1
|
El Saftawy EA, Aboulhoda BE, Hassan FE, Ismail MAM, Alghamdi MA, Hussein SM, Amin NM. ACV with/without IVM: a new talk on intestinal CDX2 and muscular CD34 and Cyclin D1 during Trichinella spiralis infection. Helminthologia 2024; 61:124-141. [PMID: 39040803 PMCID: PMC11260317 DOI: 10.2478/helm-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 07/24/2024] Open
Abstract
The current study assessed the efficacy of Acyclovir (ACV) and Ivermectin (IVM) as monotherapies and combined treatments for intestinal and muscular stages of Trichinella spiralis infection. One-hundred Swiss albino mice received orally 250 ± 50 infectious larvae and were divided into infected-untreated (Group-1), IVM-treated (Group-2), ACV-treated (Group-3), combined IVM+ACV (Group-4), and healthy controls (Group-5). Each group was subdivided into subgroup-A-enteric phase (10 mice, sacrificed day-7 p.i.) and subgroup-B-muscular phase (10 mice, sacrificed day-35 p.i.). Survival rate and body weight were recorded. Parasite burden and intestinal histopathology were assessed. In addition, immunohistochemical expression of epithelial CDX2 in the intestinal phase and CyclinD1 as well as CD34 in the muscular phase were evaluated. Compared, IVM and ACV monotherapies showed insignificant differences in the amelioration of enteric histopathology, except for lymphocytic counts. In the muscle phase, monotherapies showed variable disruptions in the encapsulated larvae. Compared with monotherapies, the combined treatment performed relatively better improvement of intestinal inflammation and reduction in the enteric and muscular parasite burden. CDX2 and CyclinD1 positively correlated with intestinal inflammation and parasite burden, while CD34 showed a negative correlation. CDX2 positively correlated with CyclinD1. CD34 negatively correlated with CDX2 and CyclinD1. IVM +ACV significantly ameliorated CDX2, CyclinD1, and CD34 expressions compared with monotherapies. Conclusion. T. spiralis infection-associated inflammation induced CDX2 and CyclinD1 expressions, whereas CD34 was reduced. The molecular tumorigenic effect of the nematode remains questionable. Nevertheless, IVM +ACV appeared to be a promising anthelminthic anti-inflammatory combination that, in parallel, rectified CDX2, CyclinD1, and CD34 expressions.
Collapse
Affiliation(s)
- E. A. El Saftawy
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Parasitology Department, Armed Forces College of Medicine, Cairo, Egypt
| | - B. E. Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - F. E. Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza11562, Egypt
- General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah21442, Saudi Arabia
| | - M. A. M. Ismail
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - M. A. Alghamdi
- College of Medicine, King Khalid University, Abha62529, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha62529, Saudi Arabia
| | - S. M. Hussein
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - N. M. Amin
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Pang JD, Jin XM, Liu Y, Dong ZJ, Ding J, Boireau P, Vallée I, Liu MY, Xu N, Liu XL. Trichinella spiralis inhibits myoblast differentiation by targeting SQSTM1/p62 with a secreted E3 ubiquitin ligase. iScience 2024; 27:109102. [PMID: 38380253 PMCID: PMC10877949 DOI: 10.1016/j.isci.2024.109102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/05/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Trichinella spiralis infection is associated with the formation of cysts within host skeletal muscle cells, thereby enabling immune evasion and subsequent growth and development; however, the pathogenic factors involved in this process and their mechanisms remain elusive. Here, we found that Ts-RNF secreted by T. spiralis is required for its growth and development in host cells. Further study revealed that Ts-RNF functions as an E3 ubiquitin ligase that targets the UBA domain of SQSTM1/p62 by forming K63-type ubiquitin chains. This modification interferes with autophagic flux, leading to impaired mitochondrial clearance and abnormal myotube differentiation and fusion. Our results established that T. spiralis increases its escape by interfering with host autophagy via the secretion of an E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Jian da Pang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xue min Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Zi jian Dong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Jing Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Pascal Boireau
- Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale, BIPAR, 94700 Maisons-Alfort, France
| | - Isabelle Vallée
- Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale, BIPAR, 94700 Maisons-Alfort, France
