1
|
Niciura SCM, Cardoso TF, Ibelli AMG, Okino CH, Andrade BG, Benavides MV, Chagas ACDS, Esteves SN, Minho AP, Regitano LCDA, Gondro C. Multi-omics data elucidate parasite-host-microbiota interactions and resistance to Haemonchus contortus in sheep. Parasit Vectors 2024; 17:102. [PMID: 38429820 PMCID: PMC10908167 DOI: 10.1186/s13071-024-06205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The integration of molecular data from hosts, parasites, and microbiota can enhance our understanding of the complex biological interactions underlying the resistance of hosts to parasites. Haemonchus contortus, the predominant sheep gastrointestinal parasite species in the tropics, causes significant production and economic losses, which are further compounded by the diminishing efficiency of chemical control owing to anthelmintic resistance. Knowledge of how the host responds to infection and how the parasite, in combination with microbiota, modulates host immunity can guide selection decisions to breed animals with improved parasite resistance. This understanding will help refine management practices and advance the development of new therapeutics for long-term helminth control. METHODS Eggs per gram (EPG) of feces were obtained from Morada Nova sheep subjected to two artificial infections with H. contortus and used as a proxy to select animals with high resistance or susceptibility for transcriptome sequencing (RNA-seq) of the abomasum and 50 K single-nucleotide genotyping. Additionally, RNA-seq data for H. contortus were generated, and amplicon sequence variants (ASV) were obtained using polymerase chain reaction amplification and sequencing of bacterial and archaeal 16S ribosomal RNA genes from sheep feces and rumen content. RESULTS The heritability estimate for EPG was 0.12. GAST, GNLY, IL13, MGRN1, FGF14, and RORC genes and transcripts were differentially expressed between resistant and susceptible animals. A genome-wide association study identified regions on chromosomes 2 and 11 that harbor candidate genes for resistance, immune response, body weight, and adaptation. Trans-expression quantitative trait loci were found between significant variants and differentially expressed transcripts. Functional co-expression modules based on sheep genes and ASVs correlated with resistance to H. contortus, showing enrichment in pathways of response to bacteria, immune and inflammatory responses, and hub features of the Christensenellaceae, Bacteroides, and Methanobrevibacter genera; Prevotellaceae family; and Verrucomicrobiota phylum. In H. contortus, some mitochondrial, collagen-, and cuticle-related genes were expressed only in parasites isolated from susceptible sheep. CONCLUSIONS The present study identified chromosome regions, genes, transcripts, and pathways involved in the elaborate interactions between the sheep host, its gastrointestinal microbiota, and the H. contortus parasite. These findings will assist in the development of animal selection strategies for parasite resistance and interdisciplinary approaches to control H. contortus infection in sheep.
Collapse
|
2
|
Genome-Wide Association Study for Haemonchus contortus Resistance in Morada Nova Sheep. Pathogens 2022; 11:pathogens11080939. [PMID: 36015059 PMCID: PMC9413486 DOI: 10.3390/pathogens11080939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Among the gastrointestinal nematodes affecting sheep, Haemonchus contortus is the most prevalent and virulent, resulting in health problems and production losses. Therefore, selecting sheep resistant to H. contortus is a suitable and sustainable strategy for controlling endoparasites in flocks. Here, 287 lambs of the native Brazilian Morada Nova hair sheep breed were subjected to two consecutive artificial infections with H. contortus and assessed for fecal egg count (FEC), packed cell volume (PCV), and live weight (LW). Forty-four animals ranked as having extreme resistance phenotypes were genotyped using the Illumina OvineSNP50v3 chip. A case−control genome-wide association study (GWAS) detected 37 significant (p < 0.001) markers in 12 ovine chromosomes in regions harboring quantitative trait loci (QTL) for FEC, Trichostrongylus spp. adults and larvae, weight, and fat; and candidate genes for immune responses, mucins, hematological parameters, homeostasis, and growth. Four single-nucleotide polymorphisms (SNP; OAR1_rs427671974, OAR2_rs419988472, OAR5_rs424070217, and OAR17_rs401006318) genotyped by qPCR followed by high-resolution melting (HRM) were associated with FEC and LW. Therefore, molecular markers detected by GWAS for H. contortus resistance in Morada Nova sheep may support animal selection programs aimed at controlling gastrointestinal nematode infections in flocks. Furthermore, genotyping of candidate genes using HRM qPCR may provide a rapid and efficient tool for animal identification.
Collapse
|
3
|
Abied A, Ahbara AM, Berihulay H, Xu L, Islam R, El-Hag FM, Rekik M, Haile A, Han JL, Ma Y, Zhao Q, Mwacharo JM. Genome Divergence and Dynamics in the Thin-Tailed Desert Sheep From Sudan. Front Genet 2021; 12:659507. [PMID: 34349777 PMCID: PMC8327097 DOI: 10.3389/fgene.2021.659507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
With climate change bound to affect food and feed production, emphasis will shift to resilient and adapted indigenous livestock to sustain animal production. However, indigenous livestock comprise several varieties, strains and ecotypes whose genomes are poorly characterized. Here, we investigated genomic variation in an African thin-tailed Desert Sheep sampled in Sudan, using 600K genotype data generated from 92 individuals representing five ecotypes. We included data from 18 fat-tailed and 45 thin-tailed sheep from China, to investigate shared ancestry and perform comparative genomic analysis. We observed a clear genomic differentiation between the African thin-tailed Desert Sheep and the Chinese thin-tailed and fat-tailed sheep, suggesting a broad genetic structure between the fat-tailed and thin-tailed sheep in general, and that at least two autosomal gene pools comprise the genome profile of the thin-tailed sheep. Further analysis detected two distinct genetic clusters in both the African thin-tailed Desert Sheep and the Chinese thin-tailed sheep, suggesting a fine-scale and complex genome architecture in thin-tailed sheep. Selection signature analysis suggested differences in adaptation, production, reproduction and morphology likely underly the fine-scale genetic structure in the African thin-tailed Desert Sheep. This may need to be considered in designing breeding programs and genome-wide association studies.
