1
|
Prévost J, Anand SP, Rajashekar JK, Zhu L, Richard J, Goyette G, Medjahed H, Gendron-Lepage G, Chen HC, Chen Y, Horwitz JA, Grunst MW, Zolla-Pazner S, Haynes BF, Burton DR, Flavell RA, Kirchhoff F, Hahn BH, Smith AB, Pazgier M, Nussenzweig MC, Kumar P, Finzi A. HIV-1 Vpu restricts Fc-mediated effector functions in vivo. Cell Rep 2022; 41:111624. [PMID: 36351384 PMCID: PMC9703018 DOI: 10.1016/j.celrep.2022.111624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Non-neutralizing antibodies (nnAbs) can eliminate HIV-1-infected cells via antibody-dependent cellular cytotoxicity (ADCC) and were identified as a correlate of protection in the RV144 vaccine trial. Fc-mediated effector functions of nnAbs were recently shown to alter the course of HIV-1 infection in vivo using a vpu-defective virus. Since Vpu is known to downregulate cell-surface CD4, which triggers conformational changes in the viral envelope glycoprotein (Env), we ask whether the lack of Vpu expression was linked to the observed nnAbs activity. We find that restoring Vpu expression greatly reduces nnAb recognition of infected cells, rendering them resistant to ADCC. Moreover, administration of nnAbs in humanized mice reduces viral loads only in animals infected with a vpu-defective but not with a wild-type virus. CD4-mimetics administration, known to "open" Env and expose nnAb epitopes, renders wild-type viruses sensitive to nnAbs Fc-effector functions. This work highlights the importance of Vpu-mediated evasion of humoral responses.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jyothi Krishnaswamy Rajashekar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Li Zhu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Yaozong Chen
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michael W Grunst
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), Duke University, Durham, NC 27710, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02139, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
2
|
Deb A, Johnson WA, Kline AP, Scott BJ, Meador LR, Srinivas D, Martin-Garcia JM, Dörner K, Borges CR, Misra R, Hogue BG, Fromme P, Mor TS. Bacterial expression, correct membrane targeting and functional folding of the HIV-1 membrane protein Vpu using a periplasmic signal peptide. PLoS One 2017; 12:e0172529. [PMID: 28225803 PMCID: PMC5321405 DOI: 10.1371/journal.pone.0172529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/06/2017] [Indexed: 12/04/2022] Open
Abstract
Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.
Collapse
Affiliation(s)
- Arpan Deb
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - William A. Johnson
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Alexander P. Kline
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Boston J. Scott
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Lydia R. Meador
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Dustin Srinivas
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jose M. Martin-Garcia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Katerina Dörner
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Chad R. Borges
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Personal Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Rajeev Misra
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Brenda G. Hogue
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Tsafrir S. Mor
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
3
|
Matheson NJ, Greenwood EJ, Lehner PJ. Manipulation of immunometabolism by HIV-accessories to the crime? Curr Opin Virol 2016; 19:65-70. [PMID: 27448768 DOI: 10.1016/j.coviro.2016.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Evolutionary pressure has produced an 'arms race' between cellular restriction factors (limiting viral replication) and viral proteins (overcoming host restriction). The host factors SAMHD1 and SLFN1 patrol metabolic bottlenecks required for HIV replication. Conversely, the HIV accessory proteins Vpx, Vpu and Nef manipulate cellular metabolism to enable viral replication. Recent work identifying Vpu-mediated downregulation of the alanine transporter SNAT1 and Nef-mediated downregulation of the serine carriers SERINC3/5 has uncovered the importance of HIV manipulation of the amino acid supply. Interference with CD4(+) T-cell amino acid metabolism suggests a novel paradigm of viral immunomodulation, and signposts fundamental aspects of lymphocyte biology.
Collapse
Affiliation(s)
- Nicholas J Matheson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| | - Edward Jd Greenwood
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| |
Collapse
|
4
|
Remodeling of the Host Cell Plasma Membrane by HIV-1 Nef and Vpu: A Strategy to Ensure Viral Fitness and Persistence. Viruses 2016; 8:67. [PMID: 26950141 PMCID: PMC4810257 DOI: 10.3390/v8030067] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
The plasma membrane protects the cell from its surroundings and regulates cellular communication, homing, and metabolism. Not surprisingly, the composition of this membrane is highly controlled through the vesicular trafficking of proteins to and from the cell surface. As intracellular pathogens, most viruses exploit the host plasma membrane to promote viral replication while avoiding immune detection. This is particularly true for the enveloped human immunodeficiency virus (HIV), which assembles and obtains its lipid shell directly at the plasma membrane. HIV-1 encodes two proteins, negative factor (Nef) and viral protein U (Vpu), which function primarily by altering the quantity and localization of cell surface molecules to increase virus fitness despite host antiviral immune responses. These proteins are expressed at different stages in the HIV-1 life cycle and employ a variety of mechanisms to target both unique and redundant surface proteins, including the viral receptor CD4, host restriction factors, immunoreceptors, homing molecules, tetraspanins and membrane transporters. In this review, we discuss recent progress in the study of the Nef and Vpu targeting of host membrane proteins with an emphasis on how remodeling of the cell membrane allows HIV-1 to avoid host antiviral immune responses leading to the establishment of systemic and persistent infection.
