1
|
Mandal S, Mondal C, Lyndem LM. Probiotics: an alternative anti-parasite therapy. J Parasit Dis 2024; 48:409-423. [PMID: 39145362 PMCID: PMC11319687 DOI: 10.1007/s12639-024-01680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/27/2024] [Indexed: 08/16/2024] Open
Abstract
This paper review about probiotic effects and mechanism of action against the gut and non-gut helminths and protozoan parasites. Gastrointestinal parasitic infections are considered a serious health problem and are widely distributed globally. The disease process which emanates from this parasite infection provides some of the many public and veterinary health problems in the tropical and sub-tropical countries. Prevention and control of the parasite disease is through antihelmintic and anti-protozoan drugs, but, due to the increasing emergence of such drug resistance, eradication of parasite infestation in human and livestock still lingers a challenge, which requires the development of new alternative strategies. The use of beneficial microorganisms i.e. probiotics is becoming interesting due to their prophylactic application against several diseases including parasite infections. Recent studies on the interactions between probiotics, parasites and host immune cells using animal models and in vitro culture systems has increased considerably and draw much attention, yet the mechanisms of actions mediating the positive effects of these beneficial microorganisms on the hosts remain unexplored. Therefore, the aim of the present review is to summarize the latest findings on the probiotic research against the gut and non-gut parasites of significance.
Collapse
Affiliation(s)
- Sudeshna Mandal
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| | - Chandrani Mondal
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| | - Larisha M. Lyndem
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| |
Collapse
|
2
|
Gómez-Morales MA, Ludovisi A, Amati M, Cherchi S, Tonanzi D, Pozio E. Differentiation of Trichinella species (Trichinella spiralis/Trichinella britovi versus Trichinella pseudospiralis) using western blot. Parasit Vectors 2018; 11:631. [PMID: 30541617 PMCID: PMC6291991 DOI: 10.1186/s13071-018-3244-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichinellosis is a meat-borne zoonotic disease caused by parasites of the genus Trichinella. To date, 12 taxa have been described. The identification of Trichinella species is crucial in order to identify the possible source of infection, the geographical origin of the parasite and to assess risk of infection for domestic pigs and humans. Specific identification of the etiological agent is not always feasible using direct methods since the source of infection can be untraceable. The aim of this study was to develop a diagnostic tool to infer the causative Trichinella species using western blot patterns of sera derived from infected animal and human hosts. METHODS Sera from mice experimentally infected with Trichinella spiralis, Trichinella britovi, Trichinella pseudospiralis and Trichinella papuae were tested by western blot using homologous and heterologous crude worm extracts (CWE) and a highly sensitive detection system based on chemiluminescence. In addition, sera from pigs experimentally infected with T. spiralis, T. britovi and T. pseudospiralis and from patients with confirmed T. spiralis, T. britovi and T. pseudospiralis infections, were also included. RESULTS Sera from mice infected with one Trichinella species reacted with CWE proteins from all four investigated species. Likewise, sera derived from pigs and humans infected with one Trichinella species reacted with CWE proteins from all the three investigated species. Using T. spiralis CWE, sera from T. pseudospiralis-infected hosts yielded a characteristic pattern of reactivity using Wb, which differed to that produced by T. spiralis/T. britovi- or T. papuae-infected host sera. CONCLUSIONS The present study suggests that western blot using T. spiralis CWE may be a useful tool to distinguish Trichinella infections caused by T. pseudospiralis from those caused by T. spiralis or T. britovi. This method may support epidemiological investigations, particularly when the source of infection is not traceable.
Collapse
Affiliation(s)
- Maria Angeles Gómez-Morales
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy.
| | - Alessandra Ludovisi
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Marco Amati
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Simona Cherchi
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Daniele Tonanzi
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Edoardo Pozio
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
3
|
Reda AA. Probiotics for the Control of Helminth Zoonosis. J Vet Med 2018; 2018:4178986. [PMID: 29666821 PMCID: PMC5831688 DOI: 10.1155/2018/4178986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
This paper is a comprehensive, concise, and an up to date review about probiotics effect and mechanisms against helminth infections of zoonotic importance. Zoonoses are diseases that can be transmitted from animals to humans in a reversible way. Despite zoonotic helminth diseases being still a challenge to the public health and the agriculture industries globally, they were still neglected in both human and veterinary medicine. Moreover, the increasing emergence of anthelmintic drug resistance constitutes failures of most disease control strategies, alarming for a quest to new alternative control approaches. Consequently, the use of beneficial microorganisms, probiotics, is becoming interesting for its prophylactic or therapeutic application against several diseases including helminths. Recent studies on probiotics against parasites and the interactions between bacteria, parasites, and the immune system in the gut draw much attention. However, the effects of these beneficial microorganisms in helminth infections remain largely unexplored. Therefore, the aim of the present review is to raise attention and to summarize recent findings on probiotics research against helminth parasites of zoonotic significance. State-of-the-art research on beneficial effects of bacteria on helminth infections and their proposed mechanisms of action is thoroughly discussed.