Collapse
Affiliation(s)
- Adam Abied
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Dry Land Research Centre and Animal Production, Agricultural Research Corporation, Khartoum, Sudan
| | - Abulgasim M Ahbara
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Haile Berihulay
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rabiul Islam
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Faisal M El-Hag
- Dry Land Research Centre and Animal Production, Agricultural Research Corporation, Khartoum, Sudan.,Arid Land Research Centre, Tottori University, Tottori, Japan
| | - Mourad Rekik
- International Center for Agricultural Research in the Dry Areas (ICARDA), Amman, Jordan
| | - Aynalem Haile
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Livestock Genetics Program, International Livestock Research Institute, Nairobi, Kenya
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia.,Animal and Veterinary Sciences, Scotland Rural College and Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, Midlothian, United Kingdom
| |
Collapse
|
4
|
Jonsson NN, Cox DK, Piper EK, Valdivieso EFM, Constantinoiu C, Jackson LA, Stear MJ, Ross EM, Tabor AE. Allelic Variation in Protein Tyrosine Phosphatase Receptor Type-C in Cattle Influences Erythrocyte, Leukocyte and Humoral Responses to Infestation With the Cattle Tick Rhipicephalus australis. Front Immunol 2021; 12:675979. [PMID: 34305905 PMCID: PMC8300432 DOI: 10.3389/fimmu.2021.675979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
The protein tyrosine phosphatase receptor type-C (PTPRC) gene encodes the common leukocyte antigen (CD45) receptor. CD45 affects cell adhesion, migration, cytokine signalling, cell development, and activation state. Four families of the gene have been identified in cattle: a taurine group (Family 1), two indicine groups (Families 2 and 4) and an African “taurindicine” group (Family 3). Host resistance in cattle to infestation with ticks is moderately heritable and primarily manifests as prevention of attachment and feeding by larvae. This study was conducted to describe the effects of PTPRC genotype on immune-response phenotypes in cattle that display a variable immune responsiveness to ticks. Thirty tick-naïve Santa-Gertrudis cattle (a stabilized composite of 5/8 taurine and 3/8 indicine) were artificially infested with ticks weekly for 13 weeks and ranked according to their tick counts. Blood samples were taken from control and tick-challenged cattle immediately before, then at 21 d after infestation and each subsequent week for 9 weeks. Assays included erythrocyte profiles, white blood cell counts, the percentage of cellular subsets comprising the peripheral blood mononuclear cell (PBMC) population, and the ability of PBMC to recognize and proliferate in response to stimulation with tick antigens in vitro. The cattle were PTPRC genotyped using a RFLP assay that differentiated Family 1 and 3 together (220 bp), from Family 2 (462 bp), and from Family 4 (486 bp). The PTPRC allele frequencies were Family 1/3 = 0.34; Family 2 = 0.47; Family 4 = 0.19. There was no significant association between PTPRC genotype and tick count. Each copy of the Family 1/3 allele significantly decreased total leucocyte count (WCC) and CD8+ cells. Increasing dosage of Family 2 alleles significantly increased red blood cell count (RCC), haematocrit (PCV), and haemoglobin (Hb) concentration in blood. Increasing dosage of the Family 4 allele was associated with increased WCC, reduced RCC, reduced PCV and reduced Hb. Homozygote Family 1/3 animals had consistently lower IgG1 in response to tick Ag than homozygote Family 2 animals. The PTPRC genotype influences the bovine immune response to ticks but was not associated with the observed variation in resistance to tick infestation in this study.
Collapse
Affiliation(s)
- Nicholas N Jonsson
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - David K Cox
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Emily K Piper
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| | - Emily F Mantilla Valdivieso
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Constantin Constantinoiu
- College of Public Health, Biomedical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Louise A Jackson
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Michael J Stear
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Elizabeth M Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Ala E Tabor
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Genome-wide insights on gastrointestinal nematode resistance in autochthonous Tunisian sheep. Sci Rep 2021; 11:9250. [PMID: 33927253 PMCID: PMC8085236 DOI: 10.1038/s41598-021-88501-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
Gastrointestinal nematode (GIN) infections have negative impacts on animal health, welfare and production. Information from molecular studies can highlight the underlying genetic mechanisms that enhance host resistance to GIN. However, such information often lacks for traditionally managed indigenous livestock. Here, we analysed 600 K single nucleotide polymorphism genotypes of GIN infected and non-infected traditionally managed autochthonous Tunisian sheep grazing communal natural pastures. Population structure analysis did not find genetic differentiation that is consistent with infection status. However, by contrasting the infected versus non-infected cohorts using ROH, LR-GWAS, FST and XP-EHH, we identified 35 candidate regions that overlapped between at least two methods. Nineteen regions harboured QTLs for parasite resistance, immune capacity and disease susceptibility and, ten regions harboured QTLs for production (growth) and meat and carcass (fatness and anatomy) traits. The analysis also revealed candidate regions spanning genes enhancing innate immune defence (SLC22A4, SLC22A5, IL-4, IL-13), intestinal wound healing/repair (IL-4, VIL1, CXCR1, CXCR2) and GIN expulsion (IL-4, IL-13). Our results suggest that traditionally managed indigenous sheep have evolved multiple strategies that evoke and enhance GIN resistance and developmental stability. They confirm the importance of obtaining information from indigenous sheep to investigate genomic regions of functional significance in understanding the architecture of GIN resistance.
Collapse
|
6
|
Eydivandi S, Roudbar MA, Ardestani SS, Momen M, Sahana G. A selection signatures study among Middle Eastern and European sheep breeds. J Anim Breed Genet 2021; 138:574-588. [PMID: 33453096 DOI: 10.1111/jbg.12536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 12/26/2020] [Indexed: 01/26/2023]
Abstract
Selection, both natural and artificial, leaves patterns on the genome during domestication of animals and leads to changes in allele frequencies among populations. Detecting genomic regions influenced by selection in livestock may assist in understanding the processes involved in genome evolution and discovering genomic regions related to traits of economic and ecological interests. In the current study, genetic diversity analyses were conducted on 34,206 quality-filtered SNP positions from 450 individuals in 15 sheep breeds, including six indigenous breeds from the Middle East, namely Iranian Balouchi, Afshari, Moghani, Qezel, Karakas and Norduz, and nine breeds from Europe, namely East Friesian Sheep, Ile de France, Mourerous, Romane, Swiss Mirror, Spaelsau, Suffolk, Comisana and Engadine Red Sheep. The SNP genotype data generated by the Illumina OvineSNP50 Genotyping BeadChip array were used in this analysis. We applied two complementary statistical analyses, FST (fixation index) and xp-EHH (cross-population extended haplotype homozygosity), to detect selection signatures in Middle Eastern and European sheep populations. FST and xp-EHH detected 629 and 256 genes indicating signatures of selection, respectively. Genomic regions identified using FST and xp-EHH contained the CIDEA, HHATL, MGST1, FADS1, RTL1 and DGKG genes, which were reported earlier to influence a number of economic traits. Both FST and xp-EHH approaches identified 60 shared genes as the signatures of selection, including four candidate genes (NT5E, ADA2, C8A and C8B) that were enriched for two significant Gene Ontology (GO) terms associated with the adenosine metabolic procedure. Knowledge about the candidate genomic regions under selective pressure in sheep breeds may facilitate identification of the underlying genes and enhance our understanding on these genes role in local adaptation.
Collapse
Affiliation(s)
- Sirous Eydivandi
- Department of Animal Science, Behbahan Branch, Islamic Azad University, Behbahan, Iran.,Faculty of Technical Sciences, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Mahmoud Amiri Roudbar
- Department of Animal Science, Safiabad-Dezful Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Dezful, Iran
| | | | - Mehdi Momen
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Goutam Sahana
- Faculty of Technical Sciences, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| |
Collapse
|
7
|
Robbertse L, Richards SA, Stutzer C, Olivier NA, Leisewitz AL, Crafford JE, Maritz-Olivier C. Temporal analysis of the bovine lymph node transcriptome during cattle tick (Rhipicephalus microplus) infestation. Vaccine 2020; 38:6889-6898. [PMID: 32900540 DOI: 10.1016/j.vaccine.2020.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/18/2022]
Abstract
Livestock production is a fundamental source of revenue and nutrition, wherein cattle-farming constitutes one of the major agricultural industries. Vectors and vector-borne diseases constitute one of the major factors that decrease the livelihood of all farming communities, more so in resource-poor communities and developing countries. Understanding the immunological responses during tick infestation in cattle is instrumental in the development of novel and improved tick control strategies, such as vaccines. In this study, gene expression patterns were compared within the lymph nodes of three cattle breeds at different life stages of the cattle tick, Rhipicephalus microplus. For Bonsmara (5/8Bos taurus indicus × 3/8B. t. taurus) cattle specifically, some 183 genes were found to be differentially expressed within the lymph nodes during larval and adult tick feeding, relative to uninfested cattle. Overall, the data provides evidence for a transcriptional regulatory network that is activated during immature tick infestation, but is down-regulated towards basal transcriptional levels when adult ticks are feeding. Specific processes in the lymph nodes of Bonsmara cattle were found to be differentially regulated on a transcriptional level. These include: (1) Leukocyte recruitment to the lymph node via chemokines and chemotaxis, (2) Trans-endothelial and intranodal movement on the reticular network, (3) Active regulation of cellular transcription and translation in the lymph node (including leukocyte associated cellular regulatory networks) and (4) Chemokine receptors regulating the movement of cells out of the lymph node. This work provides a first transcriptome analysis of bovine lymph node responses in tick-infested cattle. Findings show a dynamic immune response to tick infestation for the Bonsmara cattle breed, and that suppression of the maturation of the cattle hosts' immunity is especially evident during the larval feeding stages.
