1
|
Gonçalves AAM, Ribeiro AJ, Resende CAA, Couto CAP, Gandra IB, Dos Santos Barcelos IC, da Silva JO, Machado JM, Silva KA, Silva LS, Dos Santos M, da Silva Lopes L, de Faria MT, Pereira SP, Xavier SR, Aragão MM, Candida-Puma MA, de Oliveira ICM, Souza AA, Nogueira LM, da Paz MC, Coelho EAF, Giunchetti RC, de Freitas SM, Chávez-Fumagalli MA, Nagem RAP, Galdino AS. Recombinant multiepitope proteins expressed in Escherichia coli cells and their potential for immunodiagnosis. Microb Cell Fact 2024; 23:145. [PMID: 38778337 PMCID: PMC11110257 DOI: 10.1186/s12934-024-02418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Recombinant multiepitope proteins (RMPs) are a promising alternative for application in diagnostic tests and, given their wide application in the most diverse diseases, this review article aims to survey the use of these antigens for diagnosis, as well as discuss the main points surrounding these antigens. RMPs usually consisting of linear, immunodominant, and phylogenetically conserved epitopes, has been applied in the experimental diagnosis of various human and animal diseases, such as leishmaniasis, brucellosis, cysticercosis, Chagas disease, hepatitis, leptospirosis, leprosy, filariasis, schistosomiasis, dengue, and COVID-19. The synthetic genes for these epitopes are joined to code a single RMP, either with spacers or fused, with different biochemical properties. The epitopes' high density within the RMPs contributes to a high degree of sensitivity and specificity. The RMPs can also sidestep the need for multiple peptide synthesis or multiple recombinant proteins, reducing costs and enhancing the standardization conditions for immunoassays. Methods such as bioinformatics and circular dichroism have been widely applied in the development of new RMPs, helping to guide their construction and better understand their structure. Several RMPs have been expressed, mainly using the Escherichia coli expression system, highlighting the importance of these cells in the biotechnological field. In fact, technological advances in this area, offering a wide range of different strains to be used, make these cells the most widely used expression platform. RMPs have been experimentally used to diagnose a broad range of illnesses in the laboratory, suggesting they could also be useful for accurate diagnoses commercially. On this point, the RMP method offers a tempting substitute for the production of promising antigens used to assemble commercial diagnostic kits.
Collapse
Affiliation(s)
- Ana Alice Maia Gonçalves
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Anna Julia Ribeiro
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carlos Ananias Aparecido Resende
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carolina Alves Petit Couto
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isadora Braga Gandra
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isabelle Caroline Dos Santos Barcelos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Jonatas Oliveira da Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Juliana Martins Machado
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Kamila Alves Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Líria Souza Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Michelli Dos Santos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Lucas da Silva Lopes
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Teixeira de Faria
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sabrina Paula Pereira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sandra Rodrigues Xavier
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Matheus Motta Aragão
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Mayron Antonio Candida-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | | | - Amanda Araujo Souza
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Lais Moreira Nogueira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Campos da Paz
- Bioactives and Nanobiotechnology Laboratory, Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Postgraduate Program in Health Sciences, Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, National Institute of Science and Technology on Tropical Diseases (INCT-DT), Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Sonia Maria de Freitas
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | - Ronaldo Alves Pinto Nagem
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil.
| |
Collapse
|
2
|
Olías-Molero AI, Corral MJ, Jiménez-Antón MD, Alunda JM. Early antibody response and clinical outcome in experimental canine leishmaniasis. Sci Rep 2019; 9:18606. [PMID: 31819140 PMCID: PMC6901516 DOI: 10.1038/s41598-019-55087-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/23/2019] [Indexed: 12/03/2022] Open
Abstract
Infected dogs are the main reservoir of zoonotic visceral leishmaniasis, a widespread parasitic disease caused by Leishmania infantum. Therefore, the control of canine infections is required to reduce the incidence of human cases. Disease outcome in dogs depends on the fine balance between parasite virulence and efficacy of the immune system. Thus, knowledge of early response could yield relevant information for diagnosis and follow-up. In our study, 20 Beagle dogs were intravenously infected with 108 amastigotes of a fresh isolate of L. infantum and monitored along 16 weeks post inoculation. Specific antibody response and clinical evolution of infected animals were highly variable. Immunofluorescence antibody test (IFAT) and enzyme linked immunosorbent assay (ELISA) were useful to assess infection status, although only ELISA with promastigote-coated plates and, particularly, western blotting (WB) allowed an early diagnosis. Prominent antigens were identified by mass peptide fingerprinting. Chaperonin HSP60, 32 and 30 KDa antigens were recognized by all dogs on week 10 post infection. This suggests that these antigens may be valuable for early diagnosis. Advanced infection showed, in addition, reactivity to HSP83 and HSP70. Disease outcome did not show a clear relationship with ELISA or IFAT titers. Correlation between the clinical status and the combined reactivity to some antigens sustains their use for diagnosis and follow-up.
