1
|
Shanley HT, Taki AC, Byrne JJ, Nguyen N, Wells TNC, Jabbar A, Sleebs BE, Gasser RB. A phenotypic screen of the Global Health Priority Box identifies an insecticide with anthelmintic activity. Parasit Vectors 2024; 17:131. [PMID: 38486232 PMCID: PMC10938758 DOI: 10.1186/s13071-024-06183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Infection with parasitic nematodes (helminths), particularly those of the order Strongylida (such as Haemonchus contortus), can cause significant and burdensome diseases in humans and animals. Widespread drug (anthelmintic) resistance in livestock parasites, the absence of vaccines against most of these nematodes, and a lack of new and effective chemical entities on the commercial market demands the discovery of new anthelmintics. In the present study, we searched the Global Health Priority Box (Medicines for Malaria Venture) for new candidates for anthelmintic development. METHODS We employed a whole-organism, motility-based phenotypic screening assay to identify compounds from the Global Health Priority Box with activity against larvae of the model parasite H. contortus, and the free-living comparator nematode Caenorhabditis elegans. Hit compounds were further validated via dose-response assays, with lead candidates then assessed for nematocidal activity against H. contortus adult worms, and additionally, for cytotoxic and mitotoxic effects on human hepatoma (HepG2) cells. RESULTS The primary screen against H. contortus and C. elegans revealed or reidentified 16 hit compounds; further validation established MMV1794206, otherwise known as 'flufenerim', as a significant inhibitor of H. contortus larval motility (half-maximal inhibitory concentration [IC50] = 18 μM) and development (IC50 = 1.2 μM), H. contortus adult female motility (100% after 12 h of incubation) and C. elegans larval motility (IC50 = 0.22 μM). Further testing on a mammalian cell line (human hepatoma HepG2 cells), however, identified flufenerim to be both cytotoxic (half-maximal cytotoxic concentration [CC50] < 0.7 μM) and mitotoxic (half-maximal mitotoxic concentration [MC50] < 0.7 μM). CONCLUSIONS The in vitro efficacy of MMV1794206 against the most pathogenic stages of H. contortus, as well as the free-living C. elegans, suggests the potential for development as a broad-spectrum anthelmintic compound; however, the high toxicity towards mammalian cells presents a significant hindrance. Further work should seek to establish the protein-drug interactions of MMV1794206 in a nematode model, to unravel the mechanism of action, in addition to an advanced structure-activity relationship investigation to optimise anthelmintic activity and eliminate mammalian cell toxicity.
Collapse
Affiliation(s)
- Harrison T Shanley
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nghi Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Tim N C Wells
- Medicines for Malaria Venture (MMV), 1215, Geneva, Switzerland
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brad E Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
2
|
Anthelmintic Agents from African Medicinal Plants: Review and Prospects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8023866. [PMID: 36624864 PMCID: PMC9825222 DOI: 10.1155/2022/8023866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 01/02/2023]
Abstract
Soil-transmitted helminthiasis affects more than 1.5 billion people globally and largely remains a sanitary problem in Africa. These infections place a huge economic burden on poor countries and affect livestock production, causing substantial economic losses and poor animal health. The emergence of anthelmintic resistance, especially in livestock, and the potential for its widespread in humans create a need for the development of alternative therapies. Medicinal plants play a significant role in the management of parasitic diseases in humans and livestock, especially in Africa. This report reviews anthelmintic studies that have been conducted on medicinal plants growing in Africa and published within the past two decades. A search was made in various electronic databases, and only full articles in English were included in the review. Reports show that aqueous and hydroalcoholic extracts and polar fractions obtained from these crude extracts form the predominant (80%) form of the extracts studied. Medicinal plants, extracts, and compounds with different chemical groups have been studied for their anthelmintic potential. Polyphenols and terpenoids are the most reported groups. More than 64% of the studies employed in vitro assays against parasitic and nonparasitic nematode models. Egg hatch inhibition, larval migration inhibition, and paralysis are the common parameters assessed in vitro. About 72% of in vivo models involved small ruminants, 15% rodents, and 5% chicken. Egg and worm burden are the main factors assessed in vivo. There were no reports on interventions in humans cited within the period under consideration. Also, few reports have investigated the potential of combining plant extracts with common anthelmintic drugs. This review reveals the huge potential of African medicinal plants as sources of anthelmintic agents and the dire need for in-depth clinical studies of extracts, fractions, and compounds from African plants as anthelmintic agents in livestock, companion animals, and humans.
