1
|
Kulanayake S, Dar F, Tikoo SK. Regions of Bovine Adenovirus-3 Protein VII Involved in Interactions with Viral and Cellular Proteins. Viruses 2024; 16:732. [PMID: 38793614 PMCID: PMC11125828 DOI: 10.3390/v16050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The L 1 region of bovine adenovirus (BAdV)-3 encodes a multifunctional protein named protein VII. Anti-protein VII sera detected a protein of 26 kDa in transfected or BAdV-3-infected cells, which localizes to nucleus and nucleolus of infected/transfected cells. Analysis of mutant protein VII identified four redundant overlapping nuclear/nucleolar localization signals as deletion of all four potential nuclear/nucleolar localization signals localizes protein VII predominantly to the cytoplasm. The nuclear import of protein VII appears to use importin α (α-1), importin-β (β-1) and transportin-3 nuclear transport receptors. In addition, different nuclear transport receptors also require part of protein VII outside nuclear localization sequences for efficient interaction. Proteomic analysis of protein complexes purified from recombinant BAdV-3 expressing protein VII containing Strep Tag II identified potential viral and cellular proteins interacting with protein VII. Here, we confirm that protein VII interacts with IVa2 and protein VIII in BAdV-3-infected cells. Moreover, amino acids 91-101 and 126-137, parts of non-conserved region of protein VII, are required for interaction with IVa2 and protein VIII, respectively.
Collapse
Affiliation(s)
- Shermila Kulanayake
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Faryal Dar
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Suresh K. Tikoo
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
2
|
Athukorala A, Helbig KJ, McSharry BP, Forwood JK, Sarker S. An optimised protocol for the expression and purification of adenovirus core protein VII. J Virol Methods 2024; 326:114907. [PMID: 38432358 DOI: 10.1016/j.jviromet.2024.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Adenovirus protein VII (pVII) is a highly basic core protein, bearing resemblance to mammalian histones. Despite its diverse functions, a comprehensive understanding of its structural intricacies and the mechanisms underlying its functions remain elusive, primarily due to the complexity of producing a good amount of soluble pVII. This study aimed to optimise the expression and purification of recombinant pVII from four different adenoviruses with a simple vector construct. This study successfully determined the optimal conditions for efficiently purifying pVII across four adenovirus species, revealing the differential preference for bacterial expression systems. The One Shot BL21 Star (DE3) proved favourable over Rosetta 2 (DE3) pLysS with consistent levels of expression between IPTG-induced and auto-induction. We demonstrated that combining chemical and mechanical cell lysis is possible and highly effective. Other noteworthy benefits were observed in using RNase during sample processing. The addition of RNase has significantly improved the quality and quantity of the purified protein as confirmed by chromatographic and western blot analyses. These findings established a solid groundwork for pVII purification methodologies and carry the significant potential to assist in unveiling the core structure of pVII, its arrangement within the core, DNA condensation intricacies, and potential pathways for nuclear transport.
Collapse
Affiliation(s)
- Ajani Athukorala
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Karla J Helbig
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Brian P McSharry
- School of Dentistry and Medical Sciences Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Jade K Forwood
- School of Dentistry and Medical Sciences Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Subir Sarker
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
3
|
Heffron J, Samsami M, Juedemann S, Lavin J, Tavakoli Nick S, Kieke BA, Mayer BK. Mitigation of viruses of concern and bacteriophage surrogates via common unit processes for water reuse: A meta-analysis. WATER RESEARCH 2024; 252:121242. [PMID: 38342066 DOI: 10.1016/j.watres.2024.121242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Water reuse is a growing global reality. In regulating water reuse, viruses have come to the fore as key pathogens due to high shedding rates, low infectious doses, and resilience to traditional wastewater treatments. To demonstrate the high log reductions required by emerging water reuse regulations, cost and practicality necessitate surrogates for viruses for use as challenge organisms in unit process evaluation and monitoring. Bacteriophage surrogates that are mitigated to the same or lesser extent than viruses of concern are routinely used for individual unit process testing. However, the behavior of these surrogates over a multi-barrier treatment train typical of water reuse has not been well-established. Toward this aim, we performed a meta-analysis of log reductions of common bacteriophage surrogates for five treatment processes typical of water reuse treatment trains: advanced oxidation processes, chlorination, membrane filtration, ozonation, and ultraviolet (UV) disinfection. Robust linear regression was applied to identify a range of doses consistent with a given log reduction of bacteriophages and viruses of concern for each treatment process. The results were used to determine relative conservatism of surrogates. We found that no one bacteriophage was a representative or conservative surrogate for viruses of concern across all multi-barrier treatments (encompassing multiple mechanisms of virus mitigation). Rather, a suite of bacteriophage surrogates provides both a representative range of inactivation and information about the effectiveness of individual processes within a treatment train. Based on the abundance of available data and diversity of virus treatability using these five key water reuse treatment processes, bacteriophages MS2, phiX174, and Qbeta were recommended as a core suite of surrogates for virus challenge testing.