| | - Ming yuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225000, China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xiao lei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
3
|
Liu Y, Liu J, Wang N, You X, Yang Y, Ding J, Liu X, Liu M, Li C, Xu N. Quantitative label-free proteomic analysis of excretory-secretory proteins in different developmental stages of Trichinella spiralis. Vet Res 2024; 55:4. [PMID: 38172978 PMCID: PMC10763447 DOI: 10.1186/s13567-023-01258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Trichinella spiralis (T. spiralis) is a zoonotic parasitic nematode with a unique life cycle, as all developmental stages are contained within a single host. Excretory-secretory (ES) proteins are the main targets of the interactions between T. spiralis and the host at different stages of development and are essential for parasite survival. However, the ES protein profiles of T. spiralis at different developmental stages have not been characterized. The proteomes of ES proteins from different developmental stages, namely, muscle larvae (ML), intestinal infective larvae (IIL), preadult (PA) 6 h, PA 30 h, adult (Ad) 3 days post-infection (dpi) and Ad 6 dpi, were characterized via label-free mass spectrometry analysis in combination with bioinformatics. A total of 1217 proteins were identified from 9341 unique peptides in all developmental stages, 590 of which were quantified and differentially expressed. GO classification and KEGG pathway analysis revealed that these proteins were important for the growth of the larvae and involved in energy metabolism. Moreover, the heat shock cognate 71 kDa protein was the centre of protein interactions at different developmental stages. The results of this study provide comprehensive proteomic data on ES proteins and reveal that these ES proteins were differentially expressed at different developmental stages. Differential proteins are associated with parasite survival and the host immune response and may be potential early diagnostic antigen or antiparasitic vaccine candidates.
Collapse
Affiliation(s)
- Yadong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Juncheng Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Nan Wang
- Jilin Agricultural University, Changchun, 130062, China
| | - Xihuo You
- Beijing Agrichina Pharmaceutical Co., Ltd., Wangzhuang Industrial Park, Airport Road, Shahe, Changping District, Beijing, 102206, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, 6 Xiyuan Road, Puer, Yunnan, China
| | - Jing Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Chen Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
4
|
Yan SW, Zhang R, Guo X, Wang BN, Long SR, Liu RD, Wang ZQ, Cui J. Trichinella spiralis dipeptidyl peptidase 1 suppressed macrophage cytotoxicity by promoting M2 polarization via the STAT6/PPARγ pathway. Vet Res 2023; 54:77. [PMID: 37705099 PMCID: PMC10500742 DOI: 10.1186/s13567-023-01209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023] Open
Abstract
Trichinella spiralis dipeptidyl peptidase 1 (TsDPP1), or cysteine cathepsin C, is a secretory protein that is highly expressed during the infective larvae and adult worm stages in the intestines. The aim of this study was to investigate the mechanism by which recombinant TsDPP1 (rTsDPP1) activates macrophages M2 polarization and decreases macrophage cytotoxicity to kill newborn larvae via ADCC. RAW264.7 macrophages and murine peritoneal macrophages were used in this study. The results of the immunofluorescence test (IFT) and confocal microscopy showed that rTsDPP1 specifically bound to macrophages, and the binding site was localized on the cell membrane. rTsDPP1 activated macrophage M2 polarization, as demonstrated by high expression levels of Arg1 (M2 marker) and M2-related genes (IL-10, TGF-β, CD206 and Arg1) and high numbers of CD206+ macrophages. Furthermore, the expression levels of p-STAT6, STAT6 and PPARγ were obviously increased in rTsDPP1-treated macrophages, which were evidently abrogated by using a STAT6 inhibitor (AS1517499) and PPARγ antagonist (GW9662). The results indicated that rTsDPP1 promoted macrophage M2 polarization through the STAT6/PPARγ pathway. Griess reaction results revealed that rTsDPP1 suppressed LPS-induced NO production in macrophages. qPCR and flow cytometry results showed that rTsDPP1 downregulated the expression of FcγR I (CD64) in macrophages. The ability of ADCC to kill newborn larvae was significantly decreased in rTsDPP1-treated macrophages, but AS1517499 and GW9662 restored its killing capacity. Our results demonstrated that rTsDPP1 induced macrophage M2 polarization, upregulated the expression of anti-inflammatory cytokines, and inhibited macrophage-mediated ADCC via activation of the STAT6/PPARγ pathway, which is beneficial to the parasitism and immune evasion of this nematode.