Collapse
|
3
|
Tchetan E, Ortiz S, Olounladé PA, Hughes K, Laurent P, Azando EVB, Hounzangbe-Adote SM, Gbaguidi FA, Quetin-Leclercq J. Fractionation Coupled to Molecular Networking: Towards Identification of Anthelmintic Molecules in Terminalia leiocarpa (DC.) Baill. Molecules 2022; 28:76. [PMID: 36615275 PMCID: PMC9822243 DOI: 10.3390/molecules28010076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Terminalia leiocarpa is a medicinal plant widely used in ethnoveterinary medicine to treat digestive parasitosis whose extracts were shown to be active against gastrointestinal nematodes of domestic ruminants. The objective of our study was to identify compounds responsible for this activity. Column fractionation was performed, and the activity of the fractions was assessed in vitro on Haemonchus contortus and Caenorhabditis elegans as well as their cytotoxicity on WI38 fibroblasts. Two fractions were the most active on both nematode models and less cytotoxic. LC-MS/MS analysis and manual dereplication coupled to molecular networking allowed identification of the main compounds: ellagic acid and derivatives, gallic acid, astragalin, rutin, quinic acid, and fructose. Other potentially identified compounds such as shikimic acid, 2,3-(S)-hexahydroxydiphenoyl-D-glucose or an isomer, quercetin-3-O-(6-O-galloyl)-β-D-galactopyranoside or an isomer, and a trihydroxylated triterpenoid bearing a sugar as rosamultin are reported in this plant for the first time. Evaluation of the anthelmintic activity of the available major compounds showed that ellagic and gallic acids were the most effective in inhibiting the viability of C. elegans. Their quantification in fractions 8 and 9 indicated the presence of about 8.6 and 7.1 µg/mg ellagic acid and about 9.6 and 2.0 µg/mg gallic acid respectively. These concentrations are not sufficient to justify the activity observed. Ellagic acid derivatives and other compounds that were found to be positively correlated with the anthelmintic activity of the fractions may have additive or synergistic effects when combined, but other unidentified compounds could also be implicated in the observed activity.
Collapse
Affiliation(s)
- Esaïe Tchetan
- Laboratoire d’Ethnopharmacologie et de Santé Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
- Laboratoire de Biotechnologie et d’Amélioration Animale, Faculté des Sciences Agronomiques, Institut des Sciences Biomédicales Appliquées (ISBA), Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
- Laboratoire de Chimie Organique et Chimie Pharmaceutique, UFR Pharmacie, Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou 01 BP 188, Benin
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Avenue E. Mounier, 72, B1.72.03, B-1200 Brussels, Belgium
| | - Sergio Ortiz
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Avenue E. Mounier, 72, B1.72.03, B-1200 Brussels, Belgium
- UMR CNRS Laboratoire d’Innovation Thérapeutique (LIT) 7200, Faculté de Pharmacie, Université de Strasbourg, 74 Rte du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Pascal Abiodoun Olounladé
- Unité de Recherche en Zootechnie et Système d’Elevage (EGESE), Laboratoire des Sciences Animale et Halieutique (LaSAH), Ecole de Gestion et d’Exploitation des Sytèmes d’Elevage (EGESE), Université Nationale d’Agriculture (UNA), Porto-Novo 01 BP 55, Benin
| | - Kristelle Hughes
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Avenue E. Mounier, 72, B1.72.03, B-1200 Brussels, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 808 route de Lennik, CP601, 1070 Brussels, Belgium
| | - Erick Virgile Bertrand Azando
- Laboratoire d’Ethnopharmacologie et de Santé Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
- Laboratoire de Biotechnologie et d’Amélioration Animale, Faculté des Sciences Agronomiques, Institut des Sciences Biomédicales Appliquées (ISBA), Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
- Laboratoire d’Écologie, de Santé et de Productions Animales, Département des Sciences et Techniques de Production Animale et Halieutique (DSTPAH), Faculté d’Agronomie (FA), Université de Parakou (UP), Cotonou 01 BP 2115, Benin
| | - Sylvie Mawule Hounzangbe-Adote
- Laboratoire d’Ethnopharmacologie et de Santé Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Fernand Ahokanou Gbaguidi
- Laboratoire de Chimie Organique et Chimie Pharmaceutique, UFR Pharmacie, Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou 01 BP 188, Benin
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Avenue E. Mounier, 72, B1.72.03, B-1200 Brussels, Belgium
| |
Collapse
|
4
|
