1
|
Huang R, Jiang X, Jiang Y, Qian Y, Huang J, Liu T, Wang Y, Hu K, Yang Z, Wei Z. Efficacy of cordycepin against Neospora caninum infection in vitro and in vivo. Vet Parasitol 2024; 331:110284. [PMID: 39126893 DOI: 10.1016/j.vetpar.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Neospora caninum (N. caninum) is an obligate intracellular Apicomplexa parasite that causes abortions in dairy cows and incurs substantial to significant economic losses in the global dairy farming industry. Cordycepin, a nucleoside antibiotic derived from Chinese medicine Cordyceps militaries, exhibits diverse biological activities. However, it remains unclear whether cordycepin possesses inhibitory effects against N. caninum infection. Therefore, this study aimed to establish both in vivo and in vitro models of N. caninum to investigate the potential impact of cordycepin against N. caninum infection. We successfully established an in vitro model of N. caninum infection in RAW264.7 cells, followed by qRT- PCR analysis to detect the content of N. caninum DNA within the cells. The effects of cordycepin on N. caninum was observed using the Giemsa method on RAW264.7, and the rate of cell infection was calculated. Cordycepin exhibited inhibitory effects on N. caninum tachyzoites in vitro, preserving cellular integrity and reducing the rate of cell infection. In mice, we established an in vivo model of N. caninum infection and detected N. caninum presence in tissues using. Real-time fluorescence quantitative PCR. Histopathological changes were observed through Hematoxylin-eosin staining. Liver function was assessed by using glutamic acid aminotransferase (ALT) and aspartic acid aminotransferase (AST) kits. Oxidative stress status was measured using catalase (CAT), malondialdehyde (MDA), and glutathione (GSH) kits. Compared with the model group, mice treated with cordycepin showed reduced clinical symptoms, increased food intake, and their body weight (P=0.0143, P=0.0068) was significantly higher than those in the model group. Furthermore, cordycepin treatment significantly alleviated hepatic cord disorders, hepatocellular swelling, detachment, and vacuolization; duodenal epithelial detachment and shortening of villi caused by N. caninum infection. Cordycepin administration reduced the increase in ALT (P=0.01, P=0.008) and AST (P<0.001) levels caused by N. caninum infection, while ameliorating hepatocyte swelling, necrosis, and detachment as well as inflammatory cell infiltration within mice liver; it also led to shortened or even disappeared duodenal villi along with and oedema of the submucosa. Analysis of oxidative stress showed that cordycepin ameliorated the damage caused by N. caninum by reducing MDA (P=0.03, P=0.02, P=0.005) and increasing CAT (P=0.004, P<0.001) and GSH (P=0.004, P<0.001) levels. In conclusion, this study reports for the first time on cordycepin's efficacy against N. caninum infection providing a potential candidate drug for neosporosis treatment.
Collapse
Affiliation(s)
- Rongsheng Huang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Xi Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Yuqian Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Yuxiao Qian
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Jing Huang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Tingting Liu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Yiwen Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Kairao Hu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China; College of Veterinary Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Imhof D, Hänggeli KPA, De Sousa MCF, Vigneswaran A, Hofmann L, Amdouni Y, Boubaker G, Müller J, Hemphill A. Working towards the development of vaccines and chemotherapeutics against neosporosis-With all of its ups and downs-Looking ahead. ADVANCES IN PARASITOLOGY 2024; 124:91-154. [PMID: 38754928 DOI: 10.1016/bs.apar.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.
Collapse
Affiliation(s)
- Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maria Cristina Ferreira De Sousa
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Larissa Hofmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Dos Santos GS, Sousa Teixeira MV, da Costa Clementino L, Gama-Filho PA, Pereira LM, Rodrigues Teixeira T, Cardoso Furtado NAJ, da Silva Graminha MA, Yatsuda AP, Neto PC, Edrada-Ebel RA, Debonsi HM. Annotation of GC-MS Data of Antimicrobial Constituents in the Antarctic Seaweed Phaeurus antarcticus by Molecular Networking. Chem Biodivers 2023; 20:e202300429. [PMID: 37908056 DOI: 10.1002/cbdv.202300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Phaeurus antarcticus is a member of the Desmarestiaceae family endemic to the Antarctic Peninsula. Reports addressing its chemical composition and biological activities are scarce. Herein, bioactive non-polar compounds of P. antarcticus against pathogenic bacteria, Leishmania amazonensis and Neospora caninum parasites were targeted through GC-MS Molecular Networking and multivariate analysis (OPLS-DA). The effects on horseradish peroxidase (HRP) were also evaluated. P. antarcticus exhibited selective bacteriostatic and bactericidal activities against Staphylococcus aureus with MIC and MBC values from 6.25-100 μg mL-1 . Fractions HX-FC and HX-FD were the most active against L. amazonensis with EC50 ranging from 18.5-62.3 μg mL-1 . Additionally, fractions HX-FC and HX-FD showed potent inhibition of N. caninum at EC50 values of 2.8 and 6.3 μg mL-1 , respectively. All fractions inhibited HRP activity, indicating possible interactions with Heme proteins. It was possible to annotate compounds from tree mains clusters, containing terpenoids, steroids, fatty acids, and alcohols by correlating the spectral data of the GC-MS analysis with Molecular Networking and the OPLS-DA results.
