOI: 10.1016/j.ijheh.2010.06.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/25/2010] [Accepted: 06/02/2010] [Indexed: 11/18/2022]
|
29
|
Castro-Hermida JA, García-Presedo I, Almeida A, González-Warleta M, Da Costa JMC, Mezo M. Detection of Cryptosporidium spp. and Giardia duodenalis in surface water: a health risk for humans and animals. WATER RESEARCH 2009; 43:4133-42. [PMID: 19576608 DOI: 10.1016/j.watres.2009.06.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/17/2009] [Accepted: 06/09/2009] [Indexed: 05/07/2023]
Abstract
The objective of the present study was to determine the degree of contamination by Cryptosporidium spp. and Giardia duodenalis in a river basin in a livestock farming area in Galicia (NW, Spain). Water samples (50 l) were collected at 22 points in the main basin (including 5 recreational areas), and at the source and mouth of the 3 most important rivers and at the mouth of a smaller, secondary river. Faecal samples were collected from dairy cattle selected at random from 18 herds farmed in the area. A total of 139 neonatal calves, 480 heifers and 697 cows were sampled. The prevalence, intensity of infection and the risk associated with the spread of infection by both enteropathogens were determined. Water and faecal samples were collected in spring, summer, autumn and winter of 2007. The species and genotypes of these parasites present in the water samples were identified. In both water and faecal samples, more parasitic stages were collected in spring and summer than in autumn and winter. In spring, Cryptosporidium spp. oocysts were detected in 33 (9.4%) cows from 13 (72.2%) herds, and G. duodenalis cysts were detected in 56 (16.0%) cows from 15 farms (83.3%); the intensity of infection ranged from 5 to 7895 G. duodenalis cysts per gram of faeces. Infective stages of Cryptosporidium spp. and G. duodenalis were also detected in respectively 26 (89.6%) and 27 (93.1%) water samples, in spring. The mean concentrations of parasites ranged from 2 to 1200 Cryptosporidium spp. oocysts per litre and from 2 to 400 G. duodenalis cysts per litre. Cryptosporidium parvum, C. andersoni, C. hominis and assemblages A-I, A-II, E of G. duodenalis were detected. The presence of both protozoans must be monitored in cattle, in sources of water used for recreational purposes and in artificial waterways used by farmers (water channels, animal drinking water and drainage systems).
Collapse
Affiliation(s)
- José Antonio Castro-Hermida
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo-Xunta de Galicia, Carretera AC-542 de Betanzos a Mesón do Vento, Km 7,5, CP 15318 Abegondo (A Coruña), Spain.
| | | | | | | | | | | |
Collapse
|
30
|
Castro-Hermida JA, García-Presedo I, Almeida A, González-Warleta M, Correia Da Costa JM, Mezo M. Presence of Cryptosporidium spp. and Giardia duodenalis through drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 405:45-53. [PMID: 18684490 DOI: 10.1016/j.scitotenv.2008.06.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/16/2008] [Accepted: 06/24/2008] [Indexed: 05/26/2023]
Abstract
To evaluate the presence of Cryptosporidium spp. and Giardia duodenalis in the influent and final effluent of sixteen drinking water treatment plants located in a hydrographic basin in Galicia (NW Spain) - in which the principal river is recognised as a Site of Community Importance (SCI) - estimate the efficiency of treatment plants in removing these protozoans and determine the species and genotypes of the parasites by means of a molecular assay. All plant samples of influent and final effluent (50-100 l) were examined in the spring, summer, autumn and winter of 2007. A total of 128 samples were analysed by method 1623, developed by US Environmental Protection Agency for isolation and detection of both parasites. To identify the genotypes present the following genes were amplified and sequenced: 18S SSU rRNA (Cryptosporidium spp.) and b-giardina (G. duodenalis). The mean concentrations of parasites in the influent were 0.0-10.5 Cryptosporidium spp. oocysts per litre and 1.0-12.8 of G. duodenalis cysts per litre. In the final treated effluent, the mean concentration of parasites ranged from 0.0-3.0 oocysts per litre and 0.5-4.0 cysts per litre. The distribution of results by season revealed that in all plants, the highest numbers of (oo)cysts were recorded in spring and summer. Cryptosporidium parvum, C. andersoni, C. hominis and assemblages A-I, A-II, E of G. duodenalis were detected. Cryptosporidium spp. and G. duodenalis were consistently found at high concentrations in drinking water destined for human and animal consumption in the hydrographic basin under study, in Galicia (NW Spain). It is important that drinking water treatment authorities rethink the relevance of contamination levels of both parasites in drinking water and develop adequate countermeasures.