Collapse
|
5
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
6
|
Matheson NJ, Sumner J, Wals K, Rapiteanu R, Weekes MP, Vigan R, Weinelt J, Schindler M, Antrobus R, Costa ASH, Frezza C, Clish CB, Neil SJD, Lehner PJ. Cell Surface Proteomic Map of HIV Infection Reveals Antagonism of Amino Acid Metabolism by Vpu and Nef. Cell Host Microbe 2015; 18:409-23. [PMID: 26439863 PMCID: PMC4608997 DOI: 10.1016/j.chom.2015.09.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/30/2015] [Accepted: 09/10/2015] [Indexed: 11/24/2022]
Abstract
Critical cell surface immunoreceptors downregulated during HIV infection have previously been identified using non-systematic, candidate approaches. To gain a comprehensive, unbiased overview of how HIV infection remodels the T cell surface, we took a distinct, systems-level, quantitative proteomic approach. >100 plasma membrane proteins, many without characterized immune functions, were downregulated during HIV infection. Host factors targeted by the viral accessory proteins Vpu or Nef included the amino acid transporter SNAT1 and the serine carriers SERINC3/5. We focused on SNAT1, a β-TrCP-dependent Vpu substrate. SNAT1 antagonism was acquired by Vpu variants from the lineage of SIVcpz/HIV-1 viruses responsible for pandemic AIDS. We found marked SNAT1 induction in activated primary human CD4+ T cells, and used Consumption and Release (CoRe) metabolomics to identify alanine as an endogenous SNAT1 substrate required for T cell mitogenesis. Downregulation of SNAT1 therefore defines a unique paradigm of HIV interference with immunometabolism. Unbiased global analysis of T cell surface proteome remodeling during HIV infection >100 proteins downregulated, including Nef targets SERINC3/5 and Vpu target SNAT1 β-TrCP-dependent SNAT1 downregulation acquired by pandemic SIVcpz/HIV-1 viruses Uptake of exogenous alanine by SNAT1 critical for primary CD4+ T cell mitogenesis
Collapse
Affiliation(s)
- Nicholas J Matheson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| | - Jonathan Sumner
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Kim Wals
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Radu Rapiteanu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Raphael Vigan
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Julia Weinelt
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Michael Schindler
- Helmholtz Center Munich, Institute of Virology, 85764 Neuherberg, Germany; Institute of Medical Virology and Epidemiology of Viral Diseases, University Clinic Tübingen, 72076 Tübingen, Germany
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Ana S H Costa
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Christian Frezza
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Clary B Clish
- The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Stuart J D Neil
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| |
Collapse
|
7
|
Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol 2015; 96:2000-2027. [PMID: 26023149 DOI: 10.1099/vir.0.000201] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The channel-forming activity of a family of small, hydrophobic integral membrane proteins termed 'viroporins' is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic structure and can perform multiple functions during the virus life cycle, including those distinct from their role as oligomeric membrane channels. Recent progress has seen an explosion in both the identification and understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug target. This review attempts to summarize our current understanding of the channel-forming functions for key members of this growing family, including recent progress in structural studies and drug discovery research, as well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges to human and animal health.
Collapse
Affiliation(s)
- Claire Scott
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
8
|
Schmitt K, Katuwal M, Wang Y, Li C, Stephens EB. Analysis of the N-terminal positively charged residues of the simian immunodeficiency virus Vif reveals a critical amino acid required for the antagonism of rhesus APOBEC3D, G, and H. Virology 2013; 449:140-9. [PMID: 24418547 DOI: 10.1016/j.virol.2013.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/16/2013] [Accepted: 10/29/2013] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that apolipoprotein B mRNA editing, enzyme catalytic, polypeptide G (APOBEC3G; hA3G) and F (APOBEC3F; hA3F) proteins interact with a nonlinear binding site located at the N-terminal region of the HIV-1 Vif protein. We have analyzed the role of 12 positively charged amino acids of the N-terminal region of the SIV Vif. Simian-human immunodeficiency viruses (SHIV) were constructed that expressed each of these amino acid substitutions. These viruses were examined for replication in the presence of rhesus macaque APOBEC3 proteins (rhA3A-rhA3H), incorporation of the different A3 proteins into virions, and replication in rhesus macaque PBMC. Similar to other studies, we found that K27 was essential for rhA3G activity and rhA3F but was not important for restriction of SHIVΔvif by rhA3A, rhA3D or rhA3H. Our results identified the arginine at position 14 of the SIV Vif as a critical residue for virus restriction by rhA3D, rhA3G and rhA3H.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Miki Katuwal
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Yaqiong Wang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Cicy Li
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Edward B Stephens
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
9
|
Functional antagonism of rhesus macaque and chimpanzee BST-2 by HIV-1 Vpu is mediated by cytoplasmic domain interactions. J Virol 2013; 87:13825-36. [PMID: 24109238 DOI: 10.1128/jvi.02567-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by interfering with the function of BST-2/tetherin, a cellular protein inhibiting virus release. The Vpu protein encoded by NL4-3, a widely used HIV-1 laboratory strain, antagonizes human BST-2 but not monkey or murine BST-2, leading to the conclusion that BST-2 antagonism by Vpu is species specific. In contrast, we recently identified several primary Vpu isolates, such as Vpu of HIV-1DH12, capable of antagonizing both human and rhesus BST-2. Here we report that while Vpu interacts with human BST-2 primarily through their respective transmembrane domains, antagonism of rhesus BST-2 by Vpu involved an interaction of their cytoplasmic domains. Importantly, a Vpu mutant carrying two mutations in its transmembrane domain (A14L and W22A), rendering it incompetent for interaction with human BST-2, was able to interact with human BST-2 carrying the rhesus BST-2 cytoplasmic domain and partially neutralized the ability of this BST-2 variant to inhibit viral release. Bimolecular fluorescence complementation analysis to detect Vpu-BST-2 interactions suggested that the physical interaction of Vpu with rhesus or chimpanzee BST-2 involves a 5-residue motif in the cytoplasmic domain of BST-2 previously identified as important for the antagonism of monkey and great ape BST-2 by simian immunodeficiency virus (SIV) Nef. Thus, our study identifies a novel mechanism of antagonism of monkey and great ape BST-2 by Vpu that targets the same motif in BST-2 used by SIV Nef and might explain the expanded host range observed for Vpu isolates in our previous study.