Tchetan E, Olounladé PA, Azando EVB, Khaliq HA, Ortiz S, Houngbeme A, Alowanou GG, Koura BI, Akouedegni GC, Houinato MRB, Hounzangbe-Adote SM, Gbaguidi FA, Quetin-Leclercq J. Anthelmintic Activity, Cytotoxicity, and Phytochemical Screening of Plants Used to Treat Digestive Parasitosis of Small Ruminants in Benin (West Africa). Animals (Basel) 2022; 12:2718. [PMID: 36230464 PMCID: PMC9559262 DOI: 10.3390/ani12192718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Medicinal plants continue to be used alone or in combination with veterinary drugs to treat animal ailments, especially in developing countries where livestock farmers often lack access to modern veterinary services and drugs. In addition, digestive parasitosis remain a major constraint for small ruminant livestock. The objective of this study was to screen the anthelmintic activity of the main plants used in the treatment of the digestive parasitosis of small ruminants in Benin. A total of 40 extracts were prepared using the successive maceration of 10 plants in four solvents of increasing polarity. The phytochemical screening of the plants was performed, and the anthelmintic activity of the extracts was evaluated on L3 larvae of Haemonchus contortus. The cytotoxicity of the 40 extracts was determined on WI38 noncancerous fibroblast cells using the MTT assay, and the total phenol content (TPC), total flavonoid content (TFC), and condensed tannin content (CTC) were quantified in the most effective extracts using colorimetric methods. The results show that the plants contained tannins, flavonoids, and triterpenoids which may, in part, justify their anthelmintic activities. All plants gave active extracts at the highest concentration tested (1200 µg/mL). Methanol (MeOH) extracts were, in general, more effective than the hexane (HEX), dichloromethane (DCM), and aqueous (H2O) ones in inhibiting larval migration, with the MeOH extracts of Terminalia leiocarpa, Adansonia digitata, and Momordica charantia being the most effective. Nevertheless, the MeOH extract of M. charantia was highly cytotoxic at the concentration of 100 µg/mL. The anthelmintic activity of M. charantia, Vitex doniana, and Caesalpinia bonduc was studied on H. contortus for the first time. These results provide scientific information that can be used for better valorization of the anthelmintic potential of the studied plants and to initiate the process of the identification of new anthelmintic molecules.
Collapse
Affiliation(s)
- Esaïe Tchetan
- Laboratoire d’Ethnopharmacologie et de Santé Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
- Laboratoire de Biotechnologie et d’Amélioration Animale, Faculté des Sciences Agronomiques, Institut des Sciences Biomédicales Appliquées (ISBA), Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
- Laboratoire de Chimie Organique et Chimie Pharmaceutique, UFR Pharmacie, Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou 01 BP 188, Benin
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Avenue E. Mounier, B1.72.03, B-1200 Brussels, Belgium
| | - Pascal Abiodoun Olounladé
- Laboratoire d’Ethnopharmacologie et de Santé Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
- Laboratoire de Biotechnologie et d’Amélioration Animale, Faculté des Sciences Agronomiques, Institut des Sciences Biomédicales Appliquées (ISBA), Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
- Unité de Recherche en Zootechnie et Système d’Elevage (URZoSE), Laboratoire des Sciences Animale et Halieutique (LaSAH), Ecole de Gestion et d’Exploitation des Systèmes d’Elevage (EGESE), Université Nationale d’Agriculture (UNA), Porto-Novo 01 BP 55, Benin
| | - Erick Virgile Bertrand Azando
- Laboratoire d’Ethnopharmacologie et de Santé Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
- Laboratoire de Biotechnologie et d’Amélioration Animale, Faculté des Sciences Agronomiques, Institut des Sciences Biomédicales Appliquées (ISBA), Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
- Laboratoire d’Écologie, de Santé et de Productions Animales, Département des Sciences et Techniques de Production Animale et Halieutique, Faculté d’Agronomie, Université de Parakou, Cotonou 01 BP 2115, Benin
| | - Hafiz Abdul Khaliq
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Avenue E. Mounier, B1.72.03, B-1200 Brussels, Belgium
| | - Sergio Ortiz
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Avenue E. Mounier, B1.72.03, B-1200 Brussels, Belgium
| | - Alban Houngbeme
- Laboratoire de Chimie Organique et Chimie Pharmaceutique, UFR Pharmacie, Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou 01 BP 188, Benin
| | - Géorcelin Goué Alowanou
- Laboratoire d’Ethnopharmacologie et de Santé Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
- Laboratoire des Recherches Pluridisciplinaires de l’Enseignement Technique, Ecole Normale Supérieure de l’Enseignement Technique, Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques, Abomey BP 2282, Benin
| | - Bossima Ivan Koura
- Ecole de Gestion et d’Exploitation des Systèmes d’Elevage, Université Nationale d’Agriculture, Kétou BP 43, Benin
| | - Guénolé Coovi Akouedegni
- Laboratoire d’Ethnopharmacologie et de Santé Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Marcel Romuald Benjamin Houinato
- Ecole des Sciences et Techniques de Production Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Abomey-Calavi 01 BP 526, Benin
| | - Sylvie Mawule Hounzangbe-Adote
- Laboratoire d’Ethnopharmacologie et de Santé Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Fernand Ahokanou Gbaguidi
- Laboratoire de Chimie Organique et Chimie Pharmaceutique, UFR Pharmacie, Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou 01 BP 188, Benin
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Avenue E. Mounier, B1.72.03, B-1200 Brussels, Belgium
| |
Collapse
|
5
|