Collapse
Affiliation(s)
- Joe Heffron
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Dr., Marshfield, WI 54449, USA.
| | - Maryam Samsami
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Samantha Juedemann
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Jennifer Lavin
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Shadi Tavakoli Nick
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Burney A Kieke
- Marshfield Clinic Research Institute, Center for Clinical Epidemiology and Population Health, 1000 N Oak Ave., Marshfield, WI 54449, USA
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| |
Collapse
|
4
|
Kulanayake S, Tikoo SK. Adenovirus Core Proteins: Structure and Function. Viruses 2021; 13:v13030388. [PMID: 33671079 PMCID: PMC7998265 DOI: 10.3390/v13030388] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023] Open
Abstract
Adenoviruses have served as a model for investigating viral-cell interactions and discovering different cellular processes, such as RNA splicing and DNA replication. In addition, the development and evaluation of adenoviruses as the viral vectors for vaccination and gene therapy has led to detailed investigations about adenovirus biology, including the structure and function of the adenovirus encoded proteins. While the determination of the structure and function of the viral capsid proteins in adenovirus biology has been the subject of numerous reports, the last few years have seen increased interest in elucidating the structure and function of the adenovirus core proteins. Here, we provide a review of research about the structure and function of the adenovirus core proteins in adenovirus biology.
Collapse
Affiliation(s)
- Shermila Kulanayake
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada;
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N5E3, Canada
| | - Suresh K. Tikoo
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada;
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N5E3, Canada
- Correspondence:
| |
Collapse
|
5
|
Cellular Zinc Finger Protein 622 Hinders Human Adenovirus Lytic Growth and Limits Binding of the Viral pVII Protein to Virus DNA. J Virol 2019; 93:JVI.01628-18. [PMID: 30429337 DOI: 10.1128/jvi.01628-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/02/2018] [Indexed: 12/22/2022] Open
Abstract
Human adenovirus (HAdV) encodes a multifunctional DNA-binding protein pVII, which is involved in virus DNA packaging and extracellular immune signaling regulation. Although the pVII is an essential viral protein, its exact role in the virus life cycle and interplay with cellular proteins have remained to a large extent unclear. We have recently identified the cellular zinc finger protein 622 (ZNF622) as a potential pVII-interacting protein. In this study, we describe the functional consequences of the ZNF622-pVII interplay and the role of ZNF622 in the HAdV life cycle. ZNF622 protein expression increased, and it accumulated similarly to the pVII protein in the nuclei of virus-infected cells. The lack of the ZNF622 protein specifically increased pVII binding to viral DNA in the infected cells and elevated the pVII protein levels in the purified virions. In addition, ZNF622 knockout cells showed an increased cell lysis and enhanced accumulation of the infectious virus particles. Protein interaction studies revealed that ZNF622 forms a trimeric complex with the pVII protein and the cellular histone chaperon protein nucleophosmin 1 (NPM1). The integrity of this complex is important since ZNF622 mutations and NPM1 deficiency changed pVII ability to bind viral DNA. Collectively, our results implicate that ZNF622 may act as a cellular antiviral protein hindering lytic HAdV growth and limiting pVII protein binding to viral DNA.IMPORTANCE Human adenoviruses (HAdVs) are common human pathogens causing a wide range of acute infections. To counteract viral pathogenicity, cells encode a variety of antiviral proteins and noncoding RNAs to block virus growth. In this study, we show that the cellular zinc finger protein 622 (ZNF622) interacts with an essential HAdV protein known as pVII. This mutual interaction limits pVII binding to viral DNA. Further, ZNF622 has a role in HAdV life cycle since the lack of ZNF622 correlates with increased lysis of the infected cells and accumulation of the infectious virions. Together, our study reveals a novel cellular antiviral protein ZNF622, which may impede lytic HAdV growth.
