1
|
Anti-Tumoral Effect of Chemerin on Ovarian Cancer Cell Lines Mediated by Activation of Interferon Alpha Response. Cancers (Basel) 2022; 14:cancers14174108. [PMID: 36077645 PMCID: PMC9454566 DOI: 10.3390/cancers14174108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/13/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Chemerin is a multifunctional protein with an important role in the immune system. Recent evidence showed that chemerin also regulates the development of cancer. Ovarian cancer is a common type of tumor in women. In this study, we observed that chemerin decreases the growth of ovarian cancer cell lines in vitro when cultivated in standard cell culture or in globular multicellular aggregates. When we examined the mechanisms involved in this process, we found that treatment of ovarian cancer cells with chemerin led to the activation of genes that are known to mediate the effects of interferon alpha (IFNα). The main effect of IFNα is to defend body cells against viral infections, but it is also able to defeat cancer cells. We observed that this activation of IFNα response by chemerin resulted from the increased production of IFNα protein in ovarian cancer cells, which then reduced cancer cells numbers. However, it remains to be investigated how exactly chemerin might be able to activate interferon alpha and its anti-tumoral actions. Abstract The pleiotropic adipokine chemerin affects tumor growth primarily as anti-tumoral chemoattractant inducing immunocyte recruitment. However, little is known about its effect on ovarian adenocarcinoma. In this study, we examined chemerin actions on ovarian cancer cell lines in vitro and intended to elucidate involved cell signaling mechanisms. Employing three ovarian cancer cell lines, we observed differentially pronounced effects of this adipokine. Treatment with chemerin (huChem-157) significantly reduced OVCAR-3 cell numbers (by 40.8% on day 6) and decreased the colony and spheroid growth of these cells by half. The spheroid size of SK-OV-3 ovarian cancer cells was also significantly reduced upon treatment. Transcriptome analyses of chemerin-treated cells revealed the most notably induced genes to be interferon alpha (IFNα)-response genes like IFI27, OAS1 and IFIT1 and their upstream regulator IRF9 in all cell lines tested. Finally, we found this adipokine to elevate IFNα levels about fourfold in culture medium of the employed cell lines. In conclusion, our data for the first time demonstrate IFNα as a mediator of chemerin action in vitro. The observed anti-tumoral effect of chemerin on ovarian cancer cells in vitro was mediated by the notable activation of IFNα response genes, resulting from the chemerin-triggered increase of secreted levels of this cytokine.
Collapse
|
2
|
Iacob SA, Iacob DG. Non-Alcoholic Fatty Liver Disease in HIV/HBV Patients - a Metabolic Imbalance Aggravated by Antiretroviral Therapy and Perpetuated by the Hepatokine/Adipokine Axis Breakdown. Front Endocrinol (Lausanne) 2022; 13:814209. [PMID: 35355551 PMCID: PMC8959898 DOI: 10.3389/fendo.2022.814209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome and is one of the most prevalent comorbidities in HIV and HBV infected patients. HIV plays an early and direct role in the development of metabolic syndrome by disrupting the mechanism of adipogenesis and synthesis of adipokines. Adipokines, molecules that regulate the lipid metabolism, also contribute to the progression of NAFLD either directly or via hepatic organokines (hepatokines). Most hepatokines play a direct role in lipid homeostasis and liver inflammation but their role in the evolution of NAFLD is not well defined. The role of HBV in the pathogenesis of NAFLD is controversial. HBV has been previously associated with a decreased level of triglycerides and with a protective role against the development of steatosis and metabolic syndrome. At the same time HBV displays a high fibrogenetic and oncogenetic potential. In the HIV/HBV co-infection, the metabolic changes are initiated by mitochondrial dysfunction as well as by the fatty overload of the liver, two interconnected mechanisms. The evolution of NAFLD is further perpetuated by the inflammatory response to these viral agents and by the variable toxicity of the antiretroviral therapy. The current article discusses the pathogenic changes and the contribution of the hepatokine/adipokine axis in the development of NAFLD as well as the implications of HIV and HBV infection in the breakdown of the hepatokine/adipokine axis and NAFLD progression.