Collapse
Affiliation(s)
- José Antonio Castro-Hermida
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo-Xunta de Galicia, Abegondo (A Coruña), Spain.
| | | | | | | | | | | |
Collapse
|
31
|
Castro-Hermida JA, García-Presedo I, Almeida A, González-Warleta M, Correia Da Costa JM, Mezo M. Contribution of treated wastewater to the contamination of recreational river areas with Cryptosporidium spp. and Giardia duodenalis. WATER RESEARCH 2008; 42:3528-3538. [PMID: 18538816 DOI: 10.1016/j.watres.2008.05.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/24/2008] [Accepted: 05/02/2008] [Indexed: 05/26/2023]
Abstract
Samples of the influent and final effluent from 12 wastewater treatment plants from Galicia (NW, Spain) were analyzed for the presence of Cryptosporidium spp. oocysts and Giardia duodenalis cysts. All of the plants discharge effluent to a hydrographic basin in which there are numerous recreational areas and fluvial beaches. The samples (25-50 liters) were collected in spring, summer, autumn and winter of 2007. A total of 96 samples were analyzed using techniques included in the US Environmental Protection Agency Method 1623. To identify the genotypes present, the following genes were amplified and sequenced: 18S SSU rRNA (Cryptosporidium spp.) and beta-giardina (G. duodenalis). Both parasites were detected in influent and effluent samples from all treatment plants (100%) throughout the year, and G. duodenalis always outnumbered Cryptosporidium spp. The mean concentration of G. duodenalis per liter of influent was significantly higher (P<0.05) than the mean concentration of Cryptosporidium spp. per liter of influent. The mean concentrations of parasites in influent samples ranged from 6 to 350 Cryptosporidium spp. oocysts per liter and from 89 to 8305 G. duodenalis cysts per liter. In final treated effluent, the mean concentration of parasites ranged from 2 to 390 Cryptosporidium spp. oocysts per liter and from 79 to 2469 G. duodenalis cysts per liter. The distribution of results per season revealed that in all plants, the highest number of (oo)cysts were detected in spring and summer. Cryptosporidium parvum, Cryptosporidium andersoni, Cryptosporidium hominis and assemblages A-I, A-II, E of G. duodenalis were detected. The risk of contamination of water courses by Cryptosporidium spp. and G. duodenalis is therefore considerable. It is important that wastewater treatment authorities reconsider the relevance of the levels of contamination by both parasites in wastewater, and develop adequate countermeasures.
Collapse
Affiliation(s)
- José Antonio Castro-Hermida
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo-Xunta de Galicia, Carretera AC-542 de Betanzos a Mesón do Vento, Km 7, 5. CP 15318 Abegondo (A Coruña), Spain.
| | | | | | | | | | | |
Collapse
|
32
|
Touron A, Berthe T, Gargala G, Fournier M, Ratajczak M, Servais P, Petit F. Assessment of faecal contamination and the relationship between pathogens and faecal bacterial indicators in an estuarine environment (Seine, France). MARINE POLLUTION BULLETIN 2007; 54:1441-50. [PMID: 17631359 DOI: 10.1016/j.marpolbul.2007.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 05/06/2007] [Accepted: 05/08/2007] [Indexed: 05/16/2023]
Abstract
The Seine estuary, one of the largest estuaries of the European northwest continental shelf, is subjected to numerous anthropogenic influences. Here we present an assessment of the microbial faecal contamination of the estuary water. The most vulnerable areas were defined on the basis of the fluxes of indicator organisms and the occurrence of Salmonella and Cryptosporidium sp. and Giardia sp. (oo)cysts. The microbial quality of the water changes from upstream to downstream: in the upstream area, contamination by faecal-indicator bacteria and Salmonella occurs during periods of high flow; in the urbanized area, mid-way between the uppermost areas of the estuary and its mouth, discharge from a wastewater treatment plant and a tributary degrade water quality; at the estuary mouth, the accumulation of microorganisms attached to particles in the maximum turbidity zone, particularly Clostridium perfringens spores and oocysts of Cryptosporidium, is accompanied by inputs of ThC and Escherichia coli from tributaries. In some areas, significant strong relations are observed between Salmonella, (oo)cysts of protozoan, and levels of faecal indicators.