Munguía B, Saldaña J, Nieves M, Melian ME, Ferrer M, Teixeira R, Porcal W, Manta E, Domínguez L. Sensitivity of Haemonchus contortus to anthelmintics using different in vitro screening assays: a comparative study. Parasit Vectors 2022; 15:129. [PMID: 35413885 PMCID: PMC9006605 DOI: 10.1186/s13071-022-05253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helminthiasis and resistance to commercial anthelmintic compounds are major causes of economic losses for livestock producers, resulting in an urgent need for new drugs and reliable in vitro screening tests capable of detecting potentially active products. Considering this, a series of novel benzimidazole derivatives (5-methylbenzimidazole 1,2-disubstituted, 5-carboxybenzimidazole, 5-methylbenzimidazole 2-one) was screened on exsheathed L3 (xL3) and on the adult stage of Haemonchus contortus (Kirby anthelmintic-susceptible McMaster isolate). METHODS This work presents the set-up of an automated motility assay on the xL3 stage of H. contortus using an infrared tracking device (WMicrotracker One) together with a larval development test (xL3 to L4) and a motility assay on the adult stage of H. contortus. A comparative study of the sensitivity of these in vitro assays using commercial anthelmintics with different mechanisms of action was carried out, also evaluating anthelmintic activity of a series of novel benzimidazole derivatives. RESULTS The automated xL3 assay had the great advantage of being able to analyze many compounds simultaneously, but it showed the limitation of having lower sensitivity, requiring higher concentrations of the commercial anthelmintics tested compared to those needed for the adult motility or development assays. Although none of the novel 1,2,5-tri-substituted benzimidazole derivatives could significantly decrease the motility of xL3s, one of them (1e) significantly affected the development of xL3s to L4, and five new compounds (1b, 1d, 1e, 2a and 2c) reduced the motility of H. contortus adult stage. CONCLUSIONS The analysis of the results strongly suggests that the in vitro xL3 to L4 development test, particularly for the L4 stage, could be closer to the pharmacological sensitivity of the adult stage of H. contortus (target of interest) for commercial anthelmintic selected, with different mechanisms of action, and for the series of benzimidazole derivatives assayed. Therefore, an automated motility assay on L4 using the infrared tracking device is being set up. Further studies will be conducted to evaluate the in vivo anthelmintic activity of the most active novel benzimidazole derivatives.
Collapse
Affiliation(s)
- Beatriz Munguía
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Jenny Saldaña
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Magdalena Nieves
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - María Elisa Melian
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Manuela Ferrer
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Ramiro Teixeira
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Williams Porcal
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Eduardo Manta
- Departamento de Química Orgánica, Facultad de Química, Laboratorio de Química Farmacéutica, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Laura Domínguez
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay.
| |
Collapse
|
6
|
A High-Throughput Phenotypic Screen of the 'Pandemic Response Box' Identifies a Quinoline Derivative with Significant Anthelmintic Activity. Pharmaceuticals (Basel) 2022; 15:ph15020257. [PMID: 35215369 PMCID: PMC8874578 DOI: 10.3390/ph15020257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Parasitic nematodes cause diseases in livestock animals and major economic losses to the agricultural industry worldwide. Nematodes of the order Strongylida, including Haemonchus contortus, are particularly important. The excessive use of anthelmintic compounds to treat infections and disease has led to widespread resistance to these compounds in nematodes, such that there is a need for new anthelmintics with distinctive mechanisms of action. With a focus on discovering new anthelmintic entities, we screened 400 chemically diverse compounds within the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) for activity against H. contortus and its free-living relative, Caenorhabditis elegans-a model organism. Using established phenotypic assays, test compounds were evaluated in vitro for their ability to inhibit the motility and/or development of H. contortus and C. elegans. Dose-response evaluations identified a compound, MMV1581032, that significantly the motility of H. contortus larvae (IC50 = 3.4 ± 1.1 μM) and young adults of C. elegans (IC50 = 7.1 ± 4.6 μM), and the development of H. contortus larvae (IC50 = 2.2 ± 0.7 μM). The favourable characteristics of MMV1581032, such as suitable physicochemical properties and an efficient, cost-effective pathway to analogue synthesis, indicates a promising candidate for further evaluation as a nematocide. Future work will focus on a structure-activity relationship investigation of this chemical scaffold, a toxicity assessment of potent analogues and a mechanism/mode of action investigation.