Collapse
Affiliation(s)
- Simona Alexandra Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, Romania
| | - Diana Gabriela Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, Emergency University Hospital, Bucharest, Romania
- *Correspondence: Diana Gabriela Iacob,
| |
Collapse
|
3
|
Lee CH. Role of specialized pro-resolving lipid mediators and their receptors in virus infection: a promising therapeutic strategy for SARS-CoV-2 cytokine storm. Arch Pharm Res 2021; 44:84-98. [PMID: 33398691 PMCID: PMC7781431 DOI: 10.1007/s12272-020-01299-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Unexpected viral infections outbreaks, significantly affect human health, leading to increased mortality and life disruption. Among them is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged as a deadly pandemic, calling for intense research efforts on its pathogenicity mechanism and development of therapeutic strategies. In the SARS-CoV-2 cytokine storm, systemic inflammation has been associated with severe illness and mortality. Recent studies have demonstrated special pro-resolving lipids mediators (SPMs) lipoxins, resolvins, maresins, and protectins as potential therapeutic options for abnormal viral-triggered inflammation. Pro-resolving lipids mediators have shown great promise for the treatment of Herpes simplex virus, respiratory syncytial virus, human immunodeficiency virus, and hepatitis C virus. Based on this, studies are being conducted on their therapeutic effects in SARS-CoV-2 infection. In this review, we discussed SPMs and reviewed evidence from recent studies on SPMs as therapeutic options for viral infections, including SARS-CoV2. Based on our analysis of the previous study, we argue that SPMs are a potential treatment for SARS-CoV-2 infection and other viral infections. We expect further research on how SPMs modulate viral-triggered inflammation through G-protein-coupled receptors (GPCRs), and chemical stability and druggability of SPMs.
Collapse
Affiliation(s)
- Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul, 100-715, Republic of Korea.
| |
Collapse
|
4
|
Dual R3R5 tropism characterizes cerebrospinal fluid HIV-1 isolates from individuals with high cerebrospinal fluid viral load. AIDS 2012; 26:1739-44. [PMID: 22695299 DOI: 10.1097/qad.0b013e3283560791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study the use of major and alternative coreceptors by HIV-1 isolates obtained from paired plasma and cerebrospinal fluid (CSF) samples. DESIGN Paired plasma and CSF isolates from HIV-1-infected individuals with varying clinical, virologic, and immunologic parameters were assessed for the ability to infect indicator cells expressing a panel of coreceptors with documented expression in the central nervous system (CNS). METHODS HIV-1 isolates obtained from plasma and CSF in 28 individuals with varying viral load, CD4 T-cell counts, and with or without AIDS-defining disease were analyzed for the ability to infect NP2.CD4 cells stably expressing a panel of HIV coreceptors (CCR5, CXCR4, CCR3, CXCR6, GPR1, APJ, ChemR23, RDC-1 or BLT1). RESULTS All isolates from both plasma and CSF utilized CCR5 and/or CXCR4. However, the ability to use both CCR3 and CCR5 (R3R5) was more pronounced in CSF isolates and correlated with high CSF viral load and low CD4 T-cell count. Notably, four out of five CSF isolates of subtype C origin exhibited CXCR6 use, which coincided with high CSF viral load despite preserved CD4 T-cell counts. The use of other alternative coreceptors was less pronounced. CONCLUSION Dual-tropic R3R5 HIV-1 isolates in CSF coincide with high CSF viral load and low CD4 T-cell counts. Frequent CXCR6 use by CSF-derived subtype C isolates indicates that subtype-specific differences in coreceptor use may exist that will not be acknowledged when assessing plasma virus isolates. The findings may also bare relevance for HIV-1 replication within the CNS, and consequently, for the neuropathogenesis of AIDS.
