1
|
Feineis D, Bringmann G. Structural variety and pharmacological potential of naphthylisoquinoline alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2024; 91:1-410. [PMID: 38811064 DOI: 10.1016/bs.alkal.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Naphthylisoquinoline alkaloids are a fascinating class of natural biaryl compounds. They show characteristic mono- and dimeric scaffolds, with chiral axes and stereogenic centers. Since the appearance of the last comprehensive overview on these secondary plant metabolites in this series in 1995, the number of discovered representatives has tremendously increased to more than 280 examples known today. Many novel-type compounds have meanwhile been discovered, among them naphthylisoquinoline-related follow-up products like e.g., the first seco-type (i.e., ring-opened) and ring-contracted analogues. As highlighted in this review, the knowledge on the broad structural chemodiversity of naphthylisoquinoline alkaloids has been decisively driven forward by extensive phytochemical studies on the metabolite pattern of Ancistrocladus abbreviatus from Coastal West Africa, which is a particularly "creative" plant. These investigations furnished a considerable number of more than 80-mostly new-natural products from this single species, with promising antiplasmodial activities and with pronounced cytotoxic effects against human leukemia, pancreatic, cervical, and breast cancer cells. Another unique feature of naphthylisoquinoline alkaloids is their unprecedented biosynthetic origin from polyketidic precursors and not, as usual for isoquinoline alkaloids, from aromatic amino acids-a striking example of biosynthetic convergence in nature. Furthermore, remarkable botanical results are presented on the natural producers of naphthylisoquinoline alkaloids, the paleotropical Dioncophyllaceae and Ancistrocladaceae lianas, including first investigations on the chemoecological role of these plant metabolites and their storage and accumulation in particular plant organs.
Collapse
Affiliation(s)
- Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Wójciak M, Feldo M, Stolarczyk P, Płachno BJ. Biological Potential of Carnivorous Plants from Nepenthales. Molecules 2023; 28:molecules28083639. [PMID: 37110873 PMCID: PMC10146735 DOI: 10.3390/molecules28083639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Since Charles Darwin and his book carnivorous plants have aroused interest and heated debate. In addition, there is growing interest in this group of plants as a source of secondary metabolites and in the application of their biological activity. The aim of this study was to trace the recent literature in search of the application of extracts obtained from families Droseraceae, Nepenthaceae, and Drosophyllaceae to show their biological potential. The data collected in the review clearly indicate that the studied Nepenthales species have great biological potential in terms of antibacterial, antifungal, antioxidant, anti-inflammatory, and anticancer use. We proposed that further investigations should include: (i) bioactivity-guided investigations of crude plant extract to connect a particular type of action with a specific compound or a group of metabolites; (ii) a search for new bioactive properties of carnivorous plants; (iii) establishment of molecular mechanisms associated with specific activity. Furthermore, further research should be extended to include less explored species, i.e., Drosophyllum lusitanicum and especially Aldrovanda vesiculosa.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Cracow, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| |
Collapse
|
3
|
Sayed AM, Ibrahim AH, Tajuddeen N, Seibel J, Bodem J, Geiger N, Striffler K, Bringmann G, Abdelmohsen UR. Korupensamine A, but not its atropisomer, korupensamine B, inhibits SARS-CoV-2 in vitro by targeting its main protease (M pro). Eur J Med Chem 2023; 251:115226. [PMID: 36893625 PMCID: PMC9972725 DOI: 10.1016/j.ejmech.2023.115226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
By combining docking and molecular dynamics simulations, we explored a library of 65 mostly axially chiral naphthylisoquinoline alkaloids and their analogues, with most different molecular architectures and structural analogues, for their activity against SARS-CoV-2. Although natural biaryls are often regarded without consideration of their axial chirality, they can bind to protein targets in an atroposelective manner. By combining docking results with steered molecular dynamics simulations, we identified one alkaloid, korupensamine A, that atropisomer-specifically inhibited the main protease (Mpro) activity of SARS-CoV-2 significantly in comparison to the reference covalent inhibitor GC376 (IC50 = 2.52 ± 0.14 and 0.88 ± 0.15 μM, respectively) and reduced viral growth by five orders of magnitude in vitro (EC50 = 4.23 ± 1.31 μM). To investigate the binding pathway and mode of interaction of korupensamine A within the active site of the protease, we utilized Gaussian accelerated molecular dynamics simulations, which reproduced the docking pose of korupensamine A inside the active site of the enzyme. The study presents naphthylisoquinoline alkaloids as a new class of potential anti-COVID-19 agents.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| | - Alyaa Hatem Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Nasir Tajuddeen
- Department of Chemistry, Ahmadu Bello University, 15 Sokoto Road Samaru, Zaria, 810107, Nigeria
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jochen Bodem
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany
| | - Nina Geiger
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany
| | - Kathrin Striffler
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, 61111, Egypt.
