1
|
Wang WC, Sayedahmed EE, Mittal SK. Significance of Preexisting Vector Immunity and Activation of Innate Responses for Adenoviral Vector-Based Therapy. Viruses 2022; 14:v14122727. [PMID: 36560730 PMCID: PMC9787786 DOI: 10.3390/v14122727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
An adenoviral (AdV)-based vector system is a promising platform for vaccine development and gene therapy applications. Administration of an AdV vector elicits robust innate immunity, leading to the development of humoral and cellular immune responses against the vector and the transgene antigen, if applicable. The use of high doses (1011-1013 virus particles) of an AdV vector, especially for gene therapy applications, could lead to vector toxicity due to excessive levels of innate immune responses, vector interactions with blood factors, or high levels of vector transduction in the liver and spleen. Additionally, the high prevalence of AdV infections in humans or the first inoculation with the AdV vector result in the development of vector-specific immune responses, popularly known as preexisting vector immunity. It significantly reduces the vector efficiency following the use of an AdV vector that is prone to preexisting vector immunity. Several approaches have been developed to overcome this problem. The utilization of rare human AdV types or nonhuman AdVs is the primary strategy to evade preexisting vector immunity. The use of heterologous viral vectors, capsid modification, and vector encapsulation are alternative methods to evade vector immunity. The vectors can be optimized for clinical applications with comprehensive knowledge of AdV vector immunity, toxicity, and circumvention strategies.
Collapse
|
2
|
Pan Q, Wang J, Gao Y, Wang Q, Cui H, Liu C, Qi X, Zhang Y, Wang Y, Li K, Gao L, Liu A, Wang X. Identification of chicken CAR homology as a cellular receptor for the emerging highly pathogenic fowl adenovirus 4 via unique binding mechanism. Emerg Microbes Infect 2020; 9:586-596. [PMID: 32174269 PMCID: PMC7144210 DOI: 10.1080/22221751.2020.1736954] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since 2015, the prevalence of severe hepatitis-hydropericardium syndrome, which is caused by the novel genotype fowl adenovirus serotype 4 (FAdV-4), has increased in China and led to considerable economic losses. The replication cycle of FAdV-4, especially the emerging highly pathogenic novel genotype FAdV-4, remains largely unknown. The adenovirus fibre interacts with the cellular receptor as the initial step in adenovirus (AdV) infection. In our previous studies, the complete genome sequence showed that the fibre patterns of FAdV-4 were distinct from all other AdVs. Here, protein-blockage and antibody-neutralization assays were performed to confirm that the novel FAdV-4 short fibre was critical for binding to susceptible leghorn male hepatocellular (LMH) cells. Subsequently, fibre 1 was used as bait to investigate the receptor on LMH cells via mass spectrometry. The chicken coxsackie and adenovirus receptor (CAR) protein was confirmed as the novel FAdV-4 receptor in competition assays. We further identified the D2 domain of CAR (D2-CAR) as the active domain responsible for binding to the short fibre of the novel FAdV-4. Taken together, these findings demonstrate for the first time that the chicken CAR homolog is a cellular receptor for the novel FAdV-4, which facilitates viral entry by interacting with the viral short fibre through the D2 domain. Collectively, these findings provide an in-depth understanding of the mechanisms of the emerging novel genotype FAdV-4 invasion and pathogenesis.
Collapse
Affiliation(s)
- Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jing Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Qi Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Aijing Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
3
|
Abstract
Human adenovirus (Ad) has been used extensively to develop gene transfer vectors for vaccine and gene therapy applications. A major factor limiting the efficacy of the current generation of Ad vectors is their inability to accomplish specific gene delivery to the cells of interest. Transductional targeting strategies seek to redirect virus binding to the appropriate cellular receptor to increase infection efficiency in selected cell types to achieve therapeutic intervention. These efforts mainly focused on incorporating targeting ligands by means of chemical conjugation or genetic modification of Ad capsid proteins and using bispecific adapter molecules to mediate virus recognition of target cells. This review summarizes current progress in Ad tropism modification maneuvers that embody genetic capsid modification and adapter-based approaches that have encouraging implications for further development of advanced vectors suitable for clinical translation.