Collapse
Affiliation(s)
- Luïse Robbertse
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Sabine A Richards
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Christian Stutzer
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Nicholas A Olivier
- Department of Plant and Soil Sciences, University of Pretoria, South Africa; ACGT Microarray Facility, University of Pretoria, South Africa
| | - Andrew L Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Jan E Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Christine Maritz-Olivier
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|
8
|
Whole-genome sequencing provides new insights into genetic mechanisms of tropical adaptation in Nellore (Bos primigenius indicus). Sci Rep 2020; 10:9412. [PMID: 32523018 PMCID: PMC7287098 DOI: 10.1038/s41598-020-66272-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/12/2020] [Indexed: 11/22/2022] Open
Abstract
Most of the knowledge about genetic variants at the sequence level in cattle is for Bos primigenius taurus populations. Here, we presented a complete genomic characterization of 52 Nellore (Bos primigenius indicus) bulls, revealing specific zebu DNA variants with putative impact in tropical adaptation and productive traits. Single nucleotide polymorphisms (SNPs) and insertion/deletion (INDELs) mutations were identified using the newest bovine reference genome ARS_UCD1.2, and variant functional consequences were predicted using the Ensembl VEP software. A total of 35,753,707 SNPs and 4,492,636 INDELs were detected and annotated to their functional effects. We identified 400 genes that comprised both, a SNP and an INDEL, of high functional impact on proteins (i.e. variants that cause protein truncation, loss of function or triggering nonsense-mediated decay). Among these, we highlight the following genes: BoLA, associated with cattle immune response to infections and reproduction aspects; HSPA8, DNAJC27, and DNAJC28, involved with thermoregulatory protective mechanisms in mammals; and many olfactory signaling pathway related genes that are important genetic factors in the evolution of mammalian species. All these functional aspects are directly related to cattle adaptability to tropical environments.
Collapse
|
9
|
Mastrangelo S, Ben Jemaa S, Ciani E, Sottile G, Moscarelli A, Boussaha M, Montedoro M, Pilla F, Cassandro M. Genome-wide detection of signatures of selection in three Valdostana cattle populations. J Anim Breed Genet 2020; 137:609-621. [PMID: 32219904 DOI: 10.1111/jbg.12476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 12/15/2022]
Abstract
The Valdostana is a local dual purpose cattle breed developed in Italy. Three populations are recognized within this breed, based on coat colour, production level, morphology and temperament: Valdostana Red Pied (VPR), Valdostana Black Pied (VPN) and Valdostana Chestnut (VCA). Here, we investigated putative genomic regions under selection among these three populations using the Bovine 50K SNP array by combining three different statistical methods based either on allele frequencies (FST ) or extended haplotype homozygosity (iHS and Rsb). In total, 8, 5 and 8 chromosomes harbouring 13, 13 and 16 genomic regions potentially under selection were identified by at least two approaches in VPR, VPN and VCA, respectively. Most of these candidate regions were population-specific but we found one common genomic region spanning 2.38 Mb on BTA06 which either overlaps or is located close to runs of homozygosity islands detected in the three populations. This region included inter alia two well-known genes: KDR, a well-established coat colour gene, and CLOCK, which plays a central role in positive regulation of inflammatory response and in the regulation of the mammalian circadian rhythm. The other candidate regions identified harboured genes associated mainly with milk and meat traits as well as genes involved in immune response/inflammation or associated with behavioural traits. This last category of genes was mainly identified in VCA, which is selected for fighting ability. Overall, our results provide, for the first time, a glimpse into regions of the genome targeted by selection in Valdostana cattle. Finally, this study illustrates the relevance of using multiple complementary approaches to identify genomic regions putatively under selection in livestock.
Collapse
Affiliation(s)
- Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Slim Ben Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Ariana, Tunisia
| | - Elena Ciani
- Dipartimento di Bioscienze Biotecnologie e Biofarmaceutica, University of Bari, Bari, Italy
| | - Gianluca Sottile
- Dipartimento Scienze Economiche, Aziendali e Statistiche, University of Palermo, Palermo, Italy
| | - Angelo Moscarelli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Mekki Boussaha
- INRAE, AgroParisTech, GABI, Université Paris Saclay, Jouy-en-Josas, France
| | - Marina Montedoro
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Rivolta d'Adda, Italy
| | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, Italy
| | - Martino Cassandro
- Dipartimento di Agronomia Animali Alimenti Risorse naturali e Ambiente, University of Padova, Legnaro, Italy
| |
Collapse
|
10
|
Estrada-Reyes ZM, Rae O, Postley C, Jiménez Medrano MB, Leal Gutiérrez JD, Mateescu RG. Association study reveals Th17, Treg, and Th2 loci related to resistance to Haemonchus contortus in Florida Native sheep1. J Anim Sci 2020; 97:4428-4444. [PMID: 31541548 DOI: 10.1093/jas/skz299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/16/2019] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to identify for the first time single nucleotide polymorphisms (SNPs) associated with Haemonchus contortus resistance in Florida Native sheep, using a targeted sequencing approach. One hundred and fifty-three lambs were evaluated in this study. At the start of the trial, phenotypic records for fecal egg count (FEC), FAMACHA score, body condition score (BCS), and weight were recorded and deworming of sheep with levamisole (18 mg/kg of body weight) was performed. Ten days post-deworming (baseline) and 28 d post-baseline, a full hematogram of each sheep was obtained and FEC, FAMACHA score, BCS, and weight were assessed. Average daily gain was calculated at the end of the trial. Out of 153 animals, 100 sheep were selected for genotyping using a targeted sequencing approach. Targeted sequencing panel included 100 candidate genes for immune response against H. contortus. SNPs were discarded if call rate <95% and minor allele frequency ≤0.05. A mixed model was used to analyze the response variables and included the identity by state matrix to control for population structure. A contemporary group (age, group, and sex) was included as fixed effect. Bonferroni correction was used to control for multiple testing. Eighteen SNPs on chromosomes 1, 2, 3, 4, 6, 7, 11, 15, 18, 20, 24, and 26 were significant for different traits. Our results suggest that loci related to Th17, Treg, and Th2 responses play an important role in the expression of resistant phenotypes. Several genes including ITGA4, MUC15, TLR3, PCDH7, CFI, CXCL10, TNF, CCL26, STAT3, GPX2, IL2RB, and STAT6 were identified as potential markers for resistance to natural H. contortus exposure. This is the first study that evaluates potential genetic markers for H. contortus resistance in Florida Native sheep.