Collapse
Affiliation(s)
- Gustavo Souza Dos Santos
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Valdeline Sousa Teixeira
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Péricles Abreu Gama-Filho
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Miguel Pereira
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thaiz Rodrigues Teixeira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Ana Patrícia Yatsuda
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pio Colepicolo Neto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Ru Angelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Hosana Maria Debonsi
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Venancio-Brochi JC, Pereira LM, Calil FA, Teixeira O, Baroni L, Abreu-Filho PG, Braga GÚL, Nonato MC, Yatsuda AP. Glutathione reductase: A cytoplasmic antioxidant enzyme and a potential target for phenothiazinium dyes in Neospora caninum. Int J Biol Macromol 2021; 187:964-975. [PMID: 34310993 DOI: 10.1016/j.ijbiomac.2021.07.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/21/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022]
Abstract
Neospora caninum causes heavy losses related to abortions in bovine cattle. This parasite developed a complex defense redox system, composed of enzymes as glutathione reductase (GR). Methylene blue (MB) impairs the activity of recombinant form of Plasmodium GR and inhibits the parasite proliferation in vivo and in vitro. Likewise, MB and its derivatives inhibits Neospora caninum proliferation, however, whether the MB mechanism of action is correlated to GR function remains unclear. Therefore, here, N. caninum GR (NcGR) was characterized and its potential inhibitors were determined. NcGR was found in the tachyzoite cytosol and has a similar structure and sequence compared to its homologs. We verified the in vitro activity of rNcGR (875 nM) following NADPH absorbance at 340 nM (100 mM KH2PO4, pH 7.5, 1 mM EDTA, ionic strength: 600 mM, 25 °C). rNcGR exhibited a Michaelian behavior (Km(GSSG):0.10 ± 0.02 mM; kcat(GSSG):0.076 ± 0.003 s-1; Km(NADPH):0.006 ± 0.001 mM; kcat(NADPH): 0.080 ± 0.003 s-1). The IC50 of MB,1,9-dimethyl methylene blue, new methylene blue, and toluidine blue O on rNcGR activity were 2.1 ± 0.2 μM, 11 ± 2 μM, 0.7 ± 0.1 μM, and 0.9 ± 0.2 μM, respectively. Our results suggest the importance of NcGR in N. caninum biology and antioxidant mechanisms. Moreover, data presented here strongly suggest that NcGR is an important target of phenothiazinium dyes in N. caninum proliferation inhibition.
Collapse
Affiliation(s)
- Jade Cabestre Venancio-Brochi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Felipe Antunes Calil
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil; Ludwig Institute for Cancer Research, University of California, School of Medicine, 92093-0669 La Jolla, CA, USA
| | - Olívia Teixeira
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Péricles Gama Abreu-Filho
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Gilberto Úbida Leite Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil.