Collapse
|
10
|
Strebel K. HIV-1 Vpu - an ion channel in search of a job. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1074-81. [PMID: 23831603 DOI: 10.1016/j.bbamem.2013.06.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 12/22/2022]
Abstract
Vpu is a small membrane protein encoded by HIV-1 and some SIV isolates. The protein is best known for its ability to degrade CD4 and to enhance the release of progeny virions from infected cells. However, Vpu also promotes host-cell apoptosis by deregulating the NFκB signaling pathway and it assembles into cation-conducting membrane pores. This review summarizes our current understanding of these various functions of Vpu with particular emphasis on recent progress in the Vpu field. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Klaus Strebel
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH Bldg. 4, Room 310, 4 Center Drive MSC 0460, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
11
|
Lucas TM, Janaka SK, Stephens EB, Johnson MC. Vpu downmodulates two distinct targets, tetherin and gibbon ape leukemia virus envelope, through shared features in the Vpu cytoplasmic tail. PLoS One 2012; 7:e51741. [PMID: 23284757 PMCID: PMC3526647 DOI: 10.1371/journal.pone.0051741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/09/2012] [Indexed: 11/21/2022] Open
Abstract
During human immunodeficiency virus-1 (HIV-1) assembly, the host proteins CD4 (the HIV-1 receptor) and tetherin (an interferon stimulated anti-viral protein) both reduce viral fitness. The HIV-1 accessory gene Vpu counteracts both of these proteins, but it is thought to do so through two distinct mechanisms. Modulation of CD4 likely occurs through proteasomal degradation from the endoplasmic reticulum. The exact mechanism of tetherin modulation is less clear, with possible roles for degradation and alteration of protein transport to the plasma membrane. Most investigations of Vpu function have used different assays for CD4 and tetherin. In addition, many of these investigations used exogenously expressed Vpu, which could result in variable expression levels. Thus, few studies have investigated these two Vpu functions in parallel assays, making direct comparisons difficult. Here, we present results from a rapid assay used to simultaneously investigate Vpu-targeting of both tetherin and a viral glycoprotein, gibbon ape leukemia virus envelope (GaLV Env). We previously reported that Vpu modulates GaLV Env and prevents its incorporation into HIV-1 particles through a recognition motif similar to that found in CD4. Using this assay, we performed a comprehensive mutagenic scan of Vpu in its native proviral context to identify features required for both types of activity. We observed considerable overlap in the Vpu sequences required to modulate tetherin and GaLV Env. We found that features in the cytoplasmic tail of Vpu, specifically within the cytoplasmic tail hinge region, were required for modulation of both tetherin and GaLV Env. Interestingly, these same regions features have been determined to be critical for CD4 downmodulation. We also observed a role for the transmembrane domain in the restriction of tetherin, as previously reported, but not of GaLV Env. We propose that Vpu may target both proteins in a mechanistically similar manner, albeit in different cellular locations.
Collapse
Affiliation(s)
- Tiffany M. Lucas
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Science Center, University of Missouri-School of Medicine, Columbia, Missouri, United States of America
| | - Sanath K. Janaka
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Science Center, University of Missouri-School of Medicine, Columbia, Missouri, United States of America
| | - Edward B. Stephens
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Marc C. Johnson
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Science Center, University of Missouri-School of Medicine, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
12
|
Ruiz A, Schmitt K, Culley N, Stephens EB. Simian-Human immunodeficiency viruses expressing chimeric subtype B/C Vpu proteins demonstrate the importance of the amino terminal and transmembrane domains in the rate of CD4(+) T cell loss in macaques. Virology 2012; 435:395-405. [PMID: 23218949 DOI: 10.1016/j.virol.2012.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/20/2012] [Accepted: 10/20/2012] [Indexed: 10/27/2022]
Abstract
Previously, we reported that simian-human immunodeficiency viruses expressing either the lab adapted subtype B (SHIV(KU-1bMC33)) or subtype C (SHIV(SCVpu)) Vpu proteins of human immunodeficiency virus type 1 (HIV-1) had different rates of CD4(+) T cell loss following inoculation into macaques. In this study, we have generated SHIVs that express either the subtype B or subtype C N-terminal (NTD) and transmembrane (TMD) domains and the opposing cytoplasmic domain (SHIV(VpuBC), SHIV(VpuCB)). In culture systems, SHIV(VpuBC) replicated faster than SHIV(VpuCB) while both proteins exhibited similar ability to down-modulate CD4 surface expression. Following inoculation into macaques, SHIV(VpuBC) resulted in rapid CD4(+) T cell loss similar to the parental SHIV(KU-1bMC33), while the rate of CD4(+) T cell loss in those inoculated with SHIV(VpuCB) was intermediate of SHIV(SCVpu) and SHIV(KU-1bMC33). These results emphasize the importance of the Vpu NTD/TMD region in the rate of CD4(+) T cell loss in the pathogenic X4 SHIV/macaque model.
Collapse
Affiliation(s)
- Autumn Ruiz
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
13
|
Cole G, Simonetti K, Ademi I, Sharpe S. Dimerization of the transmembrane domain of human tetherin in membrane mimetic environments. Biochemistry 2012; 51:5033-40. [PMID: 22667354 DOI: 10.1021/bi201747t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetherin/Bst-2 is a cell surface protein that can act as a restriction factor against a number of enveloped viruses, including HIV-1. It acts by tethering new virus particles to the host cell membrane, promoting their internalization and degradation. Tetherin is a type II membrane protein, with an N-terminal transmembrane domain, an extracellular coiled-coil domain, and a C-terminal GPI anchor. This double membrane anchor is important for anti-HIV activity, as is dimerization of the coiled-coil domain, but despite recent crystal structures of the coiled-coil ectodomains of human and mouse tetherin, the topology of tetherin with respect to host and viral membranes has yet to be determined. The tetherin transmembrane domain is also thought to mediate interactions with the HIV-1 encoded integral membrane protein Vpu, which is an antagonist of tetherin, through direct binding to the transmembrane region of Vpu. Using a combination of SDS-PAGE, size exclusion chromatography, and pyrene excimer fluorescence, we show that in the absence of the coiled-coil domain the transmembrane domain of human tetherin forms parallel homodimers in membrane mimetic environments. Transmembrane domain dimerization does not require disulfide bond formation and is favored in TFE, SDS micelles, and POPC liposomes. This observation has implications for functional models of tetherin, suggesting that both transmembrane domains in the dimeric molecule are inserted into the same lipid bilayer, rather than into opposing membranes.
Collapse
Affiliation(s)
- Gregory Cole
- Molecular Structure and Function Programme, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | | | | | | |
Collapse
|
14
|
The major determinant of attenuation in mice of the Candid1 vaccine for Argentine hemorrhagic fever is located in the G2 glycoprotein transmembrane domain. J Virol 2011; 85:10404-8. [PMID: 21795336 DOI: 10.1128/jvi.00856-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candid1, a live-attenuated Junin virus vaccine strain, was developed during the early 1980s to control Argentine hemorrhagic fever, a severe and frequently fatal human disease. Six amino acid substitutions were found to be unique to this vaccine strain, and their role in virulence attenuation in mice was analyzed using a series of recombinant viruses. Our results indicate that Candid1 is attenuated in mice through a single amino acid substitution in the transmembrane domain of the G2 glycoprotein. This work provides insight into the molecular mechanisms of attenuation of the only arenavirus vaccine currently available.