Collapse
Affiliation(s)
| | - Owen Rae
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL
| | | | | | | | | |
Collapse
|
11
|
Estrada-Reyes ZM, Tsukahara Y, Amadeu RR, Goetsch AL, Gipson TA, Sahlu T, Puchala R, Wang Z, Hart SP, Mateescu RG. Signatures of selection for resistance to Haemonchus contortus in sheep and goats. BMC Genomics 2019; 20:735. [PMID: 31615414 PMCID: PMC6792194 DOI: 10.1186/s12864-019-6150-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/29/2019] [Indexed: 11/20/2022] Open
Abstract
Background Gastrointestinal nematode infection (GNI) is the most important disease affecting the small ruminant industry in U.S. The environmental conditions in the southern United States are ideal for the survival of the most pathogenic gastrointestinal nematode, Haemonchus contortus. Host genetic variation for resistance to H. contortus allows selective breeding for increased resistance of animals. This selection process increases the prevalence of particular alleles in sheep and goats and creates unique genetic patterns in the genome of these species. The aim of this study was to identify loci with divergent allelic frequencies in a candidate gene panel of 100 genes using two different approaches (frequentist and Bayesian) to estimate Fst outliers in three different breeds of sheep and goats exposed to H. contortus. Results Our results for sheep populations showed SNPs under selection in C3AR1, CSF3, SOCS2, NOS2, STAT5B, TGFB2 and IL2RA genes using frequentist and Bayesian approaches. For goats, SNPs in CD1D, ITGA9, IL12A, IL13RA1, CD86 and TGFB2 genes were under selection. Common signatures of selection in both species were observed in NOS2, TGFB2 and TLR4 genes. Directional selection was present in all SNPs evaluated in the present study. Conclusions A total of 13 SNPs within 7 genes of our candidate gene panel related to H. contortus exposure were identified under selection in sheep populations. For goats, 11 SNPs within 7 genes were identified under selection. Results from this study support the hypothesis that resistance to H. contortus is likely to be controlled by many loci. Shared signatures of selection related to mechanisms of immune protection against H. contortus infection in sheep and goats could be useful targets in breeding programs aimed to produce resistant animals with low FEC.
Collapse
Affiliation(s)
| | - Yoko Tsukahara
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Rodrigo R Amadeu
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Arthur L Goetsch
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Terry A Gipson
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Tilahun Sahlu
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Richard Puchala
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Zaisen Wang
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Steve P Hart
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Raluca G Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Estrada-Reyes ZM, Tsukahara Y, Goetsch AL, Gipson TA, Sahlu T, Puchala R, Mateescu RG. Association analysis of immune response loci related to Haemonchus contortus exposure in sheep and goats using a targeted approach. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
May K, Scheper C, Brügemann K, Yin T, Strube C, Korkuć P, Brockmann GA, König S. Genome-wide associations and functional gene analyses for endoparasite resistance in an endangered population of native German Black Pied cattle. BMC Genomics 2019; 20:277. [PMID: 30961534 PMCID: PMC6454736 DOI: 10.1186/s12864-019-5659-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Gastrointestinal nematodes (GIN), liver flukes (Fasciola hepatica) and bovine lungworms (Dictyocaulus viviparus) are the most important parasitic agents in pastured dairy cattle. Endoparasite infections are associated with reduced milk production and detrimental impacts on female fertility, contributing to economic losses in affected farms. In quantitative-genetic studies, the heritabilities for GIN and F. hepatica were moderate, encouraging studies on genomic scales. Genome-wide association studies (GWAS) based on dense single nucleotide polymorphism (SNP) marker panels allow exploration of the underlying genomic architecture of complex disease traits. The current GWAS combined the identification of potential candidate genes with pathway analyses to obtain deeper insights into bovine immune response and the mechanisms of resistance against endoparasite infections. Results A 2-step approach was applied to infer genome-wide associations in an endangered dual-purpose cattle subpopulation [Deutsches Schwarzbuntes Niederungsrind (DSN)] with a limited number of phenotypic records. First, endoparasite traits from a population of 1166 Black and White dairy cows [including Holstein Friesian (HF) and DSN] naturally infected with GIN, F. hepatica and D. viviparus were precorrected for fixed effects using linear mixed models. Afterwards, the precorrected phenotypes were the dependent traits (rFEC-GIN, rFEC-FH, and rFLC-DV) in GWAS based on 423,654 SNPs from 148 DSN cows. We identified 44 SNPs above the genome-wide significance threshold (pBonf = 4.47 × 10− 7), and 145 associations surpassed the chromosome-wide significance threshold (range: 7.47 × 10− 6 on BTA 1 to 2.18 × 10− 5 on BTA 28). The associated SNPs identified were annotated to 23 candidate genes. The DAVID analysis inferred four pathways as being related to immune response mechanisms or involved in host-parasite interactions. SNP effect correlations considering specific chromosome segments indicate that breeding for resistance to GIN or F. hepatica as measured by fecal egg counts is genetically associated with a higher risk for udder infections. Conclusions We detected a large number of loci with small to moderate effects for endoparasite resistance. The potential candidate genes regulating resistance identified were pathogen-specific. Genetic antagonistic associations between disease resistance and productivity were specific for specific chromosome segments. The 2-step approach was a valid methodological approach to infer genetic mechanisms in an endangered breed with a limited number of phenotypic records. Electronic supplementary material The online version of this article (10.1186/s12864-019-5659-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany.,Institute for Parasitology, Center for Infection Medicine, University of Veterinary Medicine Hanover, 30559, Hannover, Germany
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Christina Strube
- Institute for Parasitology, Center for Infection Medicine, University of Veterinary Medicine Hanover, 30559, Hannover, Germany
| | - Paula Korkuć
- Department for Crop and Animal Sciences, Breeding Biology and Molecular Genetics, Faculty of Live Science, Humboldt-Universität of Berlin, 10115, Berlin, Germany
| | - Gudrun A Brockmann
- Department for Crop and Animal Sciences, Breeding Biology and Molecular Genetics, Faculty of Live Science, Humboldt-Universität of Berlin, 10115, Berlin, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany.
| |
Collapse
|
14
|
Pierce MD, Dzama K, Muchadeyi FC. Genetic Diversity of Seven Cattle Breeds Inferred Using Copy Number Variations. Front Genet 2018; 9:163. [PMID: 29868114 PMCID: PMC5962699 DOI: 10.3389/fgene.2018.00163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/23/2018] [Indexed: 11/25/2022] Open
Abstract
Copy number variations (CNVs) comprise deletions, duplications, and insertions found within the genome larger than 50 bp in size. CNVs are thought to be primary role-players in breed formation and adaptation. South Africa boasts a diverse ecology with harsh environmental conditions and a broad spectrum of parasites and diseases that pose challenges to livestock production. This has led to the development of composite cattle breeds which combine the hardiness of Sanga breeds and the production potential of the Taurine breeds. The prevalence of CNVs within these respective breeds of cattle and the prevalence of CNV regions (CNVRs) in their diversity, adaptation and production is however not understood. This study therefore aimed to ascertain the prevalence, diversity, and correlations of CNVRs within cattle breeds used in South Africa. Illumina Bovine SNP50 data and PennCNV were utilized to identify CNVRs within the genome of 287 animals from seven cattle breeds representing Sanga, Taurine, Composite, and cross breeds. Three hundred and fifty six CNVRs of between 36 kb to 4.1 Mb in size were identified. The null hypothesis that one CNVR loci is independent of another was tested using the GENEPOP software. One hunded and two and seven of the CNVRs in the Taurine and Sanga/Composite cattle breeds demonstrated a significant (p ≤ 0.05) association. PANTHER overrepresentation analyses of correlated CNVRs demonstrated significant enrichment of a number of biological processes, molecular functions, cellular components, and protein classes. CNVR genetic variation between and within breed group was measured using phiPT which allows intra-individual variation to be suppressed and hence proved suitable for measuring binary CNVR presence/absence data. Estimate PhiPT within and between breed variance was 2.722 and 0.518 respectively. Pairwise population PhiPT values corresponded with breed type, with Taurine Holstein and Angus breeds demonstrating no between breed CNVR variation. Phylogenetic trees were drawn. CNVRs primarily clustered animals of the same breed type together. This study successfully identified, characterized, and analyzed 356 CNVRs within seven cattle breeds. CNVR correlations were evident, with many more correlations being present among the exotic Taurine breeds. CNVR genetic diversity of Sanga, Taurine and Composite breeds was ascertained with breed types exposed to similar selection pressures demonstrating analogous incidences of CNVRs.