Collapse
|
4
|
Abstract
Many nonhuman adenoviruses (AdVs) of simian, bovine, porcine, canine, ovine, murine, and fowl origin are being developed as gene delivery systems for recombinant vaccines and gene therapy applications. In addition to circumventing preexisting human AdV (HAdV) immunity, nonhuman AdV vectors utilize coxsackievirus-adenovirus receptor or other receptors for vector internalization, thereby expanding the range of cell types that can be targeted. Nonhuman AdV vectors also provide excellent platforms for veterinary vaccines. A specific nonhuman AdV vector when used in its species of origin could provide an excellent animal model for evaluating the vector efficacy and pathogenesis. These vectors are useful in prime–boost approaches with other AdV vectors or with other gene delivery systems including DNA immunization and viral or bacterial vectors. When multiple vector inoculations are required, nonhuman AdV vectors could supplement HAdV or other viral vectors.
Collapse
|
5
|
Lopez-Gordo E, Podgorski II, Downes N, Alemany R. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors. Hum Gene Ther 2014; 25:285-300. [PMID: 24499174 DOI: 10.1089/hum.2013.228] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles.
Collapse
Affiliation(s)
- Estrella Lopez-Gordo
- 1 Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow , Glasgow G12 8TA, United Kingdom
| | | | | | | |
Collapse
|
6
|
Abstract
Cancer gene therapy approaches have benefited greatly from the utilization of molecular-based therapeutics. Of these, adenovirus-based interventions hold much promise as a platform for targeted therapeutic delivery to tumors. However, a barrier to this progression is the lack of native adenovirus receptor expression on a variety of cancer types. As such, any adenovirus-based cancer therapy must take into consideration retargeting the vector to nonnative cellular surface receptors. Predicated upon the knowledge gained in native adenovirus biology, several strategies to transductionally retarget adenovirus have emerged. Herein, we describe the biological hurdles as well as strategies utilized in adenovirus transductional targeting, covering the progress of both adapter-based and genetic manipulation-based targeting. Additionally, we discuss recent translation of these targeting strategies into a clinical setting.
Collapse
Affiliation(s)
- Matthew S Beatty
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | | |
Collapse
|
7
|
Co-administration of certain DNA vaccine combinations expressing different H5N1 influenza virus antigens can be beneficial or detrimental to immune protection. Vaccine 2012; 30:626-36. [DOI: 10.1016/j.vaccine.2011.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/19/2011] [Accepted: 11/03/2011] [Indexed: 11/18/2022]
|
8
|
Aurisicchio L, Ciliberto G. Emerging cancer vaccines: the promise of genetic vectors. Cancers (Basel) 2011; 3:3687-713. [PMID: 24212974 PMCID: PMC3759217 DOI: 10.3390/cancers3033687] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 01/18/2023] Open
Abstract
Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.
Collapse
Affiliation(s)
- Luigi Aurisicchio
- Takis, via di Castel Romano 100, 00128 Rome, Italy; E-Mail:
- BIOGEM scarl, via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Gennaro Ciliberto
- Takis, via di Castel Romano 100, 00128 Rome, Italy; E-Mail:
- Dipartimento di Medicina Sperimentale e Clinica, Università degli studi di Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
9
|
Sharma A, Bangari DS, Vemula SV, Mittal SK. Persistence and the state of bovine and porcine adenoviral vector genomes in human and nonhuman cell lines. Virus Res 2011; 161:181-7. [PMID: 21864589 DOI: 10.1016/j.virusres.2011.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/04/2011] [Accepted: 08/08/2011] [Indexed: 11/24/2022]
Abstract
The state of vector genome in transduced cells influences the duration of transgene expression and can be a safety concern if it gets integrated randomly into the host genome. Although human adenovirus (Ad) serotype 5 (HAd5) mainly persists in a linear episomal form, information regarding the state of bovine Ad serotype 3 (BAd3) and porcine Ad serotype 3 (PAd3) vector genomes in human and nonhuman cells is currently unknown. To address this issue, MDA-MB-231 (human), MDBK (bovine), PK-15 (porcine), MT1A2 (mouse) and NIH-3T3 (mouse) cell lines were infected with replication-defective BAd3, PAd3 or HAd5 vectors carrying the green fluorescent protein (GFP) gene. The persistence and the state of vector genome were assessed by quantitative real-time PCR and Southern blot hybridization, respectively. Levels of transgene and Ad gene expressions were quantified using real-time RT-PCR. Persistence of BAd3 or PAd3 vectors was comparable to that of HAd5 vector. Only the linear episomal form of the vector genome was observed with each vector. In addition, expression levels of transgene as well as viral genes by all three vectors were comparable and correlated with their transduction levels in each cell type. These results indicate comparable biologic behavior of BAd3, PAd3 and HAd5 vectors in cell culture.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, School of Veterinary Medicine, and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
10
|
Henaff D, Salinas S, Kremer EJ. An adenovirus traffic update: from receptor engagement to the nuclear pore. Future Microbiol 2011; 6:179-92. [PMID: 21366418 DOI: 10.2217/fmb.10.162] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Adenoviruses have a bipolar nature: they are ubiquitous pathogens that occasionally cause life-threatening diseases or they can be engineered into powerful gene transfer vectors. The goal of this article is to summarize the most recent advances in adenovirus receptor engagement, internalization, endosomal maturation, endosomal escape and trafficking to the nuclear pore. A better understanding of this initial part of the adenovirus lifecycle may identify new mechanistic-based treatments for adenovirus-induced diseases and help in the engineering of more efficient vectors.