Collapse
Affiliation(s)
- Abadi Amare Reda
- School of Veterinary Medicine, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| |
Collapse
|
4
|
Dvorožňáková E, Bucková B, Hurníková Z, Revajová V, Lauková A. Effect of probiotic bacteria on phagocytosis and respiratory burst activity of blood polymorphonuclear leukocytes (PMNL) in mice infected with Trichinella spiralis. Vet Parasitol 2016; 231:69-76. [PMID: 27425573 DOI: 10.1016/j.vetpar.2016.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/22/2016] [Accepted: 07/02/2016] [Indexed: 11/30/2022]
Abstract
This study focusses on the effect of probiotic (bacteriocinogenic) strains on parasite infection and innate immunity - phagocytosis and oxidative burst of blood monocytes and polymorphonuclear leukocytes (PMNL) in mice infected with Trichinella spiralis. Bacteriocinogenic and probiotic strains of different origin (Enterococcus faecium AL41=CCM8558, Enterococcus durans ED26E/7, Lactobacillus fermentum AD1=CCM7421, Lactobacillus plantarum 17L/1) were administered daily in dose of 109CFU/ml in 100μl and mice were infected with 400 larvae of T. spiralis on 7th day of treatment. Phagocytic activity of blood leukocytes was inhibited at week 3 and 4 post infection (p.i.), i.e. in the time of massive muscle invasion with larvae T. spiralis. Administration of bacterial strains to mice prior to T. spiralis infection elevated and prolonged phagocytic activity of blood leukocytes and their ingestion capability from week 1 to 3 of the infection and the phagocytosis was inhibited only at week 4 p.i. The highest stimulative effect on phagocytosis was induced by strains E. durans ED26E/7, L. fermentum AD1=CCM7421, and L. plantarum 17L/1. The percentage of cells with respiratory burst and their enzymatic activity was increased after T. spiralis infection with the exception of week 3 p.i. In contrast, in all mice treated with bacterial strains the enzymatic stimulation was observed after the infection, with the highest intensity caused by strains E. durans ED26E/7, L. fermentum AD1=CCM7421 and L. plantarum 17L/1. The administration of probiotic strains stimulated phagocytosis and respiratory burst of blood PMNL that could contribute to a decreased larval migration and a destruction of muscle larvae and then reduced parasite burden in the host. The protective effect against T. spiralis infection was induced by all strains, but the highest reduction was recorded by E. faecium AL41=CCM8558.
Collapse
Affiliation(s)
- Emília Dvorožňáková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia.
| | - Barbora Bucková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
| | - Zuzana Hurníková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
| | - Viera Revajová
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Andrea Lauková
- Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia
| |
Collapse
|
5
|
Li SZ, Zheng H, Abe EM, Yang K, Bergquist R, Qian YJ, Zhang LJ, Xu ZM, Xu J, Guo JG, Xiao N, Zhou XN. Reduction patterns of acute schistosomiasis in the People's Republic of China. PLoS Negl Trop Dis 2014; 8:e2849. [PMID: 24810958 PMCID: PMC4014431 DOI: 10.1371/journal.pntd.0002849] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/27/2014] [Indexed: 12/04/2022] Open
Abstract
Background Despite significant, steady progress in schistosomiasis control in the People's Republic of China over the past 50 years, available data suggest that the disease has re-emerged with several outbreaks of acute infections in the early new century. In response, a new integrated strategy was introduced. Methods This retrospective study was conducted between Jan 2005 and Dec 2012, to explore the effectiveness of a new integrated control strategy that was implemented by the national control program since 2004. Results A total of 1,047 acute cases were recorded between 2005 and 2012, with an annual reduction in prevalence of 97.7%. The proportion of imported cases of schistosomiasis was higher in 2011 and 2012. Nine clusters of acute infections were detected by spatio-temporal analysis between June and November, indicating that the high risk areas located in the lake and marshland regions. Conclusion This study shows that the new integrated strategy has played a key role in reducing the morbidity of schistosomiasis in the People's Republic of China. A retrospective study on the incidence of acute schistosomiasis in the People's Republic of China (P.R. China) was performed, in order to assess the new integrated control strategy that was implemented through the national control program from 2005 to 2012. The lake and marshland regions have been identified as high risk areas as shown by the nine spatio-temporal clusters that we found in the transmission period between June and November each year. When a total of 1,047 reported cases of acute schistosomiasis were analyzed, a reduction in prevalence of 97.7% between 2005 and 2012 was found. In contrast, imported cases of acute schistosomiasis increased between 2011 and 2012. These findings support the approach and effectiveness of the new integrated strategy in the reduction of schistosomiasis morbidity.
Collapse
Affiliation(s)
- Shi-Zhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Hao Zheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Eniola Michael Abe
- Department of Zoology, Federal University Lafia, Lafia, Nasarawa State, Nigeria
| | - Kun Yang
- Jiangsu Institute of Parasitic Diseases, Wuxi, People's Republic of China
| | | | - Ying-Jun Qian
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Li-Juan Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Zhi-Min Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Jing Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Jia-Gang Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Ning Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|