Collapse
|
7
|
Nguyen LT, Zajíčková M, Mašátová E, Matoušková P, Skálová L. The ATP bioluminescence assay: a new application and optimization for viability testing in the parasitic nematode Haemonchus contortus. Vet Res 2021; 52:124. [PMID: 34593042 PMCID: PMC8482649 DOI: 10.1186/s13567-021-00980-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
The parasitic gastrointestinal nematode Haemonchus contortus causes serious economic losses to agriculture due to infection and disease in small ruminant livestock. The development of new therapies requires appropriate viability testing, with methods nowadays relying on larval motility or development using procedures that involve microscopy. None of the existing biochemical methods, however, are performed in adults, the target stage of the anthelmintic compounds. Here we present a new test for the viability of H. contortus adults and exsheathed third-stage larvae which is based on a bioluminescent assay of ATP content normalized to total protein concentration measured using bicinchoninic acid. All the procedure steps were optimized to achieve maximal sensitivity and robustness. This novel method can be used as a complementary assay for the phenotypic screening of new compounds with potential antinematode activity in exsheathed third-stage larvae and in adult males. Additionally, it might be used for the detection of drug-resistant isolates.
Collapse
Affiliation(s)
- Linh Thuy Nguyen
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Markéta Zajíčková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Eva Mašátová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
8
|
Herath HMPD, Taki AC, Sleebs BE, Hofmann A, Nguyen N, Preston S, Davis RA, Jabbar A, Gasser RB. Advances in the discovery and development of anthelmintics by harnessing natural product scaffolds. ADVANCES IN PARASITOLOGY 2021; 111:203-251. [PMID: 33482975 DOI: 10.1016/bs.apar.2020.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Widespread resistance to currently-used anthelmintics represents a major obstacle to controlling parasitic nematodes of livestock animals. Given the reliance on anthelmintics in many control regimens, there is a need for the continued discovery and development of new nematocides. Enabling such a focus are: (i) the major chemical diversity of natural products; (ii) the availability of curated, drug-like extract-, fraction- and/or compound-libraries from natural sources; (iii) the utility and practicality of well-established whole-worm bioassays for Haemonchus contortus-an important parasitic nematodes of livestock-to screen natural product libraries; and (iv) the availability of advanced chromatographic (HPLC), spectroscopic (NMR) and spectrometric (MS) techniques for bioassay-guided fractionation and structural elucidation. This context provides a sound basis for the identification and characterisation of anthelmintic candidates from natural sources. This chapter provides a background on the importance and impact of helminth infections/diseases, parasite control and aspects of drug discovery, and reviews recent work focused on (i) screening well-defined compound libraries to establish the methods needed for large-scale screening of natural extract libraries; (ii) discovering plant and marine extracts with nematocidal or nematostatic activity, and purifying bioactive compounds and assessing their potential for further development; and (iii) synthesising analogues of selected purified natural compounds for the identification of possible 'lead' candidates. The chapter describes some lessons learned from this work and proposes future areas of focus for drug discovery. Collectively, the findings from this recent work show potential for selected natural product scaffolds as candidates for future development. Developing such candidates via future chemical optimisation, efficacy and safety evaluations, broad spectrum activity assessments, and target identification represents an exciting prospect and, if successful, could pave the way to subsequent pre-clinical and clinical evaluations.
Collapse
Affiliation(s)
- H M P Dilrukshi Herath
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Aya C Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Nghi Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia; Faculty of Science and Technology, Federation University, Ballarat, Victoria, Australia
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
9
|
Huxley C, Wibowo M, Lum KY, Gordon S, D'Hyon S, Guan H, Wang X, Chen Y, Si M, Wang M, White JM, Wahi K, Wang Q, Holst J, Davis RA. Synthesis of bilocularin A carbamate derivatives and their evaluation as leucine transport inhibitors in prostate cancer cells. PHYTOCHEMISTRY 2020; 179:112478. [PMID: 32805621 DOI: 10.1016/j.phytochem.2020.112478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Large-scale extraction of the leaves of the Australian rainforest tree Maytenus bilocularis followed by extensive purification studies afforded the targeted and abundant dihydro-β-agarofuran, bilocularin A, in sufficient quantities (>500 mg) for detailed semi-synthetic chemistry. Eight bilocularin A carbamate analogues were synthesised using a series of commercially available isocyanate reagents in high purity (>95%) and variable yields (9-91%). All previously undescribed analogues were spectroscopically characterised using NMR, UV, IR and MS data. One compound afforded crystalline material and subsequent single crystal X-ray analysis (Cu-Kα) confirmed the chemical structure along with the absolute configuration. All compounds were evaluated for anti-proliferative activity against the human prostate cancer cell line LNCaP; none of the compounds showed significant (>50%) growth inhibition at 20 μM. Compounds were also tested for their ability to inhibit leucine transport in LNCaP cells, and two analogues showed moderate activity with IC50 values of 8.9 and 8.5 μM. This is the first reported synthesis of dihydro-β-agarofuran carbamate derivatives.