Collapse
|
6
|
Atomic Structures of Minor Proteins VI and VII in Human Adenovirus. J Virol 2017; 91:JVI.00850-17. [PMID: 28978703 DOI: 10.1128/jvi.00850-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022] Open
Abstract
Human adenoviruses (Ad) are double-stranded DNA (dsDNA) viruses associated with infectious diseases, but they are better known as tools for gene delivery and oncolytic anticancer therapy. Atomic structures of Ad provide the basis for the development of antivirals and for engineering efforts toward more effective applications. Since 2010, atomic models of human Ad5 have been derived independently from photographic film cryo-electron microscopy (cryo-EM) and X-ray crystallography studies, but discrepancies exist concerning the assignment of cement proteins IIIa, VIII, and IX. To clarify these discrepancies, we employed the technology of direct electron counting to obtain a cryo-EM structure of human Ad5 at 3.2-Å resolution. Our improved structure unambiguously confirms our previous cryo-EM models of proteins IIIa, VIII, and IX and explains the likely cause of conflict in the crystallography models. The improved structure also allows the identification of three new components in the cavity of hexon-the cleaved N terminus of precursor protein VI (pVIn), the cleaved N terminus of precursor protein VII (pVIIn2), and mature protein VI. The binding of pVIIn2-and, by extension, that of genome-condensing pVII-to hexons is consistent with the previously proposed dsDNA genome-capsid coassembly for adenoviruses, which resembles that of single-stranded RNA (ssRNA) viruses but differs from the well-established mechanism of pumping dsDNA into a preformed protein capsid exemplified by tailed bacteriophages and herpesviruses.IMPORTANCE Adenovirus is a double-edged sword to humans: it is a widespread pathogen but can be used as a bioengineering tool for anticancer and gene therapies. The atomic structure of the virus provides the basis for antiviral and application developments, but conflicting atomic models for the important cement proteins IIIa, VIII, and IX from conventional/film cryo-EM and X-ray crystallography studies have caused confusion. Using cutting-edge cryo-EM technology with electron counting, we improved the structure of human adenovirus type 5 and confirmed our previous models of cement proteins IIIa, VIII, and IX, thus clarifying the inconsistent structures. The improved structure also reveals atomic details of membrane-lytic protein VI and genome-condensing protein VII and supports the previously proposed genome-capsid coassembly mechanism for adenoviruses.
Collapse
|
7
|
Dhama K, Gowthaman V, Karthik K, Tiwari R, Sachan S, Kumar MA, Palanivelu M, Malik YS, Singh RK, Munir M. Haemorrhagic enteritis of turkeys - current knowledge. Vet Q 2017; 37:31-42. [PMID: 28024457 DOI: 10.1080/01652176.2016.1277281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Haemorrhagic enteritis virus (HEV), an adenovirus associated with acute haemorrhagic gastro-intestinal disease of 6-11-week old turkeys predominantly hampers both humoral and cellular immunity. Affected birds are more prone to secondary complications (e.g. colibacillosis and clostridiosis) and failure to mount an effective vaccine-induced immune response. HEV belongs to the new genus Siadenovirus. Feco-oral transmission is the main route of entry of the virus and it mainly colonizes bursa, intestine and spleen. Both naturally occurring virulent and avirulent strains of HEVs are serologically indistinguishable. Recent findings revealed that ORF1, E3 and fib genes are the key factors affecting virulence. The adoption of suitable diagnostic tools, proper vaccination and biosecurity measures have restrained the occurrence of disease epidemics. For diagnostic purposes, the best source of HEV is either intestinal contents or samples from spleen. For rapid detection highly sensitive and specific tests such as quantitative real-time PCR based on Taq man probe has been designed. Avirulent strains of HEV or MSDV can be effectively used as live vaccines. Novel vaccines include recombinant hexon protein-based subunit vaccines or recombinant virus-vectored vaccines using fowl poxvirus (FPV) expressing the native hexon of HEV. Notably, subunit vaccines and recombinant virus vectored vaccines altogether offer high protection against challenge or field viruses. Herein, we converse a comprehensive analysis of the HEV genetics, disease pathobiology, advancements in diagnosis and vaccination along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Kuldeep Dhama
- a Avian Diseases Section, Division of Pathology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - Vasudevan Gowthaman
- b Poultry Disease Diagnosis and Surveillance Laboratory , Veterinary College and Research Institute , Namakkal , Tamil Nadu, India
| | - Kumaragurubaran Karthik
- c Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - Ruchi Tiwari
- d Department of Microbiology , DUVASU , Mathura , India
| | - Swati Sachan
- a Avian Diseases Section, Division of Pathology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - M Asok Kumar
- a Avian Diseases Section, Division of Pathology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - M Palanivelu
- a Avian Diseases Section, Division of Pathology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - Yashpal Singh Malik
- e Division of Biological Standardization , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - Raj Kumar Singh
- f Director, ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - Muhammad Munir
- g Avian Viral Diseases Programme Compton Laboratory , Berkshire , UK
| |
Collapse
|
8
|
Ahi YS, Mittal SK. Components of Adenovirus Genome Packaging. Front Microbiol 2016; 7:1503. [PMID: 27721809 PMCID: PMC5033970 DOI: 10.3389/fmicb.2016.01503] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging.