Collapse
|
15
|
Some human immunodeficiency virus type 1 Vpu proteins are able to antagonize macaque BST-2 in vitro and in vivo: Vpu-negative simian-human immunodeficiency viruses are attenuated in vivo. J Virol 2011; 85:9708-15. [PMID: 21775449 DOI: 10.1128/jvi.00626-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by targeting BST-2/tetherin, a cellular protein inhibiting virus release. The widely used HIV-1(NL4-3) Vpu functionally inactivates human BST-2 but not murine or monkey BST-2, leading to the notion that Vpu antagonism is species specific. Here we investigated the properties of the CXCR4-tropic simian-human immunodeficiency virus DH12 (SHIV(DH12)) and the CCR5-tropic SHIV(AD8), each of which carries vpu genes derived from different primary HIV-1 isolates. We found that virion release from infected rhesus peripheral blood mononuclear cells was enhanced to various degrees by the Vpu present in both SHIVs. Transfer of the SHIV(DH12) Vpu transmembrane domain to the HIV-1(NL4-3) Vpu conferred antagonizing activity against macaque BST-2. Inactivation of the SHIV(DH12) and SHIV(AD8) vpu genes impaired virus replication in 6 of 8 inoculated rhesus macaques, resulting in lower plasma viral RNA loads, slower losses of CD4(+) T cells, and delayed disease progression. The expanded host range of the SHIV(DH12) Vpu was not due to adaptation during passage in macaques but was an intrinsic property of the parental HIV-1(DH12) Vpu protein. These results demonstrate that the species-specific inhibition of BST-2 by HIV-1(NL4-3) Vpu is not characteristic of all HIV-1 Vpu proteins; some HIV-1 isolates encode a Vpu with a broader host range.
Collapse
|
16
|
Tokarev A, Guatelli J. Misdirection of membrane trafficking by HIV-1 Vpu and Nef: Keys to viral virulence and persistence. CELLULAR LOGISTICS 2011; 1:90-102. [PMID: 21922073 PMCID: PMC3173656 DOI: 10.4161/cl.1.3.16708] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 11/19/2022]
Abstract
The HIV-1 accessory protein Nef is well known for its manipulation of host cell endosomal trafficking. By linking transmembrane proteins to endosomal coats, Nef removes them from the surface of infected cells. Modulation of MHC proteins leads to viral evasion of cellular adaptive immunity, whereas modulation of receptors for the HIV envelope glycoprotein, including CD4, enhances viral infectivity. The other HIV-1 accessory proteins, Vif, Vpr and Vpu, share a mechanism of action distinct from Nef in that each interacts with a multi-subunit ubiquitin ligase complex to target cellular proteins for proteosomal degradation. However, newly uncovered functions and mechanistic aspects of Vpu likely involve endosomal trafficking: these include counteraction of the innate antiviral activity of the cellular transmembrane protein BST-2 (tetherin), as well as the removal of the lipid-antigen presenting protein CD1d and the natural killer cell ligand NTB-A from the cell surface. This review focuses on how Nef and Vpu interfere with normal intracellular membrane trafficking to facilitate the spread and virulence of HIV-1.
Collapse
Affiliation(s)
- Andrey Tokarev
- Department of Medicine; University of California, San Diego; and the San Diego Veterans Affairs Healthcare System; La Jolla, CA USA
| | | |
Collapse
|
17
|
Yoshida T, Kao S, Strebel K. Identification of Residues in the BST-2 TM Domain Important for Antagonism by HIV-1 Vpu Using a Gain-of-Function Approach. Front Microbiol 2011; 2:35. [PMID: 21687426 PMCID: PMC3109345 DOI: 10.3389/fmicb.2011.00035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/09/2011] [Indexed: 11/29/2022] Open
Abstract
The HIV-1 Vpu protein enhances the release of viral particles from the cell-surface in a cell-type specific manner. In the absence of Vpu, nascent virions remain tethered to the cell-surface in restricted cell-types. Recently, the human host factor BST-2/CD317/tetherin was found to be responsible for the inhibition of virus release. It was also reported that HIV-1 Vpu can target human BST-2 but is unable to interfere with the function of murine or simian BST-2. We performed a gain-of-function study to determine which of the differences between human and rhesus BST-2 account for the differential sensitivity to Vpu. We transferred human BST-2 sequences into rhesus BST-2 and assessed the resulting chimeras for inhibition of HIV-1 virus release and sensitivity to Vpu. We found that rhesus BST-2 carrying the transmembrane (TM) domain of human BST-2 is susceptible to HIV-1 Vpu. Finally, a single-amino-acid change in the rhesus BST-2 TM domain was sufficient to confer Vpu sensitivity.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA
| | | | | |
Collapse
|
18
|
Ruiz A, Hill MS, Schmitt K, Stephens EB. Membrane raft association of the Vpu protein of human immunodeficiency virus type 1 correlates with enhanced virus release. Virology 2010; 408:89-102. [PMID: 20880565 DOI: 10.1016/j.virol.2010.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/05/2010] [Accepted: 08/26/2010] [Indexed: 11/26/2022]
Abstract
The Vpu protein of human immunodeficiency virus type 1 (HIV-1) is known to enhance virion release from certain cell types. To accomplish this function, Vpu interacts with the restriction factor known as bone marrow stromal cell antigen 2 (BST-2)/tetherin. In this study, we analyzed whether the Vpu protein is associated with microdomains known as lipid or membrane rafts. Our results indicate that Vpu partially partitions into detergent-resistant membrane (DRM) fractions when expressed alone or in the context of simian-human immunodeficiency virus (SHIV) infection. The ability to be partitioned into rafts was observed with both subtype B and C Vpu proteins. The use of cholesterol lowering lovastatin/M-β-cyclodextrin and co-patching experiments confirmed that Vpu can be detected in cholesterol rich regions of membranes. Finally, we present data showing that raft association-defective transmembrane mutants of Vpu have impaired enhanced virus release function, but still maintain the ability to down-regulate CD4.