Collapse
Affiliation(s)
- Cohan Huxley
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Mario Wibowo
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Kah Yean Lum
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Shelly Gordon
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Sebastian D'Hyon
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Hanyu Guan
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Xueyi Wang
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Yuxi Chen
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Mingran Si
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Mengchao Wang
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Jonathan M White
- School of Chemistry and Bio 21 Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kanu Wahi
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qian Wang
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jeff Holst
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
10
|
Partridge FA, Forman R, Bataille CJR, Wynne GM, Nick M, Russell AJ, Else KJ, Sattelle DB. Anthelmintic drug discovery: target identification, screening methods and the role of open science. Beilstein J Org Chem 2020; 16:1203-1224. [PMID: 32550933 PMCID: PMC7277699 DOI: 10.3762/bjoc.16.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Helminths, including cestodes, nematodes and trematodes, are a huge global health burden, infecting hundreds of millions of people. In many cases, existing drugs such as benzimidazoles, diethylcarbamazine, ivermectin and praziquantel are insufficiently efficacious, contraindicated in some populations, or at risk of the development of resistance, thereby impeding progress towards World Health Organization goals to control or eliminate these neglected tropical diseases. However, there has been limited recent progress in developing new drugs for these diseases due to lack of commercial attractiveness, leading to the introduction of novel, more efficient models for drug innovation that attempt to reduce the cost of research and development. Open science aims to achieve this by encouraging collaboration and the sharing of data and resources between organisations. In this review we discuss how open science has been applied to anthelmintic drug discovery. Open resources, including genomic information from many parasites, are enabling the identification of targets for new antiparasitic agents. Phenotypic screening remains important, and there has been much progress in open-source systems for compound screening with parasites, including motility assays but also high content assays with more detailed investigation of helminth physiology. Distributed open science compound screening programs, such as the Medicines for Malaria Venture Pathogen Box, have been successful at facilitating screening in diverse assays against many different parasite pathogens and models. Of the compounds identified so far in these screens, tolfenpyrad, a repurposed insecticide, shows significant promise and there has been much progress in creating more potent and selective derivatives. This work exemplifies how open science approaches can catalyse drug discovery against neglected diseases.
Collapse
Affiliation(s)
- Frederick A Partridge
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Ruth Forman
- The Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Carole J R Bataille
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA United Kingdom
| | - Graham M Wynne
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA United Kingdom
| | - Marina Nick
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Angela J Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA United Kingdom
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Kathryn J Else
- The Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
11
|
Liu M, Panda SK, Luyten W. Plant-Based Natural Products for the Discovery and Development of Novel Anthelmintics against Nematodes. Biomolecules 2020; 10:biom10030426. [PMID: 32182910 PMCID: PMC7175113 DOI: 10.3390/biom10030426] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Intestinal parasitic nematodes infect approximately two billion people worldwide. In the absence of vaccines for human intestinal nematodes, control of infections currently relies mainly on chemotherapy, but resistance is an increasing problem. Thus, there is an urgent need for the discovery and development of new anthelmintic drugs, especially ones with novel mechanisms of action. Medicinal plants hold great promise as a source of effective treatments, including anthelmintic therapy. They have been used traditionally for centuries and are mostly safe (if not, their toxicity is well-known). However, in most medicinal plants the compounds active against nematodes have not been identified thus far. The free-living nematode C. elegans was demonstrated to be an excellent model system for the discovery of new anthelmintics and for characterizing their mechanism of action or resistance. The compounds discussed in this review are of botanical origin and were published since 2002. Most of them need further studies of their toxicity, mechanisms and structure-activity relationship to assess more fully their potential as drugs.