Collapse
Affiliation(s)
- Magretha D Pierce
- Animal Production, Agricultural Research Council, Pretoria, South Africa
| | - Kennedy Dzama
- Department of Animal Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Farai C Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| |
Collapse
|
15
|
Mesbah-Uddin M, Guldbrandtsen B, Iso-Touru T, Vilkki J, De Koning DJ, Boichard D, Lund MS, Sahana G. Genome-wide mapping of large deletions and their population-genetic properties in dairy cattle. DNA Res 2017; 25:49-59. [PMID: 28985340 PMCID: PMC5824824 DOI: 10.1093/dnares/dsx037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023] Open
Abstract
Large genomic deletions are potential candidate for loss-of-function, which could be lethal as homozygote. Analysing whole genome data of 175 cattle, we report 8,480 large deletions (199 bp–773 KB) with an overall false discovery rate of 8.8%; 82% of which are novel compared with deletions in the dbVar database. Breakpoint sequence analyses revealed that majority (24 of 29 tested) of the deletions contain microhomology/homology at breakpoint, and therefore, most likely generated by microhomology-mediated end joining. We observed higher differentiation among breeds for deletions in some genic-regions, such as ABCA12, TTC1, VWA3B, TSHR, DST/BPAG1, and CD1D. The genes overlapping deletions are on average evolutionarily less conserved compared with known mouse lethal genes (P-value = 2.3 × 10−6). We report 167 natural gene knockouts in cattle that are apparently nonessential as live homozygote individuals are observed. These genes are functionally enriched for immunoglobulin domains, olfactory receptors, and MHC classes (FDR = 2.06 × 10−22, 2.06 × 10−22, 7.01 × 10−6, respectively). We also demonstrate that deletions are enriched for health and fertility related quantitative trait loci (2-and 1.5-fold enrichment, Fisher’s P-value = 8.91 × 10−10 and 7.4 × 10−11, respectively). Finally, we identified and confirmed the breakpoint of a ∼525 KB deletion on Chr23:12,291,761-12,817,087 (overlapping BTBD9, GLO1 and DNAH8), causing stillbirth in Nordic Red Cattle.
Collapse
Affiliation(s)
- Md Mesbah-Uddin
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark.,Animal Genetics and Integrative Biology, UMR 1313 GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - Terhi Iso-Touru
- Green Technology, Natural Resources Institute Finland, FI-31600 Jokioinen, Finland
| | - Johanna Vilkki
- Green Technology, Natural Resources Institute Finland, FI-31600 Jokioinen, Finland
| | - Dirk-Jan De Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750?07 Uppsala, Sweden
| | - Didier Boichard
- Animal Genetics and Integrative Biology, UMR 1313 GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Mogens Sandø Lund
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - Goutam Sahana
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|
16
|
Skallerup P, Nejsum P, Cirera S, Skovgaard K, Pipper CB, Fredholm M, Jørgensen CB, Thamsborg SM. Transcriptional immune response in mesenteric lymph nodes in pigs with different levels of resistance to Ascaris suum. Acta Parasitol 2017; 62:141-153. [PMID: 28030356 DOI: 10.1515/ap-2017-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 10/14/2016] [Indexed: 12/24/2022]
Abstract
A single nucleotide polymorphism on chromosome 4 (SNP TXNIP) has been reported to be associated with roundworm (Ascaris suum) burden in pigs. The objective of the present study was to analyse the immune response to A. suum mounted by pigs with genotype AA (n = 24) and AB (n = 23) at the TXNIP locus. The pigs were repeatedly infected with A. suum from eight weeks of age until necropsy eight weeks later. An uninfected control group (AA; n = 5 and AB; n = 5) was also included. At post mortem, we collected mesenteric lymph nodes and measured the expression of 28 selected immune-related genes. Recordings of worm burdens confirmed our previous results that pigs of the AA genotype were more resistant to infection than AB pigs. We estimated the genotype difference in relative expression levels in infected and uninfected animals. No significant change in expression levels between the two genotypes due to infection was observed for any of the genes, although IL-13 approached significance (P = 0.08; Punadjusted = 0.003). Furthermore, statistical analysis testing for the effect of infection separately in each genotype showed significant up-regulation of IL-13 (P<0.05) and CCL17 (P<0.05) following A. suum infection in the 'resistant' AA genotype and not in the 'susceptible' AB genotype. Pigs of genotype AB had higher expression of the high-affinity IgG receptor (FCGR1A) than AA pigs in both infected and non-infected animals (P = 1.85*10-11).
Collapse
|
17
|
Wang MD, Dzama K, Rees DJG, Muchadeyi FC. Tropically adapted cattle of Africa: perspectives on potential role of copy number variations. Anim Genet 2015; 47:154-64. [DOI: 10.1111/age.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/12/2022]
Affiliation(s)
- M. D. Wang
- Department of Animal Sciences; University of Stellenbosch; Private Bag X1 Matieland 7602 South Africa
- Biotechnology Platform; Agricultural Research Council; Private Bag X5 Onderstepoort 0110 South Africa
| | - K. Dzama
- Department of Animal Sciences; University of Stellenbosch; Private Bag X1 Matieland 7602 South Africa
| | - D. J. G. Rees
- Biotechnology Platform; Agricultural Research Council; Private Bag X5 Onderstepoort 0110 South Africa
| | - F. C. Muchadeyi
- Biotechnology Platform; Agricultural Research Council; Private Bag X5 Onderstepoort 0110 South Africa
| |
Collapse
|
18
|
Human Ascariasis Increases the Allergic Response and Allergic Symptoms. CURRENT TROPICAL MEDICINE REPORTS 2015. [DOI: 10.1007/s40475-015-0058-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Benavides MV, Sonstegard TS, Kemp S, Mugambi JM, Gibson JP, Baker RL, Hanotte O, Marshall K, Van Tassell C. Identification of novel loci associated with gastrointestinal parasite resistance in a Red Maasai x Dorper backcross population. PLoS One 2015; 10:e0122797. [PMID: 25867089 PMCID: PMC4395112 DOI: 10.1371/journal.pone.0122797] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/21/2015] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal (GI) parasitic infection is the main health constraint for small ruminant production, causing loss of weight and/or death. Red Maasai sheep have adapted to a tropical environment where extreme parasite exposure is a constant, especially with highly pathogenic Haemonchus contortus. This breed has been reported to be resistant to gastrointestinal parasite infection, hence it is considered an invaluable resource to study associations between host genetics and resistance. The aim of this study was to identify polymorphisms strongly associated with host resistance in a double backcross population derived from Red Maasai and Dorper sheep using a SNP-based GWAS analysis. The animals that were genotyped represented the most resistant and susceptible individuals based on the tails of phenotypic distribution (10% each) for average faecal egg counts (AVFEC). AVFEC, packed cell volume (AVPCV), and live weight (AVLWT) were adjusted for fixed effects and co-variables, and an association analysis was run using EMMAX. Revised significance levels were calculated using 100,000 permutation tests. The top five significant SNP markers with - log10 p-values >3.794 were observed on five different chromosomes for AVFEC, and BLUPPf90/PostGSf90 results confirmed EMMAX significant regions for this trait. One of these regions included a cluster of significant SNP on chromosome (Chr) 6 not in linkage disequilibrium to each other. This genomic location contains annotated genes involved in cytokine signalling, haemostasis and mucus biosynthesis. Only one association detected on Chr 7 was significant for both AVPCV and AVLWT. The results generated here reveal candidate immune variants for genes involved in differential response to infection and provide additional SNP marker information that has potential to aid selection of resistance to gastrointestinal parasites in sheep of a similar genetic background to the double backcross population.