| |
Collapse
|
4
|
Feineis D, Bringmann G. Asian Ancistrocladus Lianas as Creative Producers of Naphthylisoquinoline Alkaloids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 119:1-335. [PMID: 36587292 DOI: 10.1007/978-3-031-10457-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This book describes a unique class of secondary metabolites, the mono- and dimeric naphthylisoquinoline alkaloids. They occur in lianas of the paleotropical Ancistrocladaceae and Dioncophyllaceae families, exclusively. Their unprecedented structures include stereogenic centers and rotationally hindered, and thus likewise stereogenic, axes. Extended recent investigations on six Ancistrocladus species from Asia, as reported in this review, shed light on their fascinating phytochemical productivity, with over 100 such intriguing natural products. This high chemodiversity arises from a likewise unique biosynthesis from acetate-malonate units, following a novel polyketidic pathway to plant-derived isoquinoline alkaloids. Some of the compounds show most promising antiparasitic activities. Likewise presented are strategies for the regio- and stereoselective total synthesis of the alkaloids, including the directed construction of the chiral axis.
Collapse
Affiliation(s)
- Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
5
|
Soost D, Bringmann G, Ihmels H. Towards an understanding of the biological activity of naphthylisoquinoline alkaloids: DNA-binding properties of dioncophyllines A, B, and C. NEW J CHEM 2022. [DOI: 10.1039/d2nj04081f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dioncophylline A and B bind to duplex DNA in a half-intercalation binding mode and to abasic site-containing DNA by insertion.
Collapse
Affiliation(s)
- Denisa Soost
- Department of Chemistry – Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio-)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Heiko Ihmels
- Department of Chemistry – Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio-)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
6
|
Zhang Y, Wang L, Li G, Gao J. Berberine-Albumin Nanoparticles: Preparation, Thermodynamic Study and Evaluation Their Protective Effects Against Oxidative Stress in Primary Neuronal Cells as a Model of Alzheimer's Disease. J Biomed Nanotechnol 2021; 17:1088-1097. [PMID: 34167623 DOI: 10.1166/jbn.2021.2995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Berberine has shown an outstanding antioxidant activity, however the low bioavailability limits its applications in pharmaceutical platforms. Therefore, in this paper, after fabrication of the berberine-HSA nanoparticles by desolvation method, they were well characterized by TEM, SEM, DLS, and FTIR techniques. Afterwards the interaction of HSA and the berberine was evaluated by molecular docking analysis. Finally, the antioxidant activity of the berberine-HSA nanoparticles against H₂O₂-induced oxidative stress in cultured neurons as a model of AD was evaluated by cellular assays. The results showed that the prepared berberine-HSA nanoparticles have a spherical-shaped morphology with a size of around 100 nm and zeta potential value of -31.84 mV. The solubility value of nanoparticles was calculated to be 40.27%, with a berberine loading of 19.37%, berberine entrapment efficiency of 70.34%, and nanoparticles yield of 88.91%. Also, it was shown that the berberine is not significantly released from HSA nanoparticles within 24 hours. Afterwards, molecular docking investigation revealed that berberine spontaneously interacts with HSA through electrostatic interaction. Finally, cellular assays disclosed that the pretreatment of neuronal cultures with berberine-HSA nanoparticles decreased the H₂O₂-stimulated cytotoxicity and relevant morphological changes and enhanced the CAT activity. In conclusion, it can be indicated that the nanoformulation of the berberine can be used as a promising platform for inhibition of oxidative damage-induced Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Yaohui Zhang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan Province 471009, P. R. China
| | - Lixiang Wang
- Department of Neurology, Laigang Hospital Affiliated to Shandong First Medical University, Jinan 271126, China
| | - Guichen Li
- Department of Clinical Psychology, Qingdao Mental Health Center Clinical Psychology, 266034, China