Collapse
Affiliation(s)
- Autumn Ruiz
- Department of Anatomy and Cell Biology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160
| | - M Sarah Hill
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160
| | - Kimberly Schmitt
- Department of Anatomy and Cell Biology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160
| | - Edward B Stephens
- Department of Anatomy and Cell Biology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160.,Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160
| |
Collapse
|
19
|
Schmitt K, Hill MS, Liu Z, Ruiz A, Culley N, Pinson DM, Stephens EB. Comparison of the replication and persistence of simian-human immunodeficiency viruses expressing Vif proteins with mutation of the SLQYLA or HCCH domains in macaques. Virology 2010; 404:187-203. [PMID: 20627348 PMCID: PMC2974619 DOI: 10.1016/j.virol.2010.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/17/2010] [Accepted: 04/18/2010] [Indexed: 01/30/2023]
Abstract
The Vif protein of primate lentiviruses interacts with APOBEC3 proteins, which results in shunting of the APOBEC3-Vif complex to the proteosome for degradation. Using the simian-human immunodeficiency virus (SHIV)/macaque model, we compared the replication and pathogenicity of SHIVs that express a Vif protein in which the entire SLQYLA (SHIV(Vif5A)) or HCCH (SHIV(VifHCCH(-))) domains were substituted with alanine residues. Each virus was inoculated into three macaques and various viral and immunological parameters followed for 6 months. All macaques maintained stable circulating CD4+ T cells, developed low viral loads, maintained the engineered mutations, yielded no histological lesions, and developed immunoprecipitating antibodies early post-inoculation. Sequence analysis of nef and vpu from three lymphoid tissues revealed a high percentage of G-to-A-substitutions. Our results show that while the presence of HCCH and SLQYLA domains are critical in vivo, there may exist APOBEC3 negative reservoirs that allow for low levels of viral replication and persistence but not disease.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - M. Sarah Hill
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Zhenqian Liu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Autumn Ruiz
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Nathan Culley
- Laboratory Animal Resources, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - David M. Pinson
- Laboratory Medicine and Pathology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Edward B. Stephens
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
20
|
Ruiz A, Lau D, Mitchell RS, Hill MS, Schmitt K, Guatelli JC, Stephens EB. BST-2 mediated restriction of simian-human immunodeficiency virus. Virology 2010; 406:312-21. [PMID: 20708210 DOI: 10.1016/j.virol.2010.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 04/27/2010] [Accepted: 07/14/2010] [Indexed: 11/18/2022]
Abstract
Pathogenic simian-human immunodeficiency viruses (SHIV) contain HIV-1 Vpu and SIV Nef, both shown to counteract BST-2 (HM1.24; CD317; tetherin) inhibition of virus release in a species-specific manner. We show that human and pig-tailed BST-2 (ptBST-2) restrict SHIV. We found that sequential "humanization" of the transmembrane domain (TMD) of the pig-tailed BST-2 (ptBST-2) protein resulted in a fluctuation in sensitivity to HIV-1 Vpu. Our results also show that the length of the TMD in human and ptBST-2 proteins is important for BST-2 restriction and susceptibility to Vpu. Taken together, our results emphasize the importance of tertiary structure in BST-2 antagonism and suggests that the HIV-1 Vpu transmembrane domain may have additional functions in vivo unrelated to BST-2 antagonism.
Collapse
Affiliation(s)
- Autumn Ruiz
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Hill MS, Ruiz A, Schmitt K, Stephens EB. Identification of amino acids within the second alpha helical domain of the human immunodeficiency virus type 1 Vpu that are critical for preventing CD4 cell surface expression. Virology 2009; 397:104-12. [PMID: 19944437 DOI: 10.1016/j.virol.2009.10.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/07/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes for a Vpu protein, which interacts with CD4 resulting in its degradation. In this study, we examined the role of the 10 amino acids within the predicted second alpha-helical domain of the subtype B Vpu cytoplasmic tail in CD4 down-modulation using a VpuEGFP reporter system. Our findings indicate that the invariant leucine at position 63 and, to a lesser extent, the valine at position 68 were required for CD4 down-modulation. Mutation of analogous L63 in Vpu proteins subtypes A2, B(YU-2), C, D, and H also abolished CD4 down-modulation from the cell surface. Co-immunoprecipitation analysis revealed that L63A and V68A mutants were capable of binding CD4 and still retained the ability to interact with h-beta-TrCP1. Taken together, these results indicate that amino acid substitutions in the second alpha-helical domain that retain the predicted structure and binding to h-beta-TrCP1 can influence Vpu-mediated CD4 degradation.
Collapse
Affiliation(s)
- M Sarah Hill
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
22
|
Strebel K, Luban J, Jeang KT. Human cellular restriction factors that target HIV-1 replication. BMC Med 2009; 7:48. [PMID: 19758442 PMCID: PMC2759957 DOI: 10.1186/1741-7015-7-48] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/16/2009] [Indexed: 01/23/2023] Open
Abstract
Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G), bone marrow stromal cell antigen 2 (BST-2), cyclophilin A, tripartite motif protein 5 alpha (Trim5alpha), and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions.
Collapse
Affiliation(s)
- Klaus Strebel
- Laboratory of Molecular Microbiology, NIAID, the National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
23
|
Andrew AJ, Miyagi E, Kao S, Strebel K. The formation of cysteine-linked dimers of BST-2/tetherin is important for inhibition of HIV-1 virus release but not for sensitivity to Vpu. Retrovirology 2009; 6:80. [PMID: 19737401 PMCID: PMC2754425 DOI: 10.1186/1742-4690-6-80] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 09/08/2009] [Indexed: 02/03/2023] Open
Abstract
Background The Human Immunodeficiency virus type 1 (HIV-1) Vpu protein enhances virus release from infected cells and induces proteasomal degradation of CD4. Recent work identified BST-2/CD317 as a host factor that inhibits HIV-1 virus release in a Vpu sensitive manner. A current working model proposes that BST-2 inhibits virus release by tethering viral particles to the cell surface thereby triggering their subsequent endocytosis. Results Here we defined structural properties of BST-2 required for inhibition of virus release and for sensitivity to Vpu. We found that BST-2 is modified by N-linked glycosylation at two sites in the extracellular domain. However, N-linked glycosylation was not important for inhibition of HIV-1 virus release nor did it affect surface expression or sensitivity to Vpu. Rodent BST-2 was previously found to form cysteine-linked dimers. Analysis of single, double, or triple cysteine mutants revealed that any one of three cysteine residues present in the BST-2 extracellular domain was sufficient for BST-2 dimerization, for inhibition of virus release, and sensitivity to Vpu. In contrast, BST-2 lacking all three cysteines in its ectodomain was unable to inhibit release of wild type or Vpu-deficient HIV-1 virions. This defect was not caused by a gross defect in BST-2 trafficking as the mutant protein was expressed at the cell surface of transfected 293T cells and was down-modulated by Vpu similar to wild type BST-2. Conclusion While BST-2 glycosylation was functionally irrelevant, formation of cysteine-linked dimers appeared to be important for inhibition of virus release. However lack of dimerization did not prevent surface expression or Vpu sensitivity of BST-2, suggesting Vpu sensitivity and inhibition of virus release are separable properties of BST-2.