Collapse
Affiliation(s)
- Daniel Henaff
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 34293 Montpellier, France
| | | | | |
Collapse
|
11
|
Sharma A, Bangari DS, Tandon M, Hogenesch H, Mittal SK. Evaluation of innate immunity and vector toxicity following inoculation of bovine, porcine or human adenoviral vectors in a mouse model. Virus Res 2010; 153:134-42. [PMID: 20659505 DOI: 10.1016/j.virusres.2010.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/15/2010] [Accepted: 07/17/2010] [Indexed: 01/16/2023]
Abstract
Nonhuman adenovirus (Ad) vectors derived from bovine Ad serotype 3 (BAd3) or porcine Ad serotype 3 (PAd3) can circumvent pre-existing immunity against human Ad (HAd). We have previously reported differential transduction of human and nonhuman cells by these Ad vectors, and their distinct receptor usage and biodistribution. To compare the induction of innate immunity, vector toxicity and vector uptake by Kupffer cells (KCs) following intravenous administration of PAd3, BAd3, or HAd5 vectors in mice, we determined mRNA expression levels of proinflammatory chemokines and cytokines, and Toll-like receptors (TLRs) in the liver and spleen. Tissue toxicity of these vectors was assessed by comparing serum levels of liver-specific enzymes, histopathology and Kupffer cell (KC) depletion. Compared to the HAd5 vector, PAd3 and BAd3 vectors were more potent stimulators of innate immune responses as indicated by enhanced mRNA expression of TLRs and proinflammatory chemokines and cytokine genes. Histopathological changes in the liver were most pronounced in HAd5-inoculated mice while BAd3- or PAd3-inoculated mice revealed mild histologic changes that were confined to early time points. Inoculation with HAd5 or PAd3 vectors resulted in a significant (P<0.05) decline of the number of KCs in the liver. Together, these results extend our previous observations regarding distinct in vivo biology of nonhuman and human Ad vectors.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, School of Veterinary Medicine, and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
12
|
Evaluation of cross-reactive cell-mediated immune responses among human, bovine and porcine adenoviruses. Gene Ther 2010; 17:634-42. [PMID: 20164856 PMCID: PMC2869393 DOI: 10.1038/gt.2010.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The absence of preexisting immunity against porcine adenovirus (Ad) serotype 3 (PAd3) and bovine Ad serotype 3 (BAd3) in humans makes them attractive alternatives to human Ad serotype 5 (HAd5) vectors. To determine whether there is significant cross-reactivity among HAd5, BAd3, and PAd3 at the level of cell-mediated immune responses, BALB/c mice were inoculated intraperitoneally with wild type (WT) or replication-defective (RD) HAd5, BAd3, or PAd3. Thirty-five days after the first inoculation, cross-reactive CD8+ cytotoxic T cells, as well as CD4+ Th1- and Th2-helper T cells, in the spleen were analyzed by ELISPOT, flow cytometry and cytotoxic T lymphocyte (CTL) assays. Virus neutralization assays were used to evaluate humoral cross-reactivity. CD8+ or CD4+ T cells primed with WT or RD HAd5, PAd3, or BAd3 demonstrated significant (P <0.005) reactivity with homologous Ad antigens, whereas, only minimal cross-reactivity was observed upon stimulation with heterologous Ad antigens. Ad-neutralizing antibodies were found to be homologous Ad-specific. Overall, these results suggest that there is no significant immunological cross-reactivity among HAd5, BAd3, and PAd3, thereby supporting the rationale for the use of BAd3 and PAd3 as alternative HAd vectors to circumvent anti-HAd immunity in humans.