Collapse
Affiliation(s)
- Yadvinder S Ahi
- Department of Comparative Pathobiology, Purdue UniversityWest Lafayette, IN, USA; Purdue University Center for Cancer Research, Purdue UniversityWest Lafayette, IN, USA
| | - Suresh K Mittal
- Department of Comparative Pathobiology, Purdue UniversityWest Lafayette, IN, USA; Purdue University Center for Cancer Research, Purdue UniversityWest Lafayette, IN, USA; Purdue Institute for Immunology, Inflammation and Infectious Diseases, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|
9
|
Condezo GN, Marabini R, Ayora S, Carazo JM, Alba R, Chillón M, San Martín C. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k. J Virol 2015; 89:9653-64. [PMID: 26178997 PMCID: PMC4542391 DOI: 10.1128/jvi.01453-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. IMPORTANCE Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in the capsid and the molecular details of capsid assembly. Here, we provide evidence supporting one of the two current models for capsid architecture. We also show for the first time the location of the packaging protein L1 52/55k in particles lacking the virus genome and how this location changes during maturation. Our results contribute to clarifying standing questions in adenovirus capsid architecture and provide new details on the role of L1 52/55k protein in assembly.
Collapse
Affiliation(s)
- Gabriela N Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Madrid, Spain NanoBiomedicine Initiative, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Roberto Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - José M Carazo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Raúl Alba
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain Center of Animal Biotechnology and Gene Therapy, Departament Bioquímica i Biologia Molecular, Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Miguel Chillón
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain Center of Animal Biotechnology and Gene Therapy, Departament Bioquímica i Biologia Molecular, Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Madrid, Spain NanoBiomedicine Initiative, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
10
|
Mangel WF, San Martín C. Structure, function and dynamics in adenovirus maturation. Viruses 2014; 6:4536-70. [PMID: 25421887 PMCID: PMC4246237 DOI: 10.3390/v6114536] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/10/2014] [Accepted: 11/17/2014] [Indexed: 01/18/2023] Open
Abstract
Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a "molecular sled" to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core is more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. Finally, possible roles for maturation of the terminal protein are discussed.
Collapse
Affiliation(s)
- Walter F Mangel
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | - Carmen San Martín
- Department of Macromolecular Structure and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain.
| |
Collapse
|
11
|
Inturi R, Thaduri S, Punga T. Adenovirus precursor pVII protein stability is regulated by its propeptide sequence. PLoS One 2013; 8:e80617. [PMID: 24260437 PMCID: PMC3829898 DOI: 10.1371/journal.pone.0080617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
Adenovirus encodes for the pVII protein, which interacts and modulates virus DNA structure in the infected cells. The pVII protein is synthesized as the precursor protein and undergoes proteolytic processing by viral proteinase Avp, leading to release of a propeptide sequence and accumulation of the mature VII protein. Here we elucidate the molecular functions of the propeptide sequence present in the precursor pVII protein. The results show that the propeptide is the destabilizing element targeting the precursor pVII protein for proteasomal degradation. Our data further indicate that the propeptide sequence and the lysine residues K26 and K27 regulate the precursor pVII protein stability in a co-dependent manner. We also provide evidence that the Cullin-3 E3 ubiquitin ligase complex alters the precursor pVII protein stability by association with the propeptide sequence. In addition, we show that inactivation of the Cullin-3 protein activity reduces adenovirus E1A gene expression during early phase of virus infection. Collectively, our results indicate a novel function of the adenovirus propeptide sequence and involvement of Cullin-3 in adenovirus gene expression.