Collapse
Affiliation(s)
- Aurélie Touron
- Laboratoire de Microbiologie du Froid, UPRES 2123, Groupe Biodiversité et Environnement, Faculté des Sciences, 76821 Mont Saint Aignan cedex, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Presence of Giardia cysts and Cryptosporidium oocysts in drinking water supplies in northern Spain. J Appl Microbiol 2007; 102:619-29. [PMID: 17309610 DOI: 10.1111/j.1365-2672.2006.03193.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To evaluate the prevalence of Cryptosporidium and Giardia in surface water supplies from the province of Alava, northern Spain, and to investigate possible associations among the presence of these pathogenic protozoa with microbiological, physicochemical and atmospheric parameters. METHODS AND RESULTS A total of 284 samples of drinking and recreational water supplies were analysed. Cryptosporidium oocysts were found in 63.5% of river samples, 33.3% of reservoirs samples, 15.4% and 22.6% of raw water samples from conventional and small water treatment facilities (respectively), 30.8% of treated water from small treatment facilities, and 26.8% of tap water from municipalities with chlorination treatment only. Giardia cysts were found in 92.3% of river samples, 55.5% of reservoirs samples, 26.9% and 45.2% of raw water samples from conventional and small water treatment facilities (respectively), 19.2% of treated water from small treatment facilities, and 26.8% of tap water from municipalities with chlorination treatment only. The presence of Cryptosporidium and Giardia had significant Pearson's correlation coefficients (P < 0.01) with the turbidity levels of the samples, and a number of significant associations were also found with the count levels for total coliforms and Escherichia coli. The samples were positive for Cryptosporidium significantly (P < 0.05) more frequently during the autumn season than during the spring and winter seasons. No significant differences were found in the seasonal pattern of Giardia. A moderate association (r = 0.52) was found between rainfall and the presence of Cryptosporidium oocysts. CONCLUSIONS Cryptosporidium and Giardia are consistently found at elevated concentrations in surface waters for human consumption from the province of Alava, northern Spain. SIGNIFICANCE AND IMPACT OF THE STUDY Water treatments based on rapid filtration process and/or chlorination only are often unsatisfactory to provide safe drinking water, a situation that represents an important public health problem for the affected population because of the risk of waterborne outbreaks.
Collapse
|
34
|
The potential for marine bivalve shellfish to act as transmission vehicles for outbreaks of protozoan infections in humans: a review. Int J Food Microbiol 2007; 120:201-16. [PMID: 17928081 DOI: 10.1016/j.ijfoodmicro.2007.07.058] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/03/2007] [Accepted: 07/22/2007] [Indexed: 11/22/2022]
Abstract
Most marine molluscan bivalve shellfish feed on suspended phytoplankton which are trapped from water pumped across the gills by ciliary action. Pathogenic microorganisms in the water may be filtered by the gills during feeding, and become concentrated in the digestive glands/tract. If these pathogens are not excreted or inactivated by the shellfish, or in subsequent preparatory processes, they may be ingested by consumers, the shellfish thereby acting as vehicles of infection. The protozoan parasites Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii have the potential to be transmitted in this way, and here we review the accumulating knowledge on the occurrence and survival of the transmission stages of these parasites in shellfish, whilst also emphasising the considerable gaps in our knowledge. Relevant information is particularly lacking for T. gondii, which, in comparison with Cryptosporidium spp. and G. duodenalis, has been relatively under-researched in this context. Although it seems evident that these shellfish can accumulate and concentrate all three of these parasites from the surrounding water, whether Giardia cysts remain viable and infectious is unknown, and some evidence suggests that they may be inactivated by the shellfish. Although both Toxoplasma and Cryptosporidium apparently retain their infectivity for prolonged periods in shellfish, the actual public health threat posed by these parasites via these shellfish is unclear, largely because there is minimal evidence of infection transmission. Reasons for this apparent lack of infection transmission are discussed and it is recommended that the potential for transmission via shellfish consumption is recognised by those concerned with investigating transmission of these infections.
Collapse
|
35
|
Gómez-Couso H, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E. Cryptosporidium contamination in harvesting areas of bivalve molluscs. J Food Prot 2006; 69:185-90. [PMID: 16416917 DOI: 10.4315/0362-028x-69.1.185] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cryptosporidium contamination was evaluated in areas in Galicia (northwestern Spain) where bivalve molluscs are harvested. Galicia is the main mussel-producing region in Europe. Data were collected on water contamination of effluents that are discharged into these areas. Cryptosporidium spp. were detected by immunofluorescence microscopy and molecular methods in 71% of the river water samples (n = 7), 64% of raw sewage samples (n = 11), 50% of effluents from wastewater treatment plants (n = 16), and 29.3% of the mussel samples (Mytilus galloprovincialis, n = 184). Cryptosporidium parvum was identified in all samples of contaminated mussels, Cryptosporidium muris was found in three samples of effluent from wastewater treatment plants, and Cryptosporidium baileyi was found in a sample of raw sewage. Further studies are needed to determine the parasitological quality of water in these shellfish harvesting and recreational areas. Cryptosporidium could be a public health risk from consumption of raw or undercooked contaminated molluscs and use of contaminated waters for recreational purposes.
Collapse
Affiliation(s)
- Hipólito Gómez-Couso
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, La Coruña, Spain
| | | | | | | |
Collapse
|