Collapse
Affiliation(s)
- Ana Isabel Olías-Molero
- Department of Animal Health, Faculty of Veterinary Medicine, Group ICPVet, Complutense University of Madrid (UCM), Avda. Puerta de Hierro s/n, 28040, Madrid, Spain.,Research Institute Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041, Madrid, Spain
| | - María J Corral
- Department of Animal Health, Faculty of Veterinary Medicine, Group ICPVet, Complutense University of Madrid (UCM), Avda. Puerta de Hierro s/n, 28040, Madrid, Spain.,Research Institute Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041, Madrid, Spain
| | - María Dolores Jiménez-Antón
- Department of Animal Health, Faculty of Veterinary Medicine, Group ICPVet, Complutense University of Madrid (UCM), Avda. Puerta de Hierro s/n, 28040, Madrid, Spain.,Research Institute Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041, Madrid, Spain
| | - José Mª Alunda
- Department of Animal Health, Faculty of Veterinary Medicine, Group ICPVet, Complutense University of Madrid (UCM), Avda. Puerta de Hierro s/n, 28040, Madrid, Spain. .,Research Institute Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
3
|
Alves AF, Pereira RA, de Andrade HM, Mosser DM, Tafuri WL. Immunohistochemical study of renal fibropoiesis associated with dogs naturally and experimentally infected with two different strains of Leishmania (L.) infantum. Int J Exp Pathol 2019; 100:222-233. [PMID: 31696580 DOI: 10.1111/iep.12321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 03/13/2019] [Accepted: 04/22/2019] [Indexed: 01/07/2023] Open
Abstract
The objectives of this work were to study some pathological aspects of kidneys obtained from dogs naturally infected with Leishmania infantum and from dogs experimentally infected with two different strains of L infantum with special emphasis on fibrotic process. Seventy eight specimens of paraffin-embedded kidney fragments were collected as follows: (a) CNI group composed by 62 kidney samples of adult mongrel dogs, naturally infected with L infantum; (b) BH401 group composed by five kidney samples of adult Beagles experimentally infected with L infantum strain MCAN BR/2002/BH401; (c) BH400 group composed by eleven kidney samples of adult Beagles experimentally infected with L infantum strain MCAN/BR/2000/BH400, at the same dose and same route of the previous group, denominated group BH400; Control group (CC) composed by four kidney samples of adult Beagles. All animals revealed glomerular and interstitial fibropoiesis associated with different types of glomerulonephritis and chronic interstitial nephritis. Fibrosis was markedly more intense in the BH401 group, followed by animals in the CNI group. Markers for myofibroblasts (mesenchymal markers) such as alpha-actin (α-SMA), vimentin and the cytokine transforming growth factor beta (TGF-β) were done by immunohistochemistry. BH401 group showed higher expression of all these markers than others. Intracellular amastigotes forms of Leishmania was mainly found in BH401. These results could be indicating that the MCAN/BR/2002/BH401 strain is a good choice for the study of renal LVC experimental model.