Collapse
|
5
|
Bandholtz S, Wichard J, Kühne R, Grötzinger C. Molecular evolution of a peptide GPCR ligand driven by artificial neural networks. PLoS One 2012; 7:e36948. [PMID: 22606313 PMCID: PMC3351444 DOI: 10.1371/journal.pone.0036948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 04/13/2012] [Indexed: 11/18/2022] Open
Abstract
Peptide ligands of G protein-coupled receptors constitute valuable natural lead structures for the development of highly selective drugs and high-affinity tools to probe ligand-receptor interaction. Currently, pharmacological and metabolic modification of natural peptides involves either an iterative trial-and-error process based on structure-activity relationships or screening of peptide libraries that contain many structural variants of the native molecule. Here, we present a novel neural network architecture for the improvement of metabolic stability without loss of bioactivity. In this approach the peptide sequence determines the topology of the neural network and each cell corresponds one-to-one to a single amino acid of the peptide chain. Using a training set, the learning algorithm calculated weights for each cell. The resulting network calculated the fitness function in a genetic algorithm to explore the virtual space of all possible peptides. The network training was based on gradient descent techniques which rely on the efficient calculation of the gradient by back-propagation. After three consecutive cycles of sequence design by the neural network, peptide synthesis and bioassay this new approach yielded a ligand with 70fold higher metabolic stability compared to the wild type peptide without loss of the subnanomolar activity in the biological assay. Combining specialized neural networks with an exploration of the combinatorial amino acid sequence space by genetic algorithms represents a novel rational strategy for peptide design and optimization.
Collapse
Affiliation(s)
- Sebastian Bandholtz
- Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Department of Hepatology and Gastroenterology and Molecular Cancer Research Center (MKFZ), Tumor Targeting Lab, Berlin, Germany
| | - Jörg Wichard
- Leibnitz-Institut für Molekulare Pharmakologie (fmp), Berlin, Germany
| | - Ronald Kühne
- Leibnitz-Institut für Molekulare Pharmakologie (fmp), Berlin, Germany
| | - Carsten Grötzinger
- Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Department of Hepatology and Gastroenterology and Molecular Cancer Research Center (MKFZ), Tumor Targeting Lab, Berlin, Germany
- * E-mail:
| |
Collapse
|
6
|
Tian WQ, Wang HC, Song FB, Zan LS, Wang H, Wang HB, Xin YP, Ujan JA. Association between a single nucleotide polymorphism in the bovine chemerin gene and carcass traits in Qinchuan cattle. GENETICS AND MOLECULAR RESEARCH 2011; 10:2833-40. [PMID: 22095607 DOI: 10.4238/2011.november.17.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Qinchuan is a red or yellow draft and beef breed in China. In order to identify a predictor of carcass traits on the basis of associations between carcass traits and gene polymorphism, variation in the bovine chemerin gene was investigated using PCR-single-strand conformational polymorphism and DNA sequencing. An SNP of A868G located in exon 2 of the Bos taurus chemerin gene was detected in 716 samples of six breeds (Jiaxian red, Luxi, Nan yang, Qinchuan, Simmental and Luxi crossbred steers, and Xia'nan), all in China, and three genotypes (AA, AG and GG) were found. Based on the χ(2) test, the AA/AG/GG genotype frequencies of all six breeds were found to be in Hardy-Weinberg equilibrium. A possible association of A868G with some carcass traits was investigated in 106 Qinchuan cattle. Animals with the AG genotype were found to have significantly lower mean loin eye area and meat tenderness compared to those with the AA and GG genotypes. However, there was no significant association between any individual haplotype and backfat thickness, water holding capacity or marbling score. We suggest that A868G could be used as a molecular marker in marker-assisted selection for carcass traits.
Collapse
Affiliation(s)
- W Q Tian
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, PR China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Gu W, Pang Z, Huangfu Z, Hua J, Zhou CL, Shen BW. Clinical significance of serum chemerin levels in patients with Crohn's disease. Shijie Huaren Xiaohua Zazhi 2010; 18:2483-2486. [DOI: 10.11569/wcjd.v18.i23.2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the clinical significance of serum chemerin levels in patients with Crohn's disease (CD) by evaluating the correlation of serum chemerin with gender, age and CD activity index (CDAI).