Collapse
Affiliation(s)
- Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Wang X, Li A, Wang R, Hou T, Chen H, Wang J, Liu M, Li C, Ding J. Lateral flow immunoassay strips based on europium(III) chelate microparticle for the rapid and sensitive detection of Trichinella spiralis infection in whole blood samples of pigs. Front Cell Infect Microbiol 2022; 12:955974. [PMID: 36017365 PMCID: PMC9395740 DOI: 10.3389/fcimb.2022.955974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Trichinellosis is a major food-borne parasitosis caused by ingesting raw or semi-raw meat products from pigs infected with Trichinella spiralis (T. spiralis). Although China is the largest consumer of pork in the world, the current diagnostic method of T. spiralis is exclusively performed in a laboratory setting, due to its complexity and laborious procedure. Here, in order to solve the detection problems in the pig breeding industry, a rapid, sensitive, and on-site serological diagnosis method was developed. The novel lateral flow immunoassay strip (ICS) is based on europium(III) chelate microparticle (ECM) to detect T. spiralis-specific IgG antibody in the serum and whole blood samples from pigs. The structure of the blood-filtering pad and the conjugate pad was added to the ICS, allowing for whole blood samples to be detected and enabling on-site deployment. By comparing the detection results of the serum samples and the whole blood samples, the detection limit of this method was evaluated. Thereafter, this method was used to investigate Trichinella infection in Chongqing, Sichuan, Inner Mongolia, Guangxi, and Liaoning provinces of China, and the results were almost consistent with the standard method of artificial digestion. Taking advantage of its user-friendly procedure, short detection time (3 min), and sensitivity, the ECM-ICS could be employed for monitoring the epidemic of Trichinella infection and ensuring meat safety.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region, Jilin University, Changchun, China
| | - Aizhe Li
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region, Jilin University, Changchun, China
| | - Ruizhe Wang
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region, Jilin University, Changchun, China
| | - Tianji Hou
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region, Jilin University, Changchun, China
| | - Huixin Chen
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region, Jilin University, Changchun, China
| | - Jing Wang
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region, Jilin University, Changchun, China
- Changchun Institute of Biological Products Co., Ltd., Changchun, China
| | - Chen Li
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region, Jilin University, Changchun, China
- *Correspondence: Chen Li, ; Jing Ding,
| | - Jing Ding
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, OIE Collaborating Center on Foodborne Parasites in Asian-Pacific Region, Jilin University, Changchun, China
- *Correspondence: Chen Li, ; Jing Ding,
| |
Collapse
|
6
|
Gao X, Yang Y, Liu X, Xu F, Wang Y, Liu L, Yang Y, Liu M, Bai X. Extracellular vesicles from Trichinella spiralis: Proteomic analysis and protective immunity. PLoS Negl Trop Dis 2022; 16:e0010528. [PMID: 35737719 PMCID: PMC9258885 DOI: 10.1371/journal.pntd.0010528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 07/06/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Trichinella spiralis (T. spiralis) derived extracellular vesicles (EVs) have been proposed to play a key role in regulating the host immune responses. In this study, we provided the first investigation of EVs proteomics released by T. spiralis muscle larvae (ML). T. spiralis ML EVs (Ts-ML-EVs) were successfully isolated and characterized by transmission electron microscopy (TEM) and western blotting. Using liquid chromatograph mass spectrometer (LC-MS/MS) analysis, we identified 753 proteins in the Ts-ML-EVs proteome and annotated by gene ontology (GO). These proteins were enriched in different categories by GO, kyoto encyclopedia of genes and genomes (KEGG) and domain analysis. GO enrichment analysis indicated association of protein deglutathionylation, lysosomal lumen and serine-type endopeptidase inhibitor activity with proteins which may be helpful during parasite-host interaction. Moreover, KEGG enrichment analysis revealed involvement of Ts-ML-EVs proteins in other glycan degradation, complement and coagulation cascades, proteasome and various metabolism pathways. In addition, BALB/c mice were immunized by subcutaneous injection of purified Ts-ML-EVs. Ts-ML-EVs group demonstrated a 23.4% reduction in