Collapse
|
12
|
An appraisal of natural products active against parasitic nematodes of animals. Parasit Vectors 2019; 12:306. [PMID: 31208455 PMCID: PMC6580475 DOI: 10.1186/s13071-019-3537-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/27/2019] [Indexed: 12/28/2022] Open
Abstract
Here, the scientific and patent literature on the activities of purified natural compounds has been reviewed, with the aim of assessing their suitability as anthelmintic drug discovery starting points. Only compounds described as active against parasitic nematodes of animals or against the model nematode Caenorhabditis elegans have been analysed. Scientific articles published since 2010 and patents granted from 2000, both inclusive, have been included in this analysis. The results show a scarcity of novel chemical structures, a limited follow-up of compounds disclosed before 2010 and a bias towards the screening of plant products, almost to the exclusion of other sources, when microbial extracts have, historically, provided most starting points for anti-infective drugs. All plant products published in this period were previously known, alerting to the high re-discovery rates of a limited number of chemical classes from this source. The most promising compounds described in the literature reviewed here, namely the linear nemadectin-derivatives, are novel and of bacterial origin. Patented but otherwise unpublished spiroketal structures also appear as interesting scaffolds for future development. The patent literature confirmed that it is possible to patent derivatives of previously known products, making them valid starting points for translational research.
Collapse
|
13
|
Nguyen LT, Kurz T, Preston S, Brueckmann H, Lungerich B, Herath HMPD, Koehler AV, Wang T, Skálová L, Jabbar A, Gasser RB. Phenotypic screening of the 'Kurz-box' of chemicals identifies two compounds (BLK127 and HBK4) with anthelmintic activity in vitro against parasitic larval stages of Haemonchus contortus. Parasit Vectors 2019; 12:191. [PMID: 31039802 PMCID: PMC6492431 DOI: 10.1186/s13071-019-3426-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Due to anthelmintic resistance problems, there is a need to discover and develop new drugs for the treatment and control of economically important and pathogenic nematodes of livestock animals. With this focus in mind, we screened 236 compounds from a library (called the ‘Kurz-box’) representing chemically diverse classes such as heterocyclic compounds (e.g. thiazoles, pyrroles, quinolines, pyrimidines, benzo[1,4]diazepines), hydoxamic acid-based metalloenzyme inhibitors, peptidomimetics (bis- and tris-pyrimidoneamides, alkoxyamides) and various intermediates on Haemonchus contortus, one of the most important parasitic nematodes of ruminants. Methods In the present study, we tested these compounds, and measured the inhibition of larval motility and development of exsheathed third-stage (xL3) and fourth-stage (L4) larvae of H. contortus using an optimised, whole-organism phenotypic screening assay. Results Of the 236 compounds, we identified two active compounds (called BLK127 and HBK4) that induced marked phenotypic changes in the worm in vitro. Compound BLK127 induced an ‘eviscerated’ phenotype in the xL3 stage and also inhibited L4 development. Compound HBK4 exerted a ‘curved’ phenotype in both xL3s and L4s. Conclusions The findings from this study provide a basis for future work on the chemical optimisation of these compounds, on assessing the activity of optimised compounds on adult stages of H. contortus both in vitro and in vivo (in the host animal) and against other parasitic worms of veterinary and medical importance. Electronic supplementary material The online version of this article (10.1186/s13071-019-3426-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linh Thuy Nguyen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Preston
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Faculty of Science and Technology, Federation University, Ballarat, VIC, Australia
| | - Hjoerdis Brueckmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Beate Lungerich
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - H M P Dilrukshi Herath
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
14
|
Wibowo M, Forster PI, Guymer GP, Hofmann A, Davis RA. Using UHPLC-MS Profiling for the Discovery of New Dihydro-β-Agarofurans from Australian Celastraceae Plant Extracts. Molecules 2019; 24:molecules24050859. [PMID: 30823439 PMCID: PMC6429220 DOI: 10.3390/molecules24050859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
An analytical method using UHPLC-MS was developed and applied to 16 crude CH2Cl2 extracts from Australian Celastraceae plants; the endemic plant materials were accessed from Griffith University’s NatureBank resource and included bark, fruit, leaf, root, twig and mixed samples, all of which were collected from Queensland, Australia. The generated UHPLC-MS data were analysed and dereplicated using the scientific databases Dictionary of Natural Products and SciFinder Scholar in order to potentially identify new dihydro-β-agarofurans from local Celastraceae plants. These investigations led to the large-scale extraction and isolation work on a prioritised fruit sample that belonged to the rainforest plant Denhamia celastroides. Chemical investigations resulted in the purification of four new natural products, denhaminols O–R (1–4), along with the related and known compound, denhaminol G (5). The structures of all the new compounds were determined via detailed analysis of NMR and MS data.
Collapse
Affiliation(s)
- Mario Wibowo
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Paul I Forster
- Queensland Herbarium, Brisbane Botanic Gardens, Toowong, QLD 4066, Australia.
| | - Gordon P Guymer
- Queensland Herbarium, Brisbane Botanic Gardens, Toowong, QLD 4066, Australia.