Collapse
Affiliation(s)
- Amy J Andrew
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892-0460, USA.
| | | | | | | |
Collapse
|
24
|
Mutations in the highly conserved SLQYLA motif of Vif in a simian-human immunodeficiency virus result in a less pathogenic virus and are associated with G-to-A mutations in the viral genome. Virology 2008; 383:362-72. [PMID: 19027134 DOI: 10.1016/j.virol.2008.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 09/22/2008] [Accepted: 10/08/2008] [Indexed: 11/22/2022]
Abstract
The simian-human immunodeficiency virus (SHIV)/macaque model for human immunodeficiency virus type 1 has become a useful tool to assess the role of accessory genes in lentiviral pathogenesis. In this study, we introduced two amino acid changes in the highly conserved SLQYLA domain (to AAQYLA) of the SIV Vif protein. The resulting virus, SHIV(VifAAQYLA), was used to infect three macaques, which were followed for over six months. Plasma viral loads and circulating CD4(+) T cell levels were assessed during the course of infection. The three macaques inoculated with SHIV(VifAAQYLA) did not develop significant CD4(+) T cell loss over the course of their infection, had plasma viral RNA loads that were over 100-fold lower than macaques inoculated with parental SHIV(KU-1bMC33), and developed no histological lesions in lymphoid tissues. DNA and RT-PCR analysis revealed that only a select number of tissues were infected with this virus. Sequence analysis indicates that the site-directed changes were stable during the first three weeks after inoculation but thereafter the S147A amino acid substitution changed to a threonine in two of three macaques. The L148A substitution remained stable in the vif amplified from the PBMC of all three macaques. Sequence analysis of vif, vpu, env and nef genes revealed G-to-A mutations in the genes amplified from macaques inoculated with SHIV(VifAAQYLA), which were higher than in a macaque inoculated with parental SHIV(KU-1bMC33). We found that the majority (>85%) of the G-to-A mutations were in the context of 5'-TC (minus strand) and not 5'-CC, suggestive that one or more of the rhesus APOBEC3 proteins may be responsible for the observed mutational patterns. The data also suggest that rhesus APOBEC3G probably accounted for a minority of the mutations since its GG-to-AG mutational pattern was infrequently detected. Finally, macaques inoculated with SHIV(VifAAQYLA) developed immunoprecipitating antibody responses against the virus. The results from this study provide the first in vivo evidence of the importance of the SLQYLA domain in viral pathogenesis and show that targeted mutations in vif can lead to a persistent infection with G-to-A changes accumulating in the viral genome.
Collapse
|
25
|
Nomaguchi M, Fujita M, Adachi A. Role of HIV-1 Vpu protein for virus spread and pathogenesis. Microbes Infect 2008; 10:960-7. [PMID: 18672082 DOI: 10.1016/j.micinf.2008.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vpu is an accessory viral protein almost unique to HIV-1 among primate immunodeficiency viruses, and has two major functions: degradation of the CD4 molecule in endoplasmic reticulum and enhancement of virion release from cells. Recent identification of a novel host restriction factor, tetherin, as a Vpu-antagonist suggests that Vpu contributes to virus spread by facilitating progeny virion production. This review focuses on the two distinct functions of Vpu and summarizes current knowledge on its virological role in the HIV-1 life cycle.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Virology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima-shi, Tokushima, 770-8503, Japan
| | | | | |
Collapse
|
26
|
Ruiz A, Hill MS, Schmitt K, Guatelli J, Stephens EB. Requirements of the membrane proximal tyrosine and dileucine-based sorting signals for efficient transport of the subtype C Vpu protein to the plasma membrane and in virus release. Virology 2008; 378:58-68. [PMID: 18579178 DOI: 10.1016/j.virol.2008.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/18/2008] [Accepted: 05/08/2008] [Indexed: 10/21/2022]
Abstract
Previously, we showed that the Vpu protein from HIV-1 subtype C is more efficiently transported to the cell surface than the well studied subtype B Vpu (Pacyniak et al., 2005) and that a SHIV expressing the subtype C Vpu exhibited a decreased rate of CD4+ T cell loss following inoculation in macaques (Hill et al., 2008). In this study, we examined the role of overlapping tyrosine-based (YXXPhi) and dileucine-based ([D/E]XXXL[L/I]) motifs in the membrane proximal region of the subtype C Vpu (EYRKLL) in Vpu intracellular transport, CD4 surface expression and virus release from the cell surface. We constructed three site-directed mutants of the subtype C vpu and fused these genes to the gene for enhanced green fluorescent protein (EGFP). The first mutation made altered the tyrosine (EARKLL; VpuSCEGFPY35A), the second altered the dileucine motif (EYRKLG; VpuSCEGFPL39G), and the third contained both amino acid substitutions (EARKLG; VpuSCEGFPYL35,39AG) in this region of the Vpu protein. The VpuSCEGFPY35A protein was transported to the cell surface similar to the unmodified VpuSCEGFP1 while VpuSCEGFPL39G was expressed at the cell surface at significantly reduced levels. The VpuSCEGFPYL35,39AG was found to have an intermediate level of cell surface expression. All three mutant Vpu proteins were analyzed for the ability to prevent cell surface expression of CD4. We found that both single mutants did not significantly effect CD4 surface expression while the double mutant (VpuSCEGFPYL35,39AG) was significantly less efficient at preventing cell surface CD4 expression. Chimeric simian human immunodeficiency viruses were constructed with these mutations in vpu (SHIVSCVpuY35A, SHIVSCVpuL39G and SHIVSCVpuYL35,39AG). Our results indicate that SHIVSCVpuL39G replicated much more efficiently and was much more cytopathic than SHIVSCVpu. In contrast, SHIVSCVpuY35A and SHIVSCVpuYL35,39AG replicated less efficiently when compared to the parental SHIVSCVpu. Taken together, these results show for the first time that the membrane proximal tyrosine-based sorting motif in the cytoplasmic domain of Vpu is essential for efficient virus release. These results also indicate that the dileucine-based sorting motif affects the intracellular trafficking of subtype C Vpu proteins, virus replication, and release.