Collapse
Affiliation(s)
- Adriano F Alves
- Depto. de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ramon A Pereira
- Depto. de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helida M de Andrade
- Depto. de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland
| | - Wagner L Tafuri
- Depto. de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Recombinant Cysteine Proteinase B from Leishmania braziliensis and Its Domains: Promising Antigens for Serodiagnosis of Cutaneous and Visceral Leishmaniasis in Dogs. J Clin Microbiol 2019; 57:JCM.00819-19. [PMID: 31434727 DOI: 10.1128/jcm.00819-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/09/2019] [Indexed: 01/02/2023] Open
Abstract
Leishmaniasis represents a group of parasitic diseases caused by a protozoan of the genus Leishmania and is widely distributed in tropical and subtropical regions. Leishmaniasis is one of the major tropical neglected diseases, with 1.5 to 2 million new cases occurring annually. Diagnosis remains a challenge despite advances in parasitological, serological, and molecular methods. Dogs are an important host for the parasite and develop both visceral and cutaneous lesions. Our goal was to contribute to the diagnosis of canine cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL) using the recombinant cysteine proteinase B (F-CPB) from Leishmania braziliensis and its N- and C-terminal domains (N-CPB and C-CPB) as antigens in an enzyme-linked immunosorbent assay (ELISA). Sera from dogs from Northwest Argentina diagnosed with CL were tested by ELISA against a supernatant of L. braziliensis lysate, the F-CPB protein, and its domains. We found values of sensitivity (Se) of 90.7%, 94.4%, and 94.3% and specificity (Sp) of 95.5%, 90.9%, and 91.3% for F-CPB and its N- and C-terminal domains, respectively. In sera from dogs diagnosed with VL from Northeast Argentina, we found Se of 93.3%, 73.3%, and 66.7% and Sp of 92.3%, 76.9%, and 88.5% for F-CPB and its N- and C-terminal domains, respectively. These results support CPB as a relevant antigen for canine leishmaniasis diagnosis in its different clinical presentations. More interestingly, the amino acid sequence of CPB showed high percentages of identity in several Leishmania species, suggesting that the CPB from L. braziliensis qualifies as a good antigen for the diagnosis of leishmaniasis caused by different species.
Collapse
|
5
|
Fonseca THS, Faria AR, Leite HM, da Silveira JAG, Carneiro CM, Andrade HM. Chemiluminescent ELISA with multi-epitope proteins to improve the diagnosis of canine visceral leishmaniasis. Vet J 2019; 253:105387. [PMID: 31685139 DOI: 10.1016/j.tvjl.2019.105387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022]
Abstract
Diagnosing canine visceral leishmaniasis (CVL) is difficult because clinical signs of the disease are non-specific and a many infected animals in endemic areas, as in Brazil, are asymptomatic. Serological tests are the most common diagnostic methods employed, but most have limitations. For this reason, the implementation of a rapid, sensitive, and specific diagnostic test for CVL has become increasingly important. In this study, we adapted a chemiluminescent enzyme-linked immunosorbent assay (CL ELISA), using two multi-epitope recombinant proteins (PQ10 and PQ20) and a crude Leishmania antigen produced using promastigotes of L. infantum, as antigens to detect CVL infection in animals from Belo Horizonte. To investigate cross-reactions, samples from dogs with other infections (babesiosis, ehrlichiosis and Trypanosoma cruzi) were tested. Assay performance validations were conducted to analyse parameters such as variability, reproducibility, and stability. CL ELISA sensitivity/specificity with PQ10 antigen was 93.1%/80.0%; with the PQ20 protein 93.1%/96.6%; and with the crude antigen 75%/73.3%. Inter-assay variability and inter-operator coefficient of variation were <7% and <15%, with PQ10 and PQ20, respectively. The accuracy of the CL ELISA was classified as excellent for PQ10 (AUC = 0.95) and PQ20 (AUC = 0.98) and moderate for the crude antigen (AUC = 0.77). The kappa score for qualitative agreement between two plate lots was excellent for PQ10 (0.89) and good for PQ20 (0.65). PQ20 remained more stable than PQ10. The CL ELISA with recombinant proteins is a promising tool to diagnose CVL.