adult worms and a 43.7% reduction in ML after parasite challenge. Cellular and humoral immune responses induced by Ts-ML-EVs were detected, including the levels of specific antibodies (IgG, IgM, IgE, IgG1 and IgG2a) as well as cytokines (IL-12, IFN-γ, IL-4 and IL-10) in serum. The results showed that Ts-ML-EVs could induce a Th1/Th2 mixed immune response with Th2 predominant. This study revealed a potential role of Ts-ML-EVs in T. spiralis biology, particularly in the interaction with host. This work provided a critical step to against T. spiralis infection based on Ts-ML-EVs. Extracellular vesicles (EVs) play an important role in cell-cell communication. They can transport functional molecules to target tissues and cells. During parasite infection, EVs provide suitable diagnostic makers and vaccine antigens for as well as inducing host immune responses. In Trichinella spiralis (T. spiralis), we previous proved that Ts-ML-EVs exerted immunomodulatory effect that inhibited experimental colitis in mice. Based on these results, we tested the protein composition of Ts-ML-EVs and the immune protective effect of Ts-ML-EVs. Our study showed that Ts-ML-EVs contained a number of immune-related proteins and it could be potential vaccine antigen for preventing T. spiralis infection.
Collapse
Affiliation(s)
- Xin Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fengyan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, Puer, Yunnan, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (ML); (XB)
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (ML); (XB)
| |
Collapse
|
7
|
Li J, Ding J, Liu XL, Tang B, Bai X, Wang Y, Qiao WD, Liu MY, Wang XL. Upconverting phosphor technology-based lateral flow assay for the rapid and sensitive detection of anti-Trichinella spiralis IgG antibodies in pig serum. Parasit Vectors 2021; 14:487. [PMID: 34551787 PMCID: PMC8456594 DOI: 10.1186/s13071-021-04949-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/12/2021] [Indexed: 01/31/2023] Open
Abstract
Background Trichinella spiralis is a zoonotic food-borne parasite. A disease caused by infection with T. spiralis is called trichinellosis in humans. It is important to investigate the epidemic situation and the surveillance of herds and then prevent infection in humans. Therefore, this study is to develop a rapid and sensitive diagnostic method for on-site test in domestic and wild animals. Methods Upconverting phosphor nanoparticles (UCNPs), an excellent optical label, were conjugated with the excretory-secretory (ES) antigens from T. spiralis muscle larvae (ML) or goat anti-rabbit IgG, and a lateral flow (LF) assay based on these probes (UCNPs-ES/goat anti-rabbit IgG) was developed for the rapid and sensitive detection of anti-T. spiralis IgG antibodies in pig serum. The assay is named the UPT-LF-ES assay. In addition, the probes were characterized, and the assay was optimized. A cut-off threshold of the assay was also identified by using 169 known negative pig samples. Performance of the assay to T. spiralis with different infective numbers, cross-reactivity with other parasitic infections, the single-blinded experiment, and coincidence were evaluated with the assay. Results The UPT-LF-ES assay was successfully constructed and optimized based on the probes of UCNPs-ES/goat anti-rabbit IgG. In the pigs infected with 100, 1000, and 10,000 ML, positive results were first presented at 35 days post-infection (dpi), 30 dpi, and 25 dpi, respectively. The assay had no cross-reaction with other parasitic infections. A single-blinded experiment indicated that the sensitivity and specificity of the UPT-LF-ES assay were 100% and 100%, respectively, the area under the receiver operating characteristic (ROC) curve was 1.000. In addition, the value detected by the UPT-LF-ES assay was significantly different between positive and negative samples. Moreover, compared with the “gold standard” magnetic stirrer method, the coincidence rate of the UPT-LF-ES assay was 87.27%, and the kappa (K) coefficient was 0.7454, showing a substantial agreement. Conclusions The UPT-LF-ES assay is a useful point-of-care test (POCT) with T. spiralis in the detection of pig, which contributes to preventing human trichinellosis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04949-2.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Xiao-Lei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Yang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Wei-Dong Qiao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Ming-Yuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Xue-Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China.