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
15
|
Herath HMPD, Preston S, Jabbar A, Garcia-Bustos J, Addison RS, Hayes S, Rali T, Wang T, Koehler AV, Chang BCH, Hofmann A, Davis RA, Gasser RB. Selected α-pyrones from the plants Cryptocarya novoguineensis (Lauraceae) and Piper methysticum (Piperaceae) with activity against Haemonchus contortus in vitro. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 9:72-79. [PMID: 30739078 PMCID: PMC6369141 DOI: 10.1016/j.ijpddr.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/06/2018] [Accepted: 12/29/2018] [Indexed: 12/21/2022]
Abstract
Due to the widespread occurrence and spread of anthelmintic resistance, there is a need to develop new drugs against resistant parasitic nematodes of livestock animals. The Nobel Prize-winning discovery and development of the anti-parasitic drugs avermectin and artemisinin has renewed the interest in exploring natural products as anthelmintics. In the present study, we screened 7500 plant extracts for in vitro-activity against the barber's pole worm, Haemonchus contortus, a highly significant pathogen of ruminants. The anthelmintic extracts from two plants, Cryptocarya novoguineensis and Piper methysticum, were fractionated by high-performance liquid chromatography (HPLC). Subsequently, compounds were purified from fractions with significant biological activity. Four α-pyrones, namely goniothalamin (GNT), dihydrokavain (DHK), desmethoxyyangonin (DMY) and yangonin (YGN), were purified from fractions from the two plants, GNT from C. novoguineensis, and DHK, DMY and YGN (= kavalactones) from P. methysticum. The three kavalactones induced a lethal, eviscerated (Evi) phenotype in treated exsheathed third-stage larvae (xL3s), and DMY and YGN had moderate potencies (IC50 values of 31.7 ± 0.23 μM and 23.7 ± 2.05 μM, respectively) at inhibiting the development of xL3s to fourth-stage larvae (L4s). Although GNT had limited potency (IC50 of 200–300 μM) at inhibiting L4 development, it was the only compound that reduced L4 motility (IC50 of 6.25–12.50 μM). The compounds purified from each plant affected H. contortus in an irreversible manner. These findings suggest that structure-activity relationship studies of α-pyrones should be pursued to assess their potential as anthelmintics. 7500 plant extracts were screened against Haemonchus for anthelmintic activity. Three of these extracts were potent inhibitors of larval motility and/or development. Pure α-pyrones isolated from active fractions exhibited significant nematocidal activity.
Collapse
Affiliation(s)
- H M P Dilrukshi Herath
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Faculty of Science and Technology, Federation University, Ballarat, Victoria 3350, Australia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jose Garcia-Bustos
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Russell S Addison
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Sasha Hayes
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Topul Rali
- School of Natural & Physical Sciences, The University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
| | - Tao Wang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C H Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
16
|
Arylpyrrole and fipronil analogues that inhibit the motility and/or development of Haemonchus contortus in vitro. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:379-385. [PMID: 30081296 PMCID: PMC6083343 DOI: 10.1016/j.ijpddr.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/31/2018] [Accepted: 06/03/2018] [Indexed: 11/23/2022]
Abstract
Due to widespread drug resistance in parasitic nematodes, there is a need to develop new anthelmintics. Given the cost and time involved in developing a new drug, the repurposing of known chemicals can be a promising, alternative approach. In this context, we tested a library (n = 600) of natural product-inspired pesticide analogues against exsheathed third stage-larvae (xL3s) of Haemonchus contortus (barber's pole worm) using a whole-organism, phenotypic screening technique that measures the inhibition of motility and development in treated larvae. In the primary screen, we identified 32 active analogues derived from chemical scaffolds of arylpyrrole or fipronil. The seven most promising compounds, selected based on their anthelmintic activity and/or limited cytotoxicity, are arylpyrroles that reduced the motility of fourth-stage larvae (L4s) with significant potency (IC50 values ranged from 0.04 ± 0.01 μM to 4.25 ± 0.82 μM, and selectivity indices ranged from 10.6 to 412.5). Since the parent structures of the active compounds are uncouplers of oxidative phosphorylation, we tested the effect of selected analogues on oxygen consumption in xL3s using the Seahorse XF24 flux analyser. Larvae treated with the test compounds showed a significant increase in oxygen consumption compared with the untreated control, demonstrating their uncoupling activity. Overall, the results of the present study have identified natural product-derived molecules that are worth considering for chemical optimisation as anthelmintic drug leads. Pesticide analogues were assessed for anthelmintic activity. Inhibition of motility and development of larval stages of Haemonchus contortus. Uncoupling of oxidative phosphorylation in larvae.
Collapse
|