Collapse
Affiliation(s)
| | - Tad S. Sonstegard
- Animal Genomics & Improvement Laboratory, USDA/ARS/Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Stephen Kemp
- Animal Biosciences, The International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - John M. Mugambi
- National Veterinary Research Centre, Kenya Agricultural Research Institute (KARI), Muguga, Kenya
| | - John P. Gibson
- Centre for Genetic Analysis and Applications, University of New England, Armidale, NSW, Australia
| | | | - Olivier Hanotte
- Medicine & Health Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Karen Marshall
- Animal Biosciences, The International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Curtis Van Tassell
- Animal Genomics & Improvement Laboratory, USDA/ARS/Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| |
Collapse
|
20
|
Bornacelly A, Mercado D, Acevedo N, Caraballo L. The strength of the antibody response to the nematode Ascaris lumbricoides inversely correlates with levels of B-Cell Activating Factor (BAFF). BMC Immunol 2014; 15:22. [PMID: 24906685 PMCID: PMC4067067 DOI: 10.1186/1471-2172-15-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023] Open
Abstract
Background B-Cell Activating Factor (BAFF) is a cytokine regulating antibody production. Polymorphisms in the gene encoding BAFF were associated with the antibody response to Ascaris but not to mite allergens. In the present study we evaluated the relationship between BAFF and specific antibodies against Ascaris and mites in 448 controls and 448 asthmatics. Soluble BAFF was measured by ELISA and BAFF mRNA by qPCR. Surface expression of BAFF and its receptor (BAFF-R) was analyzed by flow cytometry. Results Individuals with specific IgE levels to Ascaris >75th percentile had lower levels of soluble BAFF; those with specific IgG levels to Ascaris >75th percentile had reduced BAFF mRNA. Total IgE and specific IgE to mites were not related to BAFF levels. There were no differences in soluble BAFF or mRNA levels between asthmatics and controls. There was an inverse relationship between the cell-surface expression of BAFF-R on CD19+ B cells and BAFF levels at the transcriptional and protein level. Conclusions These findings suggest that differences in BAFF levels are related to the strength of the antibody response to Ascaris.
Collapse
Affiliation(s)
| | | | | | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cra 5, #7-77, 13-0015 Cartagena, Colombia.
| |
Collapse
|
21
|
Xu L, Hou Y, Bickhart DM, Song J, Van Tassell CP, Sonstegard TS, Liu GE. A genome-wide survey reveals a deletion polymorphism associated with resistance to gastrointestinal nematodes in Angus cattle. Funct Integr Genomics 2014; 14:333-9. [PMID: 24718732 DOI: 10.1007/s10142-014-0371-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/17/2023]
Abstract
Gastrointestinal (GI) nematode infections are a worldwide threat to human health and animal production. In this study, we performed a genome-wide association study between copy number variations (CNVs) and resistance to GI nematodes in an Angus cattle population. Using a linear regression analysis, we identified one deletion CNV which reaches genome-wide significance after Bonferroni correction. With multiple mapped human olfactory receptor genes but no annotated bovine genes in the region, this significantly associated CNV displays high population frequencies (58.26 %) with a length of 104.8 kb on chr7. We further investigated the linkage disequilibrium (LD) relationships between this CNV and its nearby single nucleotide polymorphisms (SNPs) and genes. The underlining haplotype blocks contain immune-related genes such as ZNF496 and NLRP3. As this CNV co-segregates with linked SNPs and associated genes, we suspect that it could contribute to the detected variations in gene expression and thus differences in host parasite resistance.
Collapse
Affiliation(s)
- Lingyang Xu
- GEL: Bovine Functional Genomics Laboratory, BARC, USDA-ARS, Building 306, Room 111, BARC-East, Beltsville, MD, 20705, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Barreda DR, Konowalchuk JD, Rieger AM, Wong ME, Havixbeck JJ. Triennial Growth Symposium--Novel roles for vitamin D in animal immunity and health. J Anim Sci 2014; 92:930-8. [PMID: 24665105 DOI: 10.2527/jas.2013-7341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent years have seen significant advances in the generation, validation, and implementation of nutritional supplements for food production animals. Examination of their impact on animal performance and health requires collaboration among animal scientists, nutritionists, biochemists, immunologists, veterinarians, and others. Each provides a unique perspective on the mechanisms of action, short and long-term impacts, and most effective strategies for implementation into continuously evolving industrial practices. In this review we provide a comparative immunology perspective on the impact of vitamin D on animal performance and health, describe the differential contributions of vitamin D3 and of a commercial hydroxylated version of vitamin D3, 25-hydroxyvitamin D3 (25(OH)D3 or HyD) to swine immunity, and highlight recent advances in the technologies that can be used to dissect the cellular and molecular mechanisms that impact production animal immunity and health. Among others, we pay particular attention to how these novel approaches help decrease the variability often observed in immune-associated datasets. From a practical perspective, this is critical for evaluation of in vivo effects for this nutritional supplement as small but meaningful changes to specific immune responses are typical under normal physiological conditions. Furthermore, as the range of reagents and technologies expands for comparative animal models, it is imperative that continued efforts are placed on the capacity to compare results across different experimental platforms.
Collapse
Affiliation(s)
- D R Barreda
- Department of Agricultural, Food and Nutritional Science
| | | | | | | | | |
Collapse
|
23
|
Serological evidence of Ostertagia ostertagi infection in dairy cows does not impact the efficacy of rabies vaccination during the housing period. Res Vet Sci 2013; 95:1055-8. [PMID: 24075620 DOI: 10.1016/j.rvsc.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/20/2013] [Accepted: 09/02/2013] [Indexed: 11/23/2022]
Abstract
Nematode infections modulate the immune reaction of humans and livestock and may impair immune responses to non-parasitic antigens such as those present in vaccines. In this study, the relationship between antibodies directed against Ostertagia ostertagi, the economically most important nematode infection of cattle in temperate regions, and the magnitude and the kinetics of the antibody response to rabies vaccination was investigated in a commercial dairy herd of 46 cows. During the stabling period, all animals received a single intramuscular administration with a commercial inactivated rabies vaccine (Rabisin®, Merial). The serum antibody levels against O. ostertagi on day 0 were compared with anti-rabies IgM, IgA, IgG1, IgG2 and virus-neutralizing antibodies on days 0, 7, 14 and 21 after vaccination. In addition, to explore the potential effect of newly acquired O. ostertagi infections, the kinetics of the O. ostertagi antibody levels during the first 2 months after turnout on pasture were compared with concurrent changes in the rabies antibodies. During the stabling period the O. ostertagi antibody level tended to be positively associated with the magnitude, rate of increase and rate of decrease of the rabies antibodies. However, none of these associations were significant (P>0.05). Over the first 2 months at pasture, an increase in O. ostertagi antibody level tended to be associated with a decrease in rabies IgG2 and IgM, but again these associations lacked statistical significance (P>0.20). We conclude that the O. ostertagi antibody level in adult cattle over the housing period has no significant association with the antibody response to rabies vaccination. We recommend that future studies aiming to assess the relationship of nematode infections with humoral immune responses to vaccines are conducted on a larger scale and focus on the summer period when cattle are exposed continuously to nematode challenge from the pasture and hence are actively responding immunologically to nematode antigen exposure.