| |
Collapse
|
8
|
Monzón-Nomdedeu MB, Morten KJ, Oltra E. Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome. World J Stem Cells 2021; 13:1134-1150. [PMID: 34567431 PMCID: PMC8422931 DOI: 10.4252/wjsc.v13.i8.1134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are devastating metabolic neuroimmune diseases that are difficult to diagnose because of the presence of numerous symptoms and a lack of specific biomarkers. Despite patient heterogeneity linked to patient subgroups and variation in disease severity, anomalies are found in the blood and plasma of these patients when compared with healthy control groups. The seeming specificity of these “plasma factors”, as recently reported by Ron Davis and his group at Stanford University, CA, United States, and observations by our group, have led to the proposal that induced pluripotent stem cells (iPSCs) may be used as metabolic sensors for FM and ME/CFS, a hypothesis that is the basis for this in-depth review.
AIM To identify metabolic signatures in FM and/or ME/CFS supporting the existence of disease-associated plasma factors to be sensed by iPSCs.
METHODS A PRISMA (Preferred Reported Items for Systematic Reviews and Meta-analysis)-based systematic review of the literature was used to select original studies evaluating the metabolite profiles of FM and ME/CFS body fluids. The MeSH terms “metabolomic” or “metabolites” in combination with FM and ME/CFS disease terms were screened against the PubMed database. Only original studies applying omics technologies, published in English, were included. The data obtained were tabulated according to the disease and type of body fluid analyzed. Coincidences across studies were searched and P-values reported by the original studies were gathered to document significant differences found in the disease groups.
RESULTS Eighteen previous studies show that some metabolites are commonly altered in ME/CFS and FM body fluids. In vitro cell-based assays have the potential to be developed as screening platforms, providing evidence for the existence of factors in patient body fluids capable of altering morphology, differentiation state and/or growth patterns. Moreover, they can be further developed using approaches aimed at blocking or reversing the effects of specific plasma/serum factors seen in patients. The documented high sensitivity and effective responses of iPSCs to environmental cues suggests that these pluripotent cells could form robust, reproducible reporter systems of metabolic diseases, including ME/CFS and FM. Furthermore, culturing iPSCs, or their mesenchymal stem cell counterparts, in patient-conditioned medium may provide valuable information to predict individual outcomes to stem-cell therapy in the context of precision medicine studies.
CONCLUSION This opinion review explains our hypothesis that iPSCs could be developed as a screening platform to provide evidence of a metabolic imbalance in FM and ME/CFS.
Collapse
Affiliation(s)
- María B Monzón-Nomdedeu
- School of Biotechnology, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain
| | - Karl J Morten
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Elisa Oltra
- Department of Pathology, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain
| |
Collapse
|
9
|
Wang X, Tang B, Zhao Y, Ding J, Wang N, Liu Y, Dong Z, Sun X, Xu Q, Liu M, Liu X. Development of a rapid and sensitive immunochromatographic strip based on EuNPs-ES fluorescent probe for the detection of early Trichinella spiralis-specific IgG antibody in pigs. Vet Res 2021; 52:85. [PMID: 34116710 PMCID: PMC8196438 DOI: 10.1186/s13567-021-00951-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023] Open
Abstract
Trichinellosis, which is caused by nematodes of the genus Trichinella, is one of the most important zoonotic parasite diseases in the world. A rapid and sensitive immunochromatographic strip (ICS) based on Eu (III) nanoparticles (EuNPs) was developed for the detection of Trichinella spiralis (T. spiralis) infection in pigs. T. spiralis muscle larvae excretory secretory or preadult worm excretory secretory (ML-ES or PAW-ES) antigens were conjugated with EuNPs probes to capture T. spiralis-specific antibodies in pig sera, after which the complex bound to mouse anti-pig IgG deposited on the test line (T-line), producing a fluorescent signal. In the pigs infected with 100, 1000 and 10 000 ML, seroconversion was first detectable for the EuNPs-ML-ES ICS at 30, 25 and 21 days post-infection (dpi) and for the EuNPs-PAW-ES ICS at 25, 21 and 17 dpi. These results show that EuNPs-PAW-ES ICS detects anti-Trichinella IgG in pigs 4–5 days earlier that test using ML-ES antigens. Our ICS have no cross reaction with other parasite infection sera. Furthermore, the detection process could be completed in 10 min. This study indicated that our ICS can be used for the detection of the circulating antibodies in early T. spiralis infection and provide a novel method for on-site detection of T. spiralis infection in pigs.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ying Zhao