Collapse
Affiliation(s)
- Autumn Ruiz
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
27
|
Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, Stephens EB, Guatelli J. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 2008; 3:245-52. [PMID: 18342597 DOI: 10.1016/j.chom.2008.03.001] [Citation(s) in RCA: 828] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 03/03/2008] [Accepted: 03/05/2008] [Indexed: 12/15/2022]
Abstract
The HIV-1 accessory protein Vpu counteracts a host factor that restricts virion release from infected cells. Here we show that the interferon-induced cellular protein BST-2/HM1.24/CD317 is such a factor. BST-2 is downregulated from the cell surface by Vpu, and BST-2 is specifically expressed in cells that support the vpu phenotype. Exogenous expression of BST-2 inhibits HIV-1 virion release, while suppression of BST-2 relieves the requirement for Vpu. Downregulation of BST-2 requires both the transmembrane/ion channel domain and conserved serines in the cytoplasmic domain of Vpu. Endogenous BST-2 colocalizes with the HIV-1 structural protein Gag in endosomes and at the plasma membrane, suggesting that BST-2 traps virions within and on infected cells. The unusual structure of BST-2, which includes a transmembrane domain and a lumenal GPI anchor, may allow it to retain nascent enveloped virions on cellular membranes, providing a mechanism of viral restriction counteracted by a specific viral accessory protein.
Collapse
Affiliation(s)
- Nanette Van Damme
- The San Diego Department of Veterans Affairs Healthcare System, San Diego, CA 92161, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The majority of current anti-HIV drugs target the viral reverse transcriptase or protease enzymes. However, enfuvirtide and maraviroc are drugs that have been US FDA approved recently and which function by inhibiting virus cell binding and entry which normally occurs through the interaction of the viral envelope protein with its cellular coreceptor. As HIV-1 utilizes many cellular cofactors during its replication cycle, there are a number of other protein–protein interactions that can serve as targets for anti-HIV drug development. In this review article we discuss the general method used to identify anti-HIV drugs that function through targeting protein–protein interactions. We also discuss the currently known cellular cofactors that may serve as targets in future drugs screens.
Collapse
Affiliation(s)
- Andrew P Rice
- Baylor College of Medicine, Department of Molecular Virology & Microbiology, Houston, TX 77030, USA
| | - Richard E Sutton
- Baylor College of Medicine, Department of Molecular Virology & Microbiology, Houston, TX 77030, USA
| |
Collapse
|
29
|
Hill MS, Ruiz A, Pacyniak E, Pinson DM, Culley N, Yen B, Wong SW, Stephens EB. Modulation of the severe CD4+ T-cell loss caused by a pathogenic simian-human immunodeficiency virus by replacement of the subtype B vpu with the vpu from a subtype C HIV-1 clinical isolate. Virology 2007; 371:86-97. [PMID: 17950774 DOI: 10.1016/j.virol.2007.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/11/2007] [Accepted: 09/05/2007] [Indexed: 11/17/2022]
Abstract
Previously, we showed that the Vpu protein from subtype C human immunodeficiency virus type 1 (HIV-1) was efficiently targeted to the cell surface, suggesting that this protein has biological properties that differ from the well-studied subtype B Vpu protein. In this study, we have further analyzed the biological properties of the subtype C Vpu protein. Flow cytometric analysis revealed that the subtype B Vpu (strain HXB2) was more efficient at down-regulating CD4 surface expression than the Vpu proteins from four subtype C clinical isolates. We constructed a simian-human immunodeficiency virus virus, designated as SHIV(SCVpu), in which the subtype B vpu gene from the pathogenic SHIV(KU-1bMC33) was substituted with the vpu from a clinical isolate of subtype C HIV-1 (strain C.96.BW16B01). Cell culture studies revealed that SHIV(SCVpu) replicated with slightly reduced kinetics when compared with the parental SHIV(KU-1bMC33) and that the viral Env and Gag precursor proteins were synthesized and processed similarly compared to the parental SHIV(KU-1bMC33). To determine if substitution of the subtype C Vpu protein affected the pathogenesis of the virus, three pig-tailed macaques were inoculated with SHIV(SCVpu) and circulating CD4+ T-cell levels and viral loads were monitored for up to 44 weeks. Our results show that SHIV(SCVpu) caused a more gradual decline in the rate of CD4+ T cells in pig-tailed macaques compared to those inoculated with parental subtype B SHIV(KU-1bMC33). These results show for the first time that different Vpu proteins of HIV-1 can influence the rate at which CD4+ T-cell loss occurs in the SHIV/pig-tailed macaque model.
Collapse
Affiliation(s)
- M Sarah Hill
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hussain A, Das SR, Tanwar C, Jameel S. Oligomerization of the human immunodeficiency virus type 1 (HIV-1) Vpu protein--a genetic, biochemical and biophysical analysis. Virol J 2007; 4:81. [PMID: 17727710 PMCID: PMC2042504 DOI: 10.1186/1743-422x-4-81] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/29/2007] [Indexed: 12/21/2022] Open
Abstract
Background The human immunodeficiency virus type 1(HIV-1) is a complex retrovirus and the causative agent of acquired immunodeficiency syndrome (AIDS). The HIV-1 Vpu protein is an oligomeric integral membrane protein essential for particle release, viral load and CD4 degradation. In silico models show Vpu to form pentamers with an ion channel activity. Results Using Vpu proteins from a primary subtype C and the pNL4-3 subtype B isolates of HIV-1, we show oligomerization of the full-length protein as well as its transmembrane (TM) domain by genetic, biochemical and biophysical methods. We also provide direct evidence of the presence of Vpu pentamers in a stable equilibrium with its monomers in vitro. This was also true for the TM domain of Vpu. Confocal microscopy localized Vpu to the endoplasmic reticulum and Golgi regions of the cell, as well as to post-Golgi vesicles. In fluorescence resonance energy transfer (FRET) experiments in live cells we show that Vpu oligomerizes in what appears to be either the Golgi region or intracellular vesicles, but not in the ER. Conclusion We provide here direct evidence that the TM domain, is critical for Vpu oligomerization and the most favourable channel assembly is a pentamer. The Vpu oligomerization appears to be either the Golgi region or intracellular vesicles, but not in the ER.
