Abstract
Simple Summary
New technologies have been recognized as valuable in controlling, monitoring, and managing farm animal activities. It makes it possible to deepen the knowledge of animal behavior and improve animal welfare and health, which has positive implications for the sustainability of animal production. In recent years, successful technological developments have been applied in intensive farming systems; however, due to challenging conditions that extensive pasture-based systems show, technology has been more limited. Nevertheless, awareness of the available technological solutions for extensive conditions can increase the implementation of their adoption among farmers and researchers. In this context, this review addresses the role of different technologies applied to sheep and goat production in extensive systems. Examples related to precision livestock farming, omics, thermal stress, colostrum intake, passive immunity, and newborn survival are presented; biomarkers of metabolic diseases and parasite resistance breeding are discussed.
Abstract
Sheep and goat extensive production systems are very important in the context of global food security and the use of rangelands that have no alternative agricultural use. In such systems, there are enormous challenges to address. These include, for instance, classical production issues, such as nutrition or reproduction, as well as carbon-efficient systems within the climate-change context. An adequate response to these issues is determinant to economic and environmental sustainability. The answers to such problems need to combine efficiently not only the classical production aspects, but also the increasingly important health, welfare, and environmental aspects in an integrated fashion. The purpose of the study was to review the application of technological developments, in addition to remote-sensing in tandem with other state-of-the-art techniques that could be used within the framework of extensive production systems of sheep and goats and their impact on nutrition, production, and ultimately, the welfare of these species. In addition to precision livestock farming (PLF), these include other relevant technologies, namely omics and other areas of relevance in small-ruminant extensive production: heat stress, colostrum intake, passive immunity, newborn survival, biomarkers of metabolic disease diagnosis, and parasite resistance breeding. This work shows the substantial, dynamic nature of the scientific community to contribute to solutions that make extensive production systems of sheep and goats more sustainable, efficient, and aligned with current concerns with the environment and welfare.
Collapse