Collapse
|
24
|
Athanasiadou S. Nutritional deficiencies and parasitic disease: Lessons and advancements from rodent models. Vet Parasitol 2012; 189:97-103. [DOI: 10.1016/j.vetpar.2012.03.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Li RW, Choudhary RK, Capuco AV, Urban JF. Exploring the host transcriptome for mechanisms underlying protective immunity and resistance to nematode infections in ruminants. Vet Parasitol 2012; 190:1-11. [PMID: 22819588 DOI: 10.1016/j.vetpar.2012.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/08/2012] [Accepted: 06/15/2012] [Indexed: 12/11/2022]
Abstract
Nematode infections in ruminants are a major impediment to the profitable production of meat and dairy products, especially for small farms. Gastrointestinal parasitism not only negatively impacts weight gain and milk yield, but is also a major cause of mortality in small ruminants. The current parasite control strategy involves heavy use of anthelmintics that has resulted in the emergence of drug-resistant parasite strains. This, in addition to increasing consumer demand for animal products that are free of drug residues has stimulated development of alternative strategies, including selective breeding of parasite resistant ruminants. The development of protective immunity and manifestations of resistance to nematode infections relies upon the precise expression of the host genome that is often confounded by mechanisms simultaneously required to control multiple nematode species as well as ecto- and protozoan parasites, and microbial and viral pathogens. Understanding the molecular mechanisms underlying these processes represents a key step toward development of effective new parasite control strategies. Recent progress in characterizing the transcriptome of both hosts and parasites, utilizing high-throughput microarrays and RNA-seq technology, has led to the recognition of unique interactions and the identification of genes and biological pathways involved in the response to parasitism. Innovative use of the knowledge gained by these technologies should provide a basis for enhancing innate immunity while limiting the polarization of acquired immunity can negatively affect optimal responses to co-infection. Strategies for parasite control that use diet and vaccine/adjuvant combination could be evaluated by monitoring the host transcriptome for induction of appropriate mechanisms for imparting parasite resistance. Knowledge of different mechanisms of host immunity and the critical regulation of parasite development, physiology, and virulence can also selectively identify targets for parasite control. Comparative transcriptome analysis, in concert with genome-wide association (GWS) studies to identify quantitative trait loci (QTLs) affecting host resistance, represents a promising molecular technology to evaluate integrated control strategies that involve breed and environmental factors that contribute to parasite resistance and improved performance. Tailoring these factors to control parasitism without severely affecting production qualities, management efficiencies, and responses to pathogenic co-infection will remain a challenge. This review summarizes recent progress and limitations of understanding regulatory genetic networks and biological pathways that affect host resistance and susceptibility to nematode infection in ruminants.
Collapse
Affiliation(s)
- Robert W Li
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, MD, USA.
| | | | | | | |
Collapse
|
26
|
HOORENS P, RINALDI M, MIHI B, DREESEN L, GRIT G, MEEUSEN E, LI RW, GELDHOF P. Galectin-11 induction in the gastrointestinal tract of cattle following nematode and protozoan infections. Parasite Immunol 2011; 33:669-78. [DOI: 10.1111/j.1365-3024.2011.01336.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle. Funct Integr Genomics 2011; 12:81-92. [PMID: 21928070 DOI: 10.1007/s10142-011-0252-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 12/11/2022]
Abstract
Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We previously reported an initial analysis of copy number variations (CNVs) in Angus cattle selected for resistance or susceptibility to gastrointestinal nematodes. In this study, we performed a large-scale analysis of CNVs using SNP genotyping data from 472 animals of the same population. We detected 811 candidate CNV regions, which represent 141.8 Mb (~4.7%) of the genome. To investigate the functional impacts of CNVs, we created 2 groups of 100 individual animals with extremely low or high estimated breeding values of eggs per gram of feces and referred to these groups as parasite resistant (PR) or parasite susceptible (PS), respectively. We identified 297 (~51 Mb) and 282 (~48 Mb) CNV regions from PR and PS groups, respectively. Approximately 60% of the CNV regions were specific to the PS group or PR group of animals. Selected PR- or PS-specific CNVs were further experimentally validated by quantitative PCR. A total of 297 PR CNV regions overlapped with 437 Ensembl genes enriched in immunity and defense, like WC1 gene which uniquely expresses on gamma/delta T cells in cattle. Network analyses indicated that the PR-specific genes were predominantly involved in gastrointestinal disease, immunological disease, inflammatory response, cell-to-cell signaling and interaction, lymphoid tissue development, and cell death. By contrast, the 282 PS CNV regions contained 473 Ensembl genes which are overrepresented in environmental interactions. Network analyses indicated that the PS-specific genes were particularly enriched for inflammatory response, immune cell trafficking, metabolic disease, cell cycle, and cellular organization and movement.
Collapse
|
28
|
Knight PA, Griffith SE, Pemberton AD, Pate JM, Guarneri L, Anderson K, Talbot RT, Smith S, Waddington D, Fell M, Archibald AL, Burgess STG, Smith DW, Miller HRP, Morrison IW. Novel gene expression responses in the ovine abomasal mucosa to infection with the gastric nematode Teladorsagia circumcincta. Vet Res 2011; 42:78. [PMID: 21682880 PMCID: PMC3135528 DOI: 10.1186/1297-9716-42-78] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 06/17/2011] [Indexed: 12/14/2022] Open
Abstract
Infection of sheep with the gastric nematode Teladorsagia circumcincta results in distinct Th2-type changes in the mucosa, including mucous neck cell and mast cell hyperplasia, eosinophilia, recruitment of IgA/IgE producing cells and neutrophils, altered T-cell subsets and mucosal hypertrophy. To address the protective mechanisms generated in animals on previous exposure to this parasite, gene expression profiling was carried out using samples of abomasal mucosa collected pre- and post- challenge from animals of differing immune status, using an experimental model of T. circumcincta infection. Recently developed ovine cDNA arrays were used to compare the abomasal responses of sheep immunised by trickle infection with worm-naïve sheep, following a single oral challenge of 50 000 T. circumcincta L3. Key changes were validated using qRT-PCR techniques. Immune animals demonstrated highly significant increases in levels of transcripts normally associated with cytotoxicity such as granulysin and granzymes A, B and H, as well as mucous-cell derived transcripts, predominantly calcium-activated chloride channel 1 (CLCA1). Challenge infection also induced up-regulation of transcripts potentially involved in initiating or modulating the immune response, such as heat shock proteins, complement factors and the chemokine CCL2. In contrast, there was marked infection-associated down-regulation of gene expression of members of the gastric lysozyme family. The changes in gene expression levels described here may reflect roles in direct anti-parasitic effects, immuno-modulation or tissue repair. (Funding; DEFRA/SHEFC (VT0102) and the BBSRC (BB/E01867X/1)).