Collapse
Affiliation(s)
- Amjad Hussain
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Suman R Das
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Charu Tanwar
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shahid Jameel
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
31
|
Affiliation(s)
- Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, 4/312, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Wildum S, Schindler M, Münch J, Kirchhoff F. Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection. J Virol 2006; 80:8047-59. [PMID: 16873261 PMCID: PMC1563805 DOI: 10.1128/jvi.00252-06] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) utilizes Vpu, Env, and Nef to down-modulate its primary CD4 receptor from the cell surface, and this function seems to be critical for the pathogenesis of AIDS. The physiological relevance of CD4 down-modulation, however, is currently not well understood. In the present study, we analyzed the kinetics of CD4 down-modulation and the susceptibility of HIV-1-infected T cells to superinfection using proviral HIV-1 constructs containing individual and combined defects in vpu, env, and nef and expressing red or green fluorescent proteins. T cells infected with HIV-1 mutants containing functional nef genes expressed low surface levels of CD4 from the first moment that viral gene expression became detectable. In comparison, Vpu and Env had only minor to moderate effects on CD4 during later stages of infection. Consistent with these quantitative differences, Nef inhibited superinfection more efficiently than Vpu and Env. Notably, nef alleles from AIDS patients were more effective in preventing superinfection than those derived from a nonprogressor of HIV-1 infection. Our data suggest that protection against X4-tropic HIV-1 superinfection involves both CD4-independent and CD4-dependent mechanisms of HIV-1 Nef. X4 was effectively down-regulated by simian immunodeficiency virus and HIV-2 but not by HIV-1 Nef proteins. Thus, maximal protection seems to involve an as-yet-unknown mechanism that is independent of CD4 or coreceptor down-modulation. Finally, we demonstrate that superinfected primary T cells show enhanced levels of apoptosis. Accordingly, one reason that HIV-1 inhibits CD4 surface expression and superinfection is to prevent premature cell death in order to expand the period of effective virus production.
Collapse
Affiliation(s)
- Steffen Wildum
- Department of Virology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | |
Collapse
|
33
|
Wilson L, Gage P, Ewart G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology 2006; 353:294-306. [PMID: 16815524 PMCID: PMC7111787 DOI: 10.1016/j.virol.2006.05.028] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 03/24/2006] [Accepted: 05/24/2006] [Indexed: 12/03/2022]
Abstract
All coronaviruses encode a small hydrophobic envelope (E) protein, which mediates viral assembly and morphogenesis by an unknown mechanism. We have previously shown that the E protein from Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) forms cation-selective ion channels in planar lipid bilayers (Wilson, L., McKinlay, C., Gage, P., Ewart, G., 2004. SARS coronavirus E protein forms cation-selective ion channels. Virology 330(1), 322–331). We now report that three other E proteins also form cation-selective ion channels. These E proteins were from coronaviruses representative of taxonomic groups 1–3: human coronavirus 229E (HCoV-229E), mouse hepatitis virus (MHV), and infectious bronchitis virus (IBV), respectively. It appears, therefore, that coronavirus E proteins in general, belong to the virus ion channels family. Hexamethylene amiloride (HMA) – an inhibitor of the HIV-1 Vpu virus ion channel – inhibited the HCoV-229E and MHV E protein ion channel conductance in bilayers and also inhibited replication of the parent coronaviruses in cultured cells, as determined by plaque assay. Conversely, HMA had no antiviral effect on a recombinant MHV with the entire coding region of E protein deleted (MHVΔE). Taken together, the data provide evidence of a link between inhibition of E protein ion channel activity and the antiviral activity of HMA.
Collapse
Affiliation(s)
- Lauren Wilson
- ANU Medical School, Pathology Building 10, 6th floor, The Canberra Hospital, Woden ACT 2606, Australia
- Biotron Ltd., LPO Box A315, Canberra ACT 2601, Australia
- Corresponding author. ANU Medical School, Pathology Building 10, 6th floor, The Canberra Hospital, Woden ACT 2606, Australia. Fax: +61 2 6244 3092.
| | - Peter Gage
- John Curtin School of Medical Research, ANU, PO Box 334, Canberra ACT 2601, Australia
| | - Gary Ewart
- Biotron Ltd., LPO Box A315, Canberra ACT 2601, Australia
| |
Collapse
|
34
|
Hout DR, Gomez ML, Pacyniak E, Gomez LM, Fegley B, Mulcahy ER, Hill MS, Culley N, Pinson DM, Nothnick W, Powers MF, Wong SW, Stephens EB. Substitution of the transmembrane domain of Vpu in simian-human immunodeficiency virus (SHIVKU1bMC33) with that of M2 of influenza A results in a virus that is sensitive to inhibitors of the M2 ion channel and is pathogenic for pig-tailed macaques. Virology 2005; 344:541-59. [PMID: 16199074 DOI: 10.1016/j.virol.2005.08.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/01/2005] [Accepted: 08/01/2005] [Indexed: 11/30/2022]
Abstract
The Vpu protein of human immunodeficiency virus type 1 has been shown to shunt the CD4 receptor molecule to the proteasome for degradation and to enhance virus release from infected cells. The exact mechanism by which the Vpu protein enhances virus release is currently unknown but some investigators have shown that this function is associated with the transmembrane domain and potential ion channel properties. In this study, we determined if the transmembrane domain of Vpu could be functionally substituted with that of the prototypical viroporin, the M2 protein of influenza A virus. We constructed chimeric vpu gene in which the transmembrane domain of Vpu was replaced with that of the M2 protein of influenza. This chimeric vpu gene was substituted for the vpu gene in the genome of a pathogenic simian human immunodeficiency virus, SHIVKU-1bMC33. The resulting virus, SHIVM2, synthesized a Vpu protein that had a slightly different Mr compared to the parental SHIVKU-1bMC33, reflecting the different sizes of the two Vpu proteins. The SHIVM2 was shown to replicate with slightly reduced kinetics when compared to the parental SHIVKU-1bMC33 but electron microscopy revealed that the site of maturation was similar to the parental virus SHIVKU1bMC33. We show that the replication and spread of SHIVM2 could be blocked with the antiviral drug rimantadine, which is known to target the M2 ion channel. Our results indicate a dose dependent inhibition of SHIVM2 with 100 microM rimantadine resulting in a >95% decrease in p27 released into the culture medium. Rimantadine did not affect the replication of the parental SHIVKU-1bMC33. Examination of SHIVM2-infected cells treated with 50 microM rimantadine revealed numerous viral particles associated with the cell plasma membrane and within intracytoplasmic vesicles, which is similar to HIV-1 mutants lacking a functional vpu. To determine if SHIVM2 was as pathogenic as the parental SHIVKU-1bMC33 virus, two pig-tailed macaques were inoculated and followed for up to 8 months. Both pig-tailed macaques developed severe CD4+ T cell loss within 1 month of inoculation, high viral loads, and histological lesions consistent with lymphoid depletion similar to the parental SHIVKU-1bMC33. Taken together, these results indicate for the first time that the TM domain of the Vpu protein can be functionally substituted with the TM of M2 of influenza A virus, and shows that compounds that target the TM domain of Vpu protein of HIV-1 could serve as novel anti-HIV-1 drugs.
Collapse
Affiliation(s)
- David R Hout
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|