Collapse
Affiliation(s)
- Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Srinivas Thaduri
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
12
|
Processing of the l1 52/55k protein by the adenovirus protease: a new substrate and new insights into virion maturation. J Virol 2013; 88:1513-24. [PMID: 24227847 DOI: 10.1128/jvi.02884-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Late in adenovirus assembly, the viral protease (AVP) becomes activated and cleaves multiple copies of three capsid and three core proteins. Proteolytic maturation is an absolute requirement to render the viral particle infectious. We show here that the L1 52/55k protein, which is present in empty capsids but not in mature virions and is required for genome packaging, is the seventh substrate for AVP. A new estimate on its copy number indicates that there are about 50 molecules of the L1 52/55k protein in the immature virus particle. Using a quasi-in vivo situation, i.e., the addition of recombinant AVP to mildly disrupted immature virus particles, we show that cleavage of L1 52/55k is DNA dependent, as is the cleavage of the other viral precursor proteins, and occurs at multiple sites, many not conforming to AVP consensus cleavage sites. Proteolytic processing of L1 52/55k disrupts its interactions with other capsid and core proteins, providing a mechanism for its removal during viral maturation. Our results support a model in which the role of L1 52/55k protein during assembly consists in tethering the viral core to the icosahedral shell and in which maturation proceeds simultaneously with packaging, before the viral particle is sealed.
Collapse
|
13
|
Anand SK, Gaba A, Singh J, Tikoo SK. Bovine adenovirus 3 core protein precursor pVII localizes to mitochondria, and modulates ATP synthesis, mitochondrial Ca2+ and mitochondrial membrane potential. J Gen Virol 2013; 95:442-452. [PMID: 24123521 DOI: 10.1099/vir.0.057059-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viruses modulate the functions of mitochondria by translocating viral proteins to the mitochondria. Subcellular fractionation and sensitivity to proteinase K/Triton X-100 treatment of mitochondrial fractions of bovine adenovirus (BAdV)-3-infected/transfected cells suggested that core protein pVII localizes to the mitochondria and contains a functional mitochondrial localization signal. Moreover, mitochondrial localization of BAdV-3 pVII appears to help in the retention of mitochondrial Ca(2+), inducing a significant increase in the levels of ATP and maintaining the mitochondrial membrane potential (MMP) in transfected cells. In contrast, mitochondrial localization of BAdV-3 pVII has no significant effect on the levels of cytoplasmic Ca(2+) and reactive oxygen species production in the transfected cells. Consistent with these results, expression of pVII in transfected cells treated with staurosporine decreased significantly the activation of caspase-3. Our results suggested that BAdV-3 pVII localizes to mitochondria, and interferes with apoptosis by inhibiting loss of the MMP and by increasing mitochondrial Ca(2+) and ATP production.
Collapse
Affiliation(s)
- Sanjeev K Anand
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada.,Vaccine & Infectious Disease Organization - International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Amit Gaba
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada.,Vaccine & Infectious Disease Organization - International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Jaswant Singh
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Suresh K Tikoo
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Canada.,Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada.,Vaccine & Infectious Disease Organization - International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
14
|
Abstract
Adenoviruses have been studied intensively for over 50 years as models of virus-cell interactions and latterly as gene vectors. With the advent of more sophisticated structural analysis techniques the disposition of most of the 13 structural proteins have been defined to a reasonable level. This review seeks to describe the functional properties of these proteins and shows that they all have a part to play in deciding the outcome of an infection and act at every level of the virus's path through the host cell. They are primarily involved in the induction of the different arms of the immune system and a better understanding of their overall properties should lead to more effective ways of combating virus infections.
Collapse
Affiliation(s)
- W C Russell
- School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| |
Collapse
|
15
|
Yang TC, Yang Q, Maluf NK. Interaction of the adenoviral IVa2 protein with a truncated viral DNA packaging sequence. Biophys Chem 2008; 140:78-90. [PMID: 19150169 DOI: 10.1016/j.bpc.2008.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
Adenoviral (Ad) infection typically poses little health risk for immunosufficient individuals. However, for immunocompromised individuals, such as AIDS patients and organ transplant recipients, especially pediatric heart transplant recipients, Ad infection is common and can be lethal. Ad DNA packaging is the process whereby the Ad genome becomes encapsulated by the viral capsid. Specific packaging is dependent upon the packaging sequence (PS), which is composed of seven repeated elements called A repeats. The Ad protein, IVa2, which is required for viral DNA packaging, has been shown to bind specifically to synthetic DNA probes containing A repeats I and II, however, the molecular details of this interaction have not been investigated. In this work we have studied the binding of a truncated form of the IVa2 protein, that has previously been shown to be sufficient for virus viability, to a DNA probe containing A repeats I and II. We find that the IVa2 protein exists as a monomer in solution, and that a single IVa2 monomer binds to this DNA with high affinity (K(d)< approximately 10 nM), and moderate specificity, and that the trIVa2 protein interacts in a fundamentally different way with DNA containing A repeats than it does with non-specific DNA. We also find that at elevated IVa2 concentrations, additional binding, beyond the singly ligated complex, is observed. When this reaction is modeled as representing the binding of a second IVa2 monomer to the singly ligated complex, the K(d) is 1.4+/-0.7 microM, implying a large degree of negative cooperativity exists for placing two IVa2 monomers on a DNA with adjacent A repeats.