Collapse
Affiliation(s)
- T H S Fonseca
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - A R Faria
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - H M Leite
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - J A G da Silveira
- Laboratório de Protozoologia Veterinária, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - C M Carneiro
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - H M Andrade
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Machado JM, Costa LE, Dias DS, Ribeiro PAF, Martins VT, Lage DP, Carvalho GB, Franklin ML, Tavares GSV, Oliveira-da-Silva JA, Machado AS, Ramos LS, Nogueira LM, Mariano RMS, Moura HB, Silva ES, Teixeira-Neto RG, Campos-da-Paz M, Galdino AS, Coelho EAF. Diagnostic markers selected by immunoproteomics and phage display applied for the serodiagnosis of canine leishmaniosis. Res Vet Sci 2019; 126:4-8. [PMID: 31415928 DOI: 10.1016/j.rvsc.2019.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/30/2019] [Accepted: 08/04/2019] [Indexed: 11/24/2022]
Abstract
Canine leishmaniosis (CanL) is one of the most important parasitic diseases found in several countries worldwide. Dogs are considered important domestic reservoirs of the parasites, being relevant in the maintenance of transmission cycle of the disease between sandflies and humans. However, the prevalence of asymptomatic infection is considerably higher than that of apparent clinical illness in the infected animals; thus making promptly necessary to diagnose the infection in these animals, which could help to allow to the adoption of more efficient control measures against disease. Parasitological tests, which are considered as gold standard to demonstrate the infection and diagnose the disease, present problems related with their sensitivity. Also, the sample´s collect is considered invasive. As consequence, serological tests could be applied as an additional tool to detect the asymptomatic and symptomatic CanL. For this purpose, distinct recombinant antigens have been studied; however, problems in their sensitivity and/or specificity have been still registered. The present review focus in advances in the identification of new diagnostic targets applied for the CanL diagnose, represented here by recombinant single, combined or chimeric proteins, as well as by peptides that mimic epitopes (mimotopes); which were selected by means of immunoproteomics and phage display.
Collapse
Affiliation(s)
- Juliana M Machado
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Lourena E Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Daniel S Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Patricia A F Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Gerusa B Carvalho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Michelle L Franklin
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Luana S Ramos
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Lais M Nogueira
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Reysla M S Mariano
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Henrique B Moura
- Infectious Parasitic Diseases Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Eduardo S Silva
- Infectious Parasitic Diseases Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Rafael G Teixeira-Neto
- Infectious Parasitic Diseases Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Mariana Campos-da-Paz
- Nanobiotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Alexsandro S Galdino
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Teixeira AIP, Silva DM, Vital T, Nitz N, de Carvalho BC, Hecht M, Oliveira D, Oliveira E, Rabello A, Romero GAS. Improving the reference standard for the diagnosis of canine visceral leishmaniasis: a challenge for current and future tests. Mem Inst Oswaldo Cruz 2019; 114:e180452. [PMID: 30726343 PMCID: PMC6358009 DOI: 10.1590/0074-02760180452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Studies aimed at validating canine visceral leishmaniasis diagnostic tests present heterogeneous results regarding test accuracy, partly due to divergences in reference standards used and different infection evolution periods in animals. OBJECTIVE This study aimed to evaluate the accuracy of the rapid test-dual path platform (TR-DPP) (Biomanguinhos®), EIE-Leishmaniose-Visceral-Canina-Biomanguinhos (EIE-LVC) (Biomanguinhos®), enzyme-linked immunosorbent assay (ELISA) rK39 (in-house), and the direct agglutination test (DAT-Canis) against a reference standard comprising parasitological and molecular techniques. METHODS A phase II/III validation study was carried out in sample sera from 123 predominantly asymptomatic dogs living in an area endemic for visceral leishmaniasis. FINDINGS Sixty-nine (56.1%) animals were considered infected according to the reference standard. For each test, the sensitivity and specificity, respectively, were as follows: TR-DPP, 21.74% [confidence interval (CI)95% 13.64% to 32.82%] and 92.59% (CI95% 82.45% to 97.08%); EIE-LVC, 11.59% (CI95% 5.9% to 21.25%) and 90.74% (CI95% 80.09% to 95.98%); ELISA rK39, 37.68% (CI95% 27.18% to 49.48%) and 83.33% (CI95% 71.26% to 90.98%); and DAT-Canis, 18.84% (CI95% 11.35% to 29.61%) and 96.30% (CI95% 87.46% to 98.98%). CONCLUSION We concluded that improving the sensitivity of serum testing for diagnosing asymptomatic dogs must constitute a priority in the process of developing new diagnostic tests to be used in the visceral leishmaniasis control program in Brazil.