- Department of Nephrology, First Hospital of Jilin University, Changchun, 130021, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Nan Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zijian Dong
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiangdong Sun
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Quangang Xu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
10
|
Hu X, Liu X, Bai X, Yang L, Ding J, Jin X, Li C, Zhang Y, Li Y, Yang Y, Liu M. Effects of Trichinella spiralis and its excretory/secretory products on autophagy of host muscle cells in vivo and in vitro. PLoS Negl Trop Dis 2021; 15:e0009040. [PMID: 33600403 PMCID: PMC7891764 DOI: 10.1371/journal.pntd.0009040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Trichinella spiralis (T. spiralis) is a widely distributed pathogenic microorganism that causes trichinellosis, a disease that has the potential of causing severe harm to their host. Numerous studies have demonstrated that autophagy can be triggered by microbial infection, such as bacteria, viruses, protozoa, and parasitic helminths. However, it’s still unknown whether autophagy can facilitate host resistance to T. spiralis infection. The present study examined the role of autophagy in striated muscle cell transformation following infection with T. spiralis in BALB/c mice. Transmission electron microscopy (TEM) was used to detect the production of the host diaphragm autophagosome after T. spiralis infection, and changes in the protein and transcriptional levels of autophagic marker proteins were also detected. The significance of autophagy in T. spiralis infection, namely inhibition of T. spiralis growth, was preliminarily evaluated by conducting in vivo experiments using autophagy inhibitors. Besides, we studied the effect of excretory-secretory products (ES) of T. spiralis on autophagy of C2C12 myoblasts. The changes in protein and gene expression levels in autophagy-related pathways in vitro and in vivo were measured as further evidence. The results showed that T. spiralis infection induced autophagy in the host muscle cells. Meanwhile, ES inhibited autophagy of myoblasts in vitro, but this did not affect the cell viability. The upregulation and downregulation of autophagy-related factors in skeletal muscle cells may indicate an adaptive mechanism providing a comfortable niche for the parasite. Autophagy, a intracellular degradation system, is a kind of unique phenomenon in eukaryotic cells. The commonly referred autophagy is the process of forming autophagosomes by wrapping the cytoplasmic components with double-membrane structure, and then fusing with lysosomes to degrade the internal substances of the cell. Autophagy can be induced by various pathogens including parasites. When the body is infected with intracellular parasites, the host cell can remove the parasites by autophagy. However, parasites have also evolved defence mechanisms that use autophagy in host cells to promote growth. These can be seen in some intracellular parasitic infections such as Toxoplasma gondii and Plasmodium. Although the role of autophagy in other parasitic infections has been revealed, it remains unclear whether autophagy is involved in the invasion process by Trichinella. We investigated the role of Trichinella infection on host muscle cells autophagy and the effect of autophagosome formation on the survival of T. spiralis. Understanding the role of autophagy in the interaction between parasitic infection and host cell is of great significance for the prevention and treatment of Trichinella infection and the development of anti-parasite drugs.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuemin Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chen Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yulu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanfeng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (YY); (ML)
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (YY); (ML)
| |
Collapse
|
11
|
Wu Z, Nagano I, Khueangchiangkhwang S, Maekawa Y. Proteomics of Trichinella. TRICHINELLA AND TRICHINELLOSIS 2021:103-183. [DOI: 10.1016/b978-0-12-821209-7.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Glutathione-S-transferase omega 1 and nurse cell formation during experimental Trichinella infection. Vet Parasitol 2020; 297:109114. [PMID: 32386865 DOI: 10.1016/j.vetpar.2020.109114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/15/2023]