Collapse
|
13
|
Dharmapuri S, Peruzzi D, Aurisicchio L. Engineered adenovirus serotypes for overcoming anti-vector immunity. Expert Opin Biol Ther 2009; 9:1279-87. [PMID: 19645630 DOI: 10.1517/14712590903187053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adenovirus (Ad)-based gene transfer has been successfully utilised in gene therapy and vaccine applications. To date, an increasing number of human clinical trials utilise recombinant Ad-based vectors as a gene transfer platform. In particular, progress has been made recently in utilising Ad-based vectors as a vaccine platform in HIV, cancer immunotherapy approaches and in vaccination for other infections. Despite these successes, the scientific and bio-industrial communities have recently recognised that innate and pre-existing immunity against Ad vectors can constitute a serious obstacle to the development and application of this technology. It is essential to overcome vector-mediated immune responses, such as production of inflammatory cytokines and pre-existing immunity to Ad, because the induction of these responses not only shortens the period of gene expression but also leads to serious side effects. This review focuses on the biology of Ad infection and the approaches that are being adopted to overcome immunity against the Ad-based vectors.
Collapse
|
14
|
Bovine adenovirus serotype 3 utilizes sialic acid as a cellular receptor for virus entry. Virology 2009; 392:162-8. [PMID: 19646729 DOI: 10.1016/j.virol.2009.06.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/11/2009] [Accepted: 06/17/2009] [Indexed: 11/22/2022]
Abstract
Bovine adenovirus serotype 3 (BAd3) and porcine adenovirus serotype 3 (PAd3) entry into the host cells is independent of Coxsackievirus adenovirus receptor and integrins. The role of sialic acid in BAd3 and PAd3 entry was investigated. Removal of sialic acid by neuraminidase, or blocking sialic acid by wheat germ agglutinin lectin significantly inhibited BAd3, but not PAd3, transduction of Madin-Darby bovine kidney cells. Maackia amurensis agglutinin or Sambucus nigra (elder) agglutinin treatment efficiently blocked BAd3 transduction suggesting that BAd3 utilized alpha(2,3)-linked and alpha(2,6)-linked sialic acid as a cell receptor. BAd3 transduction of MDBK cells was sensitive to sodium periodate, bromelain, or trypsin treatment indicating that the receptor sialoconjugate was a glycoprotein rather than a ganglioside. To determine sialic acid-containing cell membrane proteins that bind to BAd3, virus overlay protein binding assay (VOPBA) was performed and showed that sialylated cell membrane proteins in size of approximately 97 and 34 kDa bind to BAd3. The results suggest that sialic acid serves as a primary receptor for BAd3.
Collapse
|
15
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
16
|
Sharma A, Li X, Bangari DS, Mittal SK. Adenovirus receptors and their implications in gene delivery. Virus Res 2009; 143:184-94. [PMID: 19647886 PMCID: PMC2903974 DOI: 10.1016/j.virusres.2009.02.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/15/2009] [Indexed: 12/14/2022]
Abstract
Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
17
|
Comparative analysis of vector biodistribution, persistence and gene expression following intravenous delivery of bovine, porcine and human adenoviral vectors in a mouse model. Virology 2009; 386:44-54. [PMID: 19211122 DOI: 10.1016/j.virol.2009.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/03/2008] [Accepted: 01/09/2009] [Indexed: 11/23/2022]
Abstract
Nonhuman adenoviruses including bovine adenovirus serotype 3 (BAd3) and porcine adenovirus serotype 3 (PAd3) can circumvent pre-existing immunity against human adenovirus serotype 5 (HAd5) and are being developed as alternative vectors for gene delivery. To assess the usefulness of these vectors for in vivo gene delivery, we compared biodistribution, persistence, state of vector genome, and transgene and vector gene expression by replication-defective BAd3 and PAd3 vectors with those of HAd5 vector in a FVB/n mouse model following intravenous inoculation. BAd3 vector efficiently transduced the heart, kidney and lung in addition to the liver and spleen and persisted for a longer duration compared to PAd3 or HAd5 vectors. Biodistribution of PAd3 vector was comparable to that of HAd5 vector but showed more rapid vector clearance. Only linear episomal forms of BAd3, PAd3, and HAd5 vector genomes were detected. All three vectors efficiently expressed the green fluorescent protein (GFP) transgene proportionate to the vector genome copy number in various tissues. Furthermore, leaky expression of vector genes, both the early (E4) and the late (hexon) was observed in all three vectors and gradually declined with time. These results suggest that BAd3 and PAd3 vectors could serve as an alternative or supplement to HAd5 for gene delivery applications.