Collapse
Affiliation(s)
- Teng-Chieh Yang
- University of Colorado Denver, Department of Pharmaceutical Sciences, School of Pharmacy C238-P15, P.O Box 6511, Aurora, CO 80045, USA
| | | | | |
Collapse
|
16
|
Ali H, LeRoy G, Bridge G, Flint SJ. The adenovirus L4 33-kilodalton protein binds to intragenic sequences of the major late promoter required for late phase-specific stimulation of transcription. J Virol 2006; 81:1327-38. [PMID: 17093188 PMCID: PMC1797539 DOI: 10.1128/jvi.01584-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The adenovirus late IVa2 protein is required for maximally efficient transcription from the viral major late (ML) promoter, and hence, the synthesis of the majority of viral late proteins. This protein is a sequence-specific DNA-binding protein that also promotes the assembly of progeny virus particles. Previous studies have established that a IVa2 protein dimer (DEF-B) binds specifically to an intragenic ML promoter sequence necessary for late phase-specific stimulation of ML transcription. However, activation of transcription from the ML promoter correlates with binding of at least one additional infected-cell-specific protein, termed DEF-A, to the promoter. Using an assay for the DNA-binding activity of DEF-A, we identified the unknown protein by using conventional purification methods, purification of FLAG-tagged IVa2-protein-containing complexes, and transient synthesis of viral late proteins. The results of these experiments established that the viral L4 33-kDa protein is the only component of DEF-A: the IVa2 and L4 33-kDa proteins are necessary and sufficient for formation of all previously described complexes in the intragenic control region of the ML promoter. Furthermore, the L4 33-kDa protein binds to the promoter with the specificity characteristic of DEF-A and stimulates transcription from the ML promoter in transient-expression assays.
Collapse
Affiliation(s)
- Humayra Ali
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
17
|
Paz J, Yao H, Lim HS, Lu XY, Zhang W. The neuroprotective role of attractin in neurodegeneration. Neurobiol Aging 2006; 28:1446-56. [PMID: 16860906 DOI: 10.1016/j.neurobiolaging.2006.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/04/2006] [Accepted: 06/15/2006] [Indexed: 11/21/2022]
Abstract
Loss-of-function mutations of attractin (Atrn) in animals result in age-dependent progressive neurodegeneration including neuronal cell death, hypomyelination and vacuolation. The mechanisms of how age-dependent neurodegeneration occurs in these animals are not clear. In this study, we found that reducing the endogenous expression level of Atrn exacerbated, whereas overexpressing Atrn protected against, the neuronal cell death caused by the neurotoxins, 1-methyl-4-phenylpyridinium (MPP+) and lactacystin. In addition, both MPP+ and lactacystin-induced cytochrome c and apoptosis inducing factor (AIF) release, which was inhibited by overexpressing Atrn and enhanced by knocking down Atrn, indicating that Atrn may be involved in regulating the mitochondrial function. Furthermore, we found that vast majority of the dopaminergic neurons in mice express Atrn and its expression decreases with age. Our findings demonstrated that Atrn may play a protective role against environmental toxins, and implied a potential therapeutic effect of Atrn for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeff Paz
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC6205, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Human adenoviruses (HAdVs) can cause mild respiratory, gastrointestinal, urogenital and ocular disease. Knowledge about HAdVs has been expanding for more than five decades putting them amongst the most-studied viruses. This continued interest stems, to a great extent, from the fact that these double-stranded DNA viruses have proven to be a versatile tool to probe the basic phenomena of eukaryotic cells. HAdV research has led to the discovery of, for instance, RNA splicing and greatly contributed to our knowledge of processes as fundamental as replication, transcription and translation. Moreover, the transformation of rodent cells by HAdVs has provided a system to unravel the molecular pathways that control cell proliferation. As a result, the genetic organisation of these agents is known in great detail allowing the straightforward manipulation of their genomes. In addition, the virus itself became renowned for its ability to produce large amounts of progeny and to efficiently infect mammalian cells regardless of their cell cycle status. These features contributed to the broad use of recombinant HAdVs as gene carriers particularly in in vivo settings where the vast majority of target cells are post-mitotic. The most advanced type of HAdV vectors can accommodate up to 37 kb of foreign DNA and are devoid of viral genes. With the aid of these high-capacity HAdV vectors large physiologically responsive transcriptional elements and/or genes can be efficiently introduced into target cells while minimising adaptive immune responses against the transduced cells. This article provides information on HAdV especially on the aspects pertinent to the design, production and performance of its recombinant forms. The development and characteristics of the main HAdV-based vector types are also briefly reviewed.