Collapse
Affiliation(s)
- Pamela A Knight
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Widdison S, Coffey TJ. Cattle and chemokines: evidence for species-specific evolution of the bovine chemokine system. Anim Genet 2011; 42:341-53. [DOI: 10.1111/j.1365-2052.2011.02200.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Initial analysis of copy number variations in cattle selected for resistance or susceptibility to intestinal nematodes. Mamm Genome 2010; 22:111-21. [DOI: 10.1007/s00335-010-9308-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 11/11/2010] [Indexed: 01/10/2023]
|
31
|
Knight JS, Baird DB, Hein WR, Pernthaner A. The gastrointestinal nematode Trichostrongylus colubriformis down-regulates immune gene expression in migratory cells in afferent lymph. BMC Immunol 2010; 11:51. [PMID: 20950493 PMCID: PMC2970587 DOI: 10.1186/1471-2172-11-51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/17/2010] [Indexed: 01/03/2023] Open
Abstract
Background Gastrointestinal nematode (GIN) infections are the predominant cause of economic losses in sheep. Infections are controlled almost exclusively by the use of anthelmintics which has lead to the selection of drug resistant nematode strains. An alternative control approach would be the induction of protective immunity to these parasites. This study exploits an ovine microarray biased towards immune genes, an artificially induced immunity model and the use of pseudo-afferent lymphatic cannulation to sample immune cells draining from the intestine, to investigate possible mechanisms involved in the development of immunity. Results During the development of immunity to, and a subsequent challenge infection with Trichostrongylus colubriformis, the transcript levels of 2603 genes of cells trafficking in afferent intestinal lymph were significantly modulated (P < 0.05). Of these, 188 genes were modulated more than 1.3-fold and involved in immune function. Overall, there was a clear trend for down-regulation of many genes involved in immune functions including antigen presentation, caveolar-mediated endocytosis and protein ubiquitination. The transcript levels of TNF receptor associated factor 5 (TRAF5), hemopexin (HPX), cysteine dioxygenase (CDO1), the major histocompatability complex Class II protein (HLA-DMA), interleukin-18 binding protein (IL-18BP), ephrin A1 (EFNA1) and selenoprotein S (SELS) were modulated to the greatest degree. Conclusions This report describes gene expression profiles of afferent lymph cells in sheep developing immunity to nematode infection. Results presented show a global down-regulation of the expression of immune genes which may be reflective of the natural temporal response to nematode infections in livestock.
Collapse
Affiliation(s)
- Jacqueline S Knight
- AgResearch Ltd., Hopkirk Research Institute, Grasslands Research Centre, Palmerston North 4442, New Zealand.
| | | | | | | |
Collapse
|
32
|
Li RW, Hou Y, Li C, Gasbarre LC. Localized complement activation in the development of protective immunity against Ostertagia ostertagi infections in cattle. Vet Parasitol 2010; 174:247-56. [PMID: 20884121 DOI: 10.1016/j.vetpar.2010.08.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/27/2010] [Accepted: 08/24/2010] [Indexed: 12/18/2022]
Abstract
The abomasal nematode Ostertagia ostertagi is a major causal agent contributing to production inefficiencies in the cattle industry in temperate regions of the world. Protective immunity to infections develops very slowly and resistance to reinfection manifests only after prolonged exposure. Mechanisms underlying the development of protective immunity remain largely unexplored. Immune animals, which have significantly reduced worm burdens, were developed after multiple drug-attenuated experimental infections and were compared to a primary infected group and their respective uninfected controls. In this study, transcriptomic analysis identified three signaling pathways significantly impacted during both primary and repeat infections, the complement system, leukocyte extravasation and acute phase responses. Increased mRNA levels of complement components C3, factor B (CFB) and factor I (CFI) in the abomasal mucosa of the infected cattle were confirmed using quantitative PCR while Western blot analysis established the presence of elevated levels of activated C3 proteins in the mucosa. One of the initiators of local complement activation could be related to secretory IgA and IgM because infections significantly up-regulated expression of J chain (IGJ), as well as polymeric Ig receptor (PIGR) and an IgM-specific receptor (FAIM3), suggesting sustained increases in both synthesis and transepithelial transport of IgA and IgM during the infection. The elevated levels of pro-inflammatory cytokines, such as IL-4 and IL-1β, during infection may be involved in gene regulation of complement components. Our results suggest enhanced tissue repair and mucin secretion in immune animals may also contribute to protective immunity. These results are the first evidence that local complement activation may be involved in the development of long-term protective immunity and provide a novel mechanistic insight into resistance against O. ostertagi in cattle.
Collapse
Affiliation(s)
- Robert W Li
- Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, United States Department of Agriculture, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
33
|
Zaros LG, Bricarello PA, Amarante AFT, Rocha RA, Kooyman FNJ, De Vries E, Coutinho LL. Cytokine gene expression in response to Haemonchus placei infections in Nelore cattle. Vet Parasitol 2010; 171:68-73. [PMID: 20409640 DOI: 10.1016/j.vetpar.2010.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/27/2010] [Accepted: 03/08/2010] [Indexed: 01/17/2023]
Abstract
This study aimed to evaluate the expression of a subset of cytokine genes in response to Haemonchus placei infections in Nelore cattle presenting different degrees of resistance to natural infections. One hundred weaned bulls, initially 11-12 months old, were evaluated and kept on the same pasture. Faecal and blood samples were collected for parasitological and immunological assays. The seven most resistant and the eight most susceptible animals were selected based on nematode faecal egg counts (FEC) and worm burden. Serum was collected to measure antibody titres, and abomasum and abomasal lymph node tissue samples were collected to analyse the expression of a subset of cytokine genes (IL-2, IL-4, IL-8, IL-12p35, IL-13, TNF-alpha, IFN-gamma, MCP-1, MCP-2, MUC-1) using real-time RT-PCR. Mast cells, eosinophils and globule leukocytes in the abomasal mucosa were enumerated, and IgA levels in the mucus were assessed. Gene expression analysis in the abomasal tissue indicated that IL-4 and IL-13 (TH2 cytokines) were up-regulated in the resistant group, whereas TNF-alpha (TH1/TH2 cytokine) was up-regulated in the susceptible group. In abomasal lymph nodes, IL-4 and IFN-gamma were up-regulated in the resistant and susceptible groups, respectively. In the resistant group, serum IgG1 levels were higher against antigens of H. placei infective larvae on days 14, 42, 70 and 84 and against antigens of H. placei adults on day 84 (P<0.05). The resistant group had higher mast cell counts in the abomasal mucosa than the susceptible group (P<0.05). These results indicate a protective TH2-mediated immune response against H. placei in the resistant group and a less protective TH1 response in the susceptible group.
Collapse
Affiliation(s)
- L G Zaros
- Escola Superior de Agricultura Luiz de Queiroz-ESALQ/USP, Departamento de Zootecnia, Laboratório de Biotecnologia Animal, Piracicaba, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
34
|
Gene expression in the digestive tissues of ruminants and their relationships with feeding and digestive processes. Animal 2010; 4:993-1007. [DOI: 10.1017/s1751731109991285] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|