Collapse
Affiliation(s)
| | | | - Tamires Vital
- Universidade de Brasília, Núcleo de Medicina Tropical, Brasília, DF, Brasil
- Universidade de Brasília, Faculdade de Medicina, Laboratório Interdisciplinar de Biociências, Brasília, DF, Brasil
| | - Nadjar Nitz
- Universidade de Brasília, Faculdade de Medicina, Laboratório Interdisciplinar de Biociências, Brasília, DF, Brasil
| | | | - Mariana Hecht
- Universidade de Brasília, Faculdade de Medicina, Laboratório Interdisciplinar de Biociências, Brasília, DF, Brasil
| | - Diana Oliveira
- Grupo de Pesquisas Clínicas e Políticas Públicas em Doenças Infecciosas e Parasitárias, Belo Horizonte, MG, Brasil
| | - Edward Oliveira
- Grupo de Pesquisas Clínicas e Políticas Públicas em Doenças Infecciosas e Parasitárias, Belo Horizonte, MG, Brasil
| | - Ana Rabello
- Grupo de Pesquisas Clínicas e Políticas Públicas em Doenças Infecciosas e Parasitárias, Belo Horizonte, MG, Brasil
| | | |
Collapse
|
8
|
Canine visceral leishmaniasis: Detection of Leishmania spp. genome in peripheral blood of seropositive dogs by real-time polymerase chain reaction (rt-PCR). Microb Pathog 2018; 126:263-268. [PMID: 30419342 DOI: 10.1016/j.micpath.2018.10.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/20/2022]
Abstract
Visceral leishmaniasis (VL) is a zoonosis caused by the protozoa of the genus Leishmania. Among the species, L. infantum and/or L. infantum (chagasi) are the most important species affecting the Americas. Domestic dogs are the main reservoir of the parasite and participate effectively in the parasite' transmission cycle. The Canine Visceral Leishmaniasis Control Program (PCLV) adopted in Brazil present as strategies the vector control, health education and serological diagnosis of CVL in dogs followed by culling of the seropositive ones. The resolution to eliminate seropositive dogs by euthanasia, when necessary, are the most controversial and least accepted by society. The diagnostic methods for canine visceral leishmaniasis, currently indicated and approved in Brazil by the Ministry of Health from Brazil are the Dual Path Platform (DPP)® as a screening test and the Enzyme immunoassay test (ELISA®). This study aimed to verify the presence of Leishmania spp. DNA in peripheral blood samples of dogs presenting positive serological results byDPP® and ELISA® tests,throughreal-time polymerase chain reaction (rt-PCR), using the pair of primers 150-152 already described. For this purpose, were collected blood samples from 185 seropositive dogs among them, 41 (22%) exhibited some clinical signal of disease, whereas 144 (78%) was asymptomatic. The animals were also analyzed according to gender, race and hair size. According to the results of rt-PCR, it was observed that among the185 seropositive dogs analyzed, only 132 (71%) presented positive results for CVL and 53 (29%) presented negative results. From this, 41/41 symptomatic dogs were positive (100%), while among the asymptomatic dogs, 91/144 were positive (63, 2%) and 53/144 were negative (36, 8%). Concerning the hair size of seropositive dogs, we found that 41 (22%) had long hair, while 144 (78%) had short hair. No statistical significance occurred between the results of rt-PCR, ELISA and DPP tests and the profile of the animals (gender, size of the dogs and hair size), probably due to the small number of samples and the sampling differences of each profile. But statistical significance occurred between the results of rt-PCR and the clinical evaluation, since the rt-PCR was positive in all symptomatic dogs. Thus, through these results, we reached at the following question, which may contribute to an important current debate: the dogs presenting CVL seropositive diagnosis confirmed by tests distributed by the Ministry of Health were in reality ill or were they seropositive by living in an endemic area of the disease? Would these asymptomatic seropositive dogs spread the disease to the inhabitants even presenting a low parasite charge circulating in the blood.
Collapse
|