Collapse
Affiliation(s)
- Manuel A F V Gonçalves
- Gene Therapy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | |
Collapse
|
19
|
Perez-Romero P, Gustin KE, Imperiale MJ. Dependence of the encapsidation function of the adenovirus L1 52/55-kilodalton protein on its ability to bind the packaging sequence. J Virol 2006; 80:1965-71. [PMID: 16439552 PMCID: PMC1367168 DOI: 10.1128/jvi.80.4.1965-1971.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The adenovirus IVa2 and L1 52/55-kDa proteins are involved in the assembly of new virus particles. Both proteins bind to the packaging sequence of the viral chromosome, and the lack of expression of either protein results in no virus progeny: the absence of the L1 52/55-kDa protein leads to formation of only empty capsids, and the absence of the IVa2 protein results in no capsid assembly. Furthermore, the IVa2 and L1 52/55-kDa proteins interact with each other during adenovirus infection. However, what is not yet clear is when and how this interaction occurs during the course of the viral infection. We defined the domains of the L1 52/55-kDa protein required for interaction with the IVa2 protein, DNA binding, and virus replication by constructing L1 52/55-kDa protein truncations. We found that the N-terminal 173 amino acids of the L1 52/55-kDa protein are essential for interaction with the IVa2 protein. However, for both DNA binding and complementation of the pm8001 mutant virus, which does not express the L1 52/55-kDa protein, the amino-terminal 331 amino acids of the L1 52/55-kDa protein are necessary. These results suggest that the production of infectious virus particles depends on the ability of the L1 52/55-kDa protein to bind to DNA.
Collapse
Affiliation(s)
- Pilar Perez-Romero
- University of Michigan Medical School, 6304 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI 48109-0942, USA.
| | | | | |
Collapse
|
20
|
Lee TJ, Guo P. Interaction of gp16 with pRNA and DNA for Genome Packaging by the Motor of Bacterial Virus phi29. J Mol Biol 2006; 356:589-99. [PMID: 16376938 DOI: 10.1016/j.jmb.2005.10.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/12/2005] [Accepted: 10/17/2005] [Indexed: 11/18/2022]
Abstract
One striking feature in the assembly of linear double-stranded (ds) DNA viruses is that their genome is translocated into a preformed protein coat via a motor involving two non-structural components with certain characteristics of ATPase. In bacterial virus phi29, these two components include the protein gp16 and a packaging RNA (pRNA). The structure and function of other phi29 motor components have been well elucidated; however, studies on the role of gp16 have been seriously hampered by its hydrophobicity and self-aggregation. Such problems caused by insolubility also occur in the study of other viral DNA-packaging motors. Contradictory data have been published regarding the role and stoichiometry of gp16, which has been reported to bind every motor component, including pRNA, DNA, gp3, DNA-gp3, connector, pRNA-free procapsid, and procapsid/pRNA complex. Such conflicting data from a binding assay could be due to the self-aggregation of gp16. Our recent advance to produce soluble and highly active gp16 has enabled further studies on gp16. It was demonstrated in this report that gp16 bound to DNA non-specifically. gp16 bound to the pRNA-containing procapsid much more strongly than to the pRNA-free procapsid. The domain of pRNA for gp16 interaction was the 5'/3' paired helical region. The C18C19A20 bulge that is essential for DNA packaging was found to be dispensable for gp16 binding. This result confirms the published model that pRNA binds to the procapsid with its central domain and extends its 5'/3' DNA-packaging domain for gp16 binding. It suggests that gp16 serves as a linkage between pRNA and DNA, and as an essential DNA-contacting component during DNA translocation. The data also imply that, with the exception of the C18C19A20 bulge, the main role of the 5'/3' helical double-stranded region of pRNA is not for procapsid binding but for binding to gp16.