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| |
Collapse
|
7
|
Shang XF, Miao XL, Dai LX, Wang Y, Li B, Pan H, Zhang JY. Acaricidal activity of strophanthidin derivatives against Psoroptes cuniculi and their inhibitory effect on Na +-K +-ATPase. Vet Parasitol 2021; 296:109498. [PMID: 34139615 DOI: 10.1016/j.vetpar.2021.109498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
In our previous studies, we found that as the active gradients of Adonis coerulea, cardenolides and cardiac glycosides presented toxicity against mites by inhibiting Na+-K+-ATPase. In this paper, after evaluating the acaricidal activity of the commercial cardiac aglycones/glycosides, serials of novel strophanthidin derivatives were designed and synthesized with an efficient and simple route under mild conditions, and their toxicity against mites, the cytotoxicity and inhibitory effect on Na+-K+-ATP enzyme in PC12 cells were investigated. Results showed among of all compounds, including 9 commercial agent and 32 synthesized strophanthidin derivatives, QXG-1 presented the strongest toxicity against mites with the LC50 value of 320.0 μg/mL. C-19 group of strophanthidin substituted with glycinemethylester would increase the toxicity against mites, and the hydroxyl group at C-5 play the vital role in terms of the toxicity. At the given concentration, QXG-1 displayed the safety against PC12 (10.0 μg/mL) in vitro and mice (3.2 mg/kg) in acute toxicity test, and strong inhibitory effect on Na+-K+-ATPase. It could be used as a promising acaricidal agent. This study lays the foundation to develop of QXG-1 as a relatively safe and alternative acaricidal agent.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Xiao-Lou Miao
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Li-Xia Dai
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Yu Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Bing Li
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Hu Pan
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Ji-Yu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| |
Collapse
|
8
|
Bilonda MK, Mammino L. Computational studies of biologically active alkaloids of plant origin: an overview. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Computational studies nowadays constitute a crucial source of information for drug development, because they provide information on many molecular properties and also enable predictions of the properties of not-yet-synthesized compounds. Alkaloids are a vast group of natural products exhibiting a variety of biological activities, many of which are interesting for drug development. On the other hand, computational studies of biologically active alkaloids have so far mostly focused on few particularly relevant or “popular” molecules, such as quinine, caffeine, or cocaine, with only few works on the other molecules. The present work offers an overview of existing computational studies on alkaloid molecules, from the earliest ones to the most recent, and considering all the theoretical approaches with which studies have been performed (both quantum mechanics and molecular dynamics). The considered studies are grouped according to their objectives and outcomes, such as conformational analysis of alkaloid molecules, effects of selected solvents on their properties, docking studies aimed at better understanding of the interactions between alkaloid molecules and biological targets, studies focusing on structure activity relationships, and computational studies performed to confirm experimental results. It is concluded that it would be important that computational studies on many other alkaloid molecules are performed and their results made available, covering their different classes as well as the variety of their biological activities, to attain better understanding of the properties not only of individual molecules, but also of groups of related molecules and of the overall alkaloids family.
Collapse
Affiliation(s)
- Mireille K. Bilonda
- School of Mathematical and Natural Sciences, University of Venda , Thohoyandou , South Africa
- Faculty of Science, University of Kinshasa , Kinshasa , Democratic Republic of Congo
| | - Liliana Mammino
- School of Mathematical and Natural Sciences, University of Venda , Thohoyandou , South Africa
| |
Collapse
|