| |
Collapse
|
5
|
Pereira LM, de Luca G, Abichabki NDLM, Brochi JCV, Baroni L, Abreu-Filho PG, Yatsuda AP. Atovaquone, chloroquine, primaquine, quinine and tetracycline: antiproliferative effects of relevant antimalarials on Neospora caninum. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2021; 30:e022120. [PMID: 33787719 DOI: 10.1590/s1984-29612021006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/20/2021] [Indexed: 01/21/2023]
Abstract
Neospora caninum is an apicomplexan parasite that causes abortion in cattle, resulting in significant economic losses. There is no commercial treatment for neosporosis, and drug repositioning is a fast strategy to test possible candidates against N. caninum. In this article, we describe the effects of atovaquone, chloroquine, quinine, primaquine and tetracycline on N. caninum proliferation. The IC50 concentrations in N. caninum were compared to the current information based on previous studies for Plasmodium and Toxoplasma gondii, correlating to the described mechanisms of action of each tested drug. The inhibitory patterns indicate similarities and differences among N. caninum, Plasmodium and T. gondii. For example, atovaquone demonstrates high antiparasitic activity in all the analyzed models, while chloroquine does not inhibit N. caninum. On the other hand, tetracycline is effective against Plasmodium and N. caninum, despite its low activity in T. gondii models. The repurposing of antimalarial drugs in N. caninum is a fast and inexpensive way to develop novel formulations using well-established compounds.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Gabriela de Luca
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Nathália de Lima Martins Abichabki
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Jade Cabestre Venancio Brochi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Luciana Baroni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Péricles Gama Abreu-Filho
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Ana Patrícia Yatsuda
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| |
Collapse
|
6
|
Pereira LM, Mota CM, Baroni L, Bronzon da Costa CM, Brochi JCV, Wainwright M, Mineo TWP, Braga GÚL, Yatsuda AP. Inhibitory action of phenothiazinium dyes against Neospora caninum. Sci Rep 2020; 10:7483. [PMID: 32366934 PMCID: PMC7198568 DOI: 10.1038/s41598-020-64454-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Neospora caninum is an Apicomplexan parasite related to important losses in livestock, causing abortions and decreased fertility in affected cows. Several chemotherapeutic strategies have been developed for disease control; however, no commercial treatment is available. Among the candidate drugs against neosporosis, phenothiazinium dyes, offer a low cost-efficient approach to parasite control. We report the anti-parasitic effects of the phenothiaziums Methylene Blue (MB), New Methylene Blue (NMB), 1,9–Dimethyl Methylene Blue (DMMB) and Toluidine Blue O (TBO) on N. caninum, using in vitro and in vivo models. The dyes inhibited parasite proliferation at nanomolar concentrations (0.019–1.83 μM) and a synergistic effect was achieved when Methylene Blue was combined with New Methylene Blue (Combination Index = 0.84). Moreover, the phenothiazinium dyes improved parasite clearance when combined with Pyrimethamine (Pyr). Combination of Methylene Blue + 1,9–Dimethyl Methylene Blue demonstrated superior efficacy compared to Pyrimethamine based counterparts in an in vivo model of infection. We also observed that Methylene Blue, New Methylene Blue and 1,9–Dimethyl Methylene Blue increased by 5000% the reactive oxygen species (ROS) levels in N. caninum tachyzoites. Phenothiazinium dyes represent an accessible group of candidates with the potential to compound future formulations for neosporosis control.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil.,Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline Martins Mota
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Cássia Mariana Bronzon da Costa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Jade Cabestre Venancio Brochi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Tiago Wilson Patriarca Mineo
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gilberto Úbida Leite Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil. .,Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Phenothiazinium Dyes Are Active against Trypanosoma cruzi In Vitro. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8301569. [PMID: 31355283 PMCID: PMC6637691 DOI: 10.1155/2019/8301569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/10/2019] [Accepted: 06/10/2019] [Indexed: 12/29/2022]
Abstract
Chagas disease is a tropical illness caused by the protozoan Trypanosoma cruzi. The disease affects populations of the Americas and has been spread to other continents due to the migration process. The disease is partially controlled by two drugs, Benznidazole and Nifurtimox. These molecules are active in the acute phase of the infection but are usually ineffective during the symptomatic chronic phase. Several research groups have developed novel candidates to control Chagas disease; however, no novel commercial formulation is available. In this article, we described the anti-T. cruzi effects of phenothiazinium dyes in amastigote and trypomastigote forms of the parasite. Methylene Blue, New Methylene Blue, Toluidine Blue O, and 1,9-Dimethyl Methylene Blue inhibited the parasite proliferation at nanomolar concentrations and also demonstrated low toxicity in host cells. Moreover, combinations of phenothiazinium dyes indicated a synergic pattern against amastigotes compared to the Benznidazole counterparts. Phenothiazinium dyes levels of reactive oxygen species (ROS) and decreased the mitochondrial potential in trypomastigotes, indicating the mechanism of action of the dyes in T. cruzi. Our article offers a basis for future strategies for the control of Chagas disease using low-cost formulations, an important point for endemic underdeveloped regions.
Collapse
|