Collapse
|
18
|
Abstract
Adenovirus fiber knobs are the capsid components that interact with binding receptors on cells, while an Arg-Gly-Asp (RGD) sequence usually found in the penton base protein is important for the interaction of most adenoviruses with integrin entry receptors. Mouse adenovirus type 1 (MAV-1) lacks an RGD sequence in the virion penton base protein. We tested whether an RGD sequence found in the MAV-1 fiber knob plays a role in infection. Treatment of cells with a competitor RGD peptide or a purified recombinant RGD-containing fiber knob prior to infection resulted in reduced virus yields compared to those of controls, indicating the importance of the RGD sequence for infection. An investigation of the role of integrins as possible receptors showed that MAV-1 yields were reduced in the presence of EDTA, an inhibitor of integrin binding, and in the presence of anti-alpha(v) integrin antibody. Moreover, mouse embryo fibroblasts that were genetically deficient in alpha(v) integrin yielded less virus, supporting the hypothesis that alpha(v) integrin is a likely receptor for MAV-1. We also investigated whether glycosaminoglycans play a role in MAV-1 infection. Preincubation of MAV-1 with heparin, a heparan sulfate glycosaminoglycan analog, resulted in a decrease in MAV-1 virus yields. Reduced MAV-1 infectivity was also found with cells that genetically lack heparan sulfate or cells that were treated with heparinase I. Cumulatively, our data demonstrate that the RGD sequence in the MAV-1 fiber knob plays a role in infection by MAV-1, alpha(v) integrin acts as a receptor for the virus, and cell surface heparin sulfate glycosaminoglycans are important in MAV-1 infection.
Collapse
|
19
|
Venkatraman G, Behrens M, Pyrski M, Margolis FL. Expression of Coxsackie-Adenovirus receptor (CAR) in the developing mouse olfactory system. ACTA ACUST UNITED AC 2006; 34:295-305. [PMID: 16841169 DOI: 10.1007/s11068-005-8359-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/14/2005] [Accepted: 11/14/2005] [Indexed: 10/24/2022]
Abstract
Interest in manipulating gene expression in olfactory sensory neurons (OSNs) has led to the use of adenoviruses (AdV) as gene delivery vectors. OSNs are the first order neurons in the olfactory system and the initial site of odor detection. They are highly susceptible to adenovirus infection although the mechanism is poorly understood. The Coxsackie-Adenovirus receptor (CAR) and members of the integrin family have been implicated in the process of AdV infection in various systems. Multiple serotypes of AdV efficiently bind to the CAR, leading to entry and infection of the host cell by a mechanism that can also involve integrins. Cell lines that do not express CAR are relatively resistant, but not completely immune to AdV infection, suggesting that other mechanisms participate in mediating AdV attachment and entry. Using in situ hybridization and western blot analyses, we show that OSNs and olfactory bulbs (OB) of mice express abundant CAR mRNA at embryonic and neonatal stages, with progressive diminution during postnatal development. By contrast to the olfactory epithelium (OE), CAR mRNA is still present in the adult mouse OB. Furthermore, despite a similar postnatal decline, CAR protein expression in the OE and OB of mice continues into adulthood. Our results suggest that the robust AdV infection observed in the postnatal olfactory system is mediated by CAR and that expression of even small amounts of CAR protein as seen in the adult rodent, permits efficient AdV infection and entry. CAR is an immunoglobulin domain-containing protein that bears homology to cell-adhesion molecules suggesting the possibility that it may participate in organization of the developing olfactory system.