Collapse
Affiliation(s)
- Tae-Jin Lee
- Department of Pathobiology, Weldon School of Biomedical Engineering, and Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
21
|
Haruki H, Okuwaki M, Miyagishi M, Taira K, Nagata K. Involvement of template-activating factor I/SET in transcription of adenovirus early genes as a positive-acting factor. J Virol 2006; 80:794-801. [PMID: 16378981 PMCID: PMC1346848 DOI: 10.1128/jvi.80.2.794-801.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 10/21/2005] [Indexed: 02/04/2023] Open
Abstract
The adenovirus genome complexed with viral core protein VII (adenovirus DNA-protein VII complex) at least is the bona fide template for transcription of adenovirus early genes. It is believed that the highly basic protein VII, like cellular histones, is a negative regulator for genome functions. Analyses with in vitro replication and transcription systems using the adenovirus DNA-protein VII complex have revealed that remodeling of the complex is crucial for efficient DNA replication and transcription. We identified host acidic proteins, template-activating factor I (TAF-I), TAF-II, and TAF-III as stimulatory factors for replication from the adenovirus DNA-protein VII complex. Recently, it was reported that the adenovirus DNA interacts with TAF-I and pp32, another host acidic protein (Y. Xue, J. S. Johnson, D. A. Ornelles, J. Lieberman, and D. A. Engel, J. Virol. 79:2474-2483, 2005). We found that TAF-I interacts and colocalizes with protein VII in adenovirus-infected cells during the early phases of infection, but pp32 does not. Although pp32 had the potential ability to interact with protein VII, pp32 did not remodel the adenovirus DNA-protein VII complex in vitro. Small interfering RNA-mediated knockdown of TAF-I expression leads to the delay of the transcription timing of early genes. These results provide evidence that TAF-I plays an important role in the early stages of the adenovirus infection cycle.
Collapse
Affiliation(s)
- Hirohito Haruki
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | | | |
Collapse
|
22
|
Xiao F, Moll WD, Guo S, Guo P. Binding of pRNA to the N-terminal 14 amino acids of connector protein of bacteriophage phi29. Nucleic Acids Res 2005; 33:2640-9. [PMID: 15886394 PMCID: PMC1092275 DOI: 10.1093/nar/gki554] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
During assembly, bacterial virus phi29 utilizes a motor to insert genomic DNA into a preformed protein shell called the procapsid. The motor contains one twelve-subunit connector with a 3.6 nm central channel for DNA transportation, six viral-encoded RNA (packaging RNA or pRNA) and a protein, gp16, with unknown stoichiometry. Recent DNA-packaging models proposed that the 5-fold procapsid vertexes and 12-fold connector (or the hexameric pRNA ring) represented a symmetry mismatch enabling production of a force to drive a rotation motor to translocate and compress DNA. There was a discrepancy regarding the location of the foothold for the pRNA. One model [C. Chen and P. Guo (1997) J. Virol., 71, 3864–3871] suggested that the foothold for pRNA was the connector and that the pRNA–connector complex was part of the rotor. However, one other model suggested that the foothold for pRNA was the 5-fold vertex of the capsid protein and that pRNA was the stator. To elucidate the mechanism of phi29 DNA packaging, it is critical to confirm whether pRNA binds to the 5-fold vertex of the capsid protein or to the 12-fold symmetrical connector. Here, we used both purified connector and purified procapsid for binding studies with in vitro transcribed pRNA. Specific binding of pRNA to the connector in the procapsid was found by photoaffinity crosslinking. Removal of the N-terminal 14 amino acids of the gp10 protein by proteolytic cleavage resulted in undetectable binding of pRNA to either the connector or the procapsid, as investigated by agarose gel electrophoresis, SDS–PAGE, sucrose gradient sedimentation and N-terminal peptide sequencing. It is therefore concluded that pRNA bound to the 12-fold symmetrical connector to form a pRNA–connector complex and that the foothold for pRNA is the connector but not the capsid protein.
Collapse
Affiliation(s)
| | | | | | - Peixuan Guo
- To whom correspondence should be addressed. Tel: +1 765 494 7561; Fax: +1 765 496 1795;
| |
Collapse
|