Abstract
The glutathione-S-transferases omega (GSTO) are multifunctional enzymes involved in cellular defense. During the nurse cell (NC) formation in Trichinella spiralis infection, the structural and regulatory genes of the skeletal muscle cell are downregulated and a new phenotype is acquired which advances parasite growth and survival. Previous studies showed that the GSTO1 is overexpressed in the NC during T. spiralis infection. To clarify the role of GSTO1 during NC formation, we evaluated the production of this enzyme by immunohistochemistry (IHC) in the diaphragms of mice experimentally infected with T. spiralis at 15, 28 and 60 days post infection (dpi); phosphorylation of Akt (p-Akt) and JNK1 (p-JNK1) were also evaluated. Furthermore, we evaluated the in vitro effects of T. spiralis excretory/secretory (ES) products from muscle larvae on specific functions (viability, proliferative response, apoptosis) in two cell lines (HeLa and U937), as well as its ability to induce GSTO1, p-AkT, p-ERK1/2 and p-JNK1. Results showed that GSTO1 was elevated in NC present in the diaphragms of T. spiralis experimentally infected mice at 15 dpi and progressively increased up to 60 dpi. The activation pattern of Akt in NC was similar to that of GSTO1, whereas JNK1 was never phosphorylated. ES induced a dose-dependent proliferative response in U937 cells, at 24 h and 48 h of treatment, but not in HeLa cells. However, after 72 h following treatment, significant cell death was observed in both cell lines at all doses. The apoptotic index (a.i.) was significantly higher than in untreated cells in both cell lines but only at the highest concentration of ES tested. Furthermore, Western Blots revealed that cells treated with ES for 24, 48 and 72 h, exhibited time-dependent overexpression of GSTO1, whereas p-Akt appeared only after 24 h of treatment. The p-ERK-1/2 peaked at 24 h then declined at 48 h and 72 h after treatment; however, it remained significantly higher than in untreated cells. No changes were observed in p-JNK1 at 24 and 48 h after treatment but a sharp increase in p-JNK1 was observed at 72 h. Also in HeLa cells, ES induced a small but significant increase in GSTO1 expression after 24 and 48 h of treatment where p-JNK1 was present only after 72 h of treatment. In conclusion, T. spiralis ES can reproduce in vitro the modifications observed inside the NC during experimental infection in mice.
Collapse
|
13
|
Wang N, Bai X, Ding J, Lin J, Zhu H, Luo X, Fu Z, Zhu C, Jia H, Liu M, Liu X. Trichinella infectivity and antibody response in experimentally infected pigs. Vet Parasitol 2020; 297:109111. [PMID: 32334888 DOI: 10.1016/j.vetpar.2020.109111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/26/2022]
Abstract
The objective of the present study was to investigate the infectivity and antibody response of four Trichinella species (Trichinella spiralis, Trichinella britovi, Trichinella pseudospiralis and Trichinella murrelli) in experimentally infected pigs. A total of 120 Large White pigs (30 animals per group) were inoculated with 10,000 muscle larvae (ML) of T. spiralis, T. britovi, T. pseudospiralis, and T. murrelli. The pigs were sacrificed at 12-21 days post-infection (dpi) to examine the viability and infectivity of ML. A total of 54 Large White pigs (6 animals per group) were inoculated with 25, 50, 100, 200, 400, 600, 800, 1000 and 10,000 T. spiralis ML. The pigs were sacrificed, and the average numbers of larvae per gram (lpg) from six different muscle tissues were calculated at 120 dpi. The results showed that the larvae first be detectable for T. spiralis, T. britovi, and T. pseudospiralis at 16 dpi, 17 dpi, and 16 dpi, respectively. Viable larvae and average lpg were significantly increased with time from 17 to 21 dpi. The T. spiralis ML burden was dependent of the inoculation dose with an average lpg of 0.003, 0.005, 0.007, 0.17, 0.82, 2.89, 4.90, 28.30 and 226.18, respectively. The IgG antibody response was dose-dependent to generate and increased throughout the experimental period. And the IgG1 isotype was significantly higher than IgG2a, which meant that T. spiralis infection induced the Th2 immune response. The time of detecting IgM antibodies was significantly earlier than IgG antibody detection. These results provide important information in the primary characterization of pigs infected with Trichinella.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, China
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, China
| | - Chuangang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China.
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China.
| |
Collapse
|