Collapse
Affiliation(s)
- Giri Venkatraman
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, USA
| | | | | | | |
Collapse
|
20
|
Bangari DS, Mittal SK. Development of nonhuman adenoviruses as vaccine vectors. Vaccine 2005; 24:849-62. [PMID: 16297508 PMCID: PMC1462960 DOI: 10.1016/j.vaccine.2005.08.101] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/29/2005] [Accepted: 08/25/2005] [Indexed: 12/30/2022]
Abstract
Human adenoviral (HAd) vectors have demonstrated great potential as vaccine vectors. Preclinical and clinical studies have demonstrated the feasibility of vector design, robust antigen expression and protective immunity using this system. However, clinical use of adenoviral vectors for vaccine purposes is anticipated to be limited by vector immunity that is either preexisting or develops rapidly following the first inoculation with adenoviral vectors. Vector immunity inactivates the vector particles and rapidly removes the transduced cells, thereby limiting the duration of transgene expression. Due to strong vector immunity, subsequent use of the same vector is usually less efficient. In order to circumvent this limitation, nonhuman adenoviral vectors have been proposed as alternative vectors. In addition to eluding HAd immunity, these vectors possess most of the attractive features of HAd vectors. Several replication-competent or replication-defective nonhuman adenoviral vectors have been developed and investigated for their potential as vaccine-delivery vectors. Here, we review recent advances in the design and characterization of various nonhuman adenoviral vectors, and discuss their potential applications for human and animal vaccination.
Collapse
Affiliation(s)
| | - Suresh K. Mittal
- Corresponding author. Tel.: +1 765 496 2894; fax: +1 765 494 9830.
| |
Collapse
|
21
|
Bangari DS, Sharma A, Mittal SK. Bovine adenovirus type 3 internalization is independent of primary receptors of human adenovirus type 5 and porcine adenovirus type 3. Biochem Biophys Res Commun 2005; 331:1478-84. [PMID: 15883040 PMCID: PMC1552094 DOI: 10.1016/j.bbrc.2005.04.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Indexed: 10/25/2022]
Abstract
Usefulness of adenoviral vectors derived from human adenovirus (HAd) type 5 (HAd5) is mainly limited by wide prevalence of preexisting anti-HAd5 immunity as well as non-specific tissue tropism of these vectors. As an alternative, non-human adenoviral vectors including bovine adenovirus type 3 (BAd3) are currently being investigated. Non-prevalence of BAd3 in humans and its ability to evade preexisting HAd immunity are some of the features that make BAd3 a promising vector for human gene delivery. BAd3 appears to have a tissue tropism distinct from that of HAd5 and also the repertoire of cells efficiently transduced by BAd3 is different. We performed antibody-mediated receptor blocking experiments to show that BAd3 internalization was independent of coxsackievirus-adenovirus receptor, the primary determinant of HAd5 tropism, or integrin alpha(v)beta3, a secondary molecule involved in HAd5 entry. Using homologous and heterologous knob-mediated competition assays with recombinant knobs of HAd5, porcine adenovirus type 3 (PAd3), or BAd3, we observed that BAd3 internalization was independent of the primary receptors of HAd5 and PAd3. These results provide support for further exploration of BAd3 vectors for designing targeted vectors for human gene therapy.
Collapse
Affiliation(s)
- Dinesh S Bangari
- Laboratory of Gene Therapy, Department of Pathobiology and Purdue University Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
22
|
Bangari DS, Shukla S, Mittal SK. Comparative transduction efficiencies of human and nonhuman adenoviral vectors in human, murine, bovine, and porcine cells in culture. Biochem Biophys Res Commun 2005; 327:960-6. [PMID: 15649439 DOI: 10.1016/j.bbrc.2004.12.099] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Indexed: 11/18/2022]
Abstract
Clinical usefulness of human Ad serotype 5 (HAd5) based vectors is limited primarily because of preexisting Ad immunity and lack of targeting to specific cell types. Alternative vectors based on less prevalent HAd serotypes as well as nonhuman adenoviruses such as porcine Ad serotype 3 (PAd3) and bovine Ad serotype 3 (BAd3) are being developed to overcome these shortcomings. Using virus neutralization assay, we examined whether preexisting Ad immunity in humans would cross-neutralize PAd3 or BAd3. To further evaluate the potential of PAd3 and BAd3 vectors as gene delivery vehicles, we compared their transduction efficiencies in a panel of human, murine, bovine, and porcine cell lines to those obtained with a HAd5 vector. Transduction by the HAd5 vector in the majority of human cell lines correlated with the expression levels of coxsackievirus-adenovirus receptor (CAR), the primary HAd5 receptor; while transduction by PAd3 and BAd3 vectors was CAR-independent. The results suggest that PAd3 and BAd3 vectors are promising gene delivery vehicles for human gene therapy as well as for recombinant vaccines for human and animal use.
Collapse
Affiliation(s)
- Dinesh S Bangari
- Laboratory of Gene Therapy, Department of Pathobiology, and Purdue University Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|