METHODS: Serum samples were collected from 50 CD patients and 50 healthy controls to determine chemerin levels by enzyme-linked immunosorbent assay (ELISA). The t-test was used to compare the statistic difference in serum chemerin levels between the two groups. The correlation of serum chemerin with gender, age and CDAI were analyzed by the t test, one-way analysis of variance, and Pearson's correlation.
RESULTS: Serum chemerin level was significantly higher in CD patients than in healthy controls (124.18 μg/L ± 21.32 μg/L vs 95.38 μg/L ± 11.22 μg/L, P < 0.01). There was a significant positive correlation between serum chemerin level and CDAI (r = 0.438, P < 0.05) though no correlation was noted between serum chemerin level and gender or age in CD patients (both P > 0.05).
CONCLUSION: These findings indicate that the potential regulatory function of chemerin in intestinal inflammation may be associated with the immunopathogenesis of CD.
Collapse
|
8
|
Du XY, Leung LLK. Proteolytic regulatory mechanism of chemerin bioactivity. Acta Biochim Biophys Sin (Shanghai) 2009; 41:973-9. [PMID: 20011981 DOI: 10.1093/abbs/gmp091] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chemerin is a novel chemoattractant recognized by chemokine-like receptor 1 (CMKLR1), a serpentine receptor expressed primarily by plasmacytoid dendritic cells, natural killer cells, and macrophages. Human prochemerin circulates in plasma as an inactive precursor. Its chemotactic activity is expressed upon cleavage of the C-terminal amino acid residues by proteases of the coagulation, fibrinolytic, and inflammatory system. The C-terminal cleavage site of prochemerin is highly conservative, indicating that the proteolytic regulation of chemerin bioactivity is a common mechanism undertaken by different species. In this review, we summarized chemerin-proteases interactions, chemerin receptors, and their importance in normal and pathologic conditions.
Collapse
Affiliation(s)
- Xiao-Yan Du
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
9
|
Virus entry via the alternative coreceptors CCR3 and FPRL1 differs by human immunodeficiency virus type 1 subtype. J Virol 2009; 83:8353-63. [PMID: 19553323 DOI: 10.1128/jvi.00780-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.
Collapse
|
10
|
Abstract
Adipose tissue around lymph nodes is usually removed prior to the study of immune activity-but is it time to reconsider this practice? Perinodal adipose tissue may provide not only a specific lipid resource but also fatty acids, dendritic cells, and soluble mediators that modulate local immunity.
Collapse
Affiliation(s)
- Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St Mark's Campus, Watford Road, Harrow, UK.
| |
Collapse
|
11
|
Allen SJ, Zabel BA, Kirkpatrick J, Butcher EC, Nietlispach D, Handel TM. NMR assignment of human chemerin, a novel chemoattractant. BIOMOLECULAR NMR ASSIGNMENTS 2007; 1:171-173. [PMID: 19636857 DOI: 10.1007/s12104-007-9047-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/27/2007] [Indexed: 05/28/2023]
Abstract
Chemerin is a potent chemoattractant for cells expressing the GPCR CMKLR1, and is thought to play important roles in cell migration and recruitment to sites of tissue damage and inflammation. Here we report the NMR assignments of the 15.6 kDa active form of uniformly (15)N, (13)C labeled chemerin.
Collapse
|
12
|
John H, Hierer J, Haas O, Forssmann WG. Quantification of angiotensin-converting-enzyme-mediated degradation of human chemerin 145-154 in plasma by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Anal Biochem 2006; 362:117-25. [PMID: 17240345 DOI: 10.1016/j.ab.2006.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 11/27/2006] [Accepted: 12/04/2006] [Indexed: 12/26/2022]
Abstract
Chemerin is a chemoattractive protein acting as a ligand for the G-protein-coupled receptor ChemR23/CMKLR1 and plays an important role in the innate and adaptive immunity. Proteolytic processing of its C terminus is essential for receptor binding and physiological activity. Therefore, we investigated the plasma stability of the decapeptide chemerin 145-154 (P(145)-F(154)) corresponding to the C terminus of the physiologically active chemerin variant E(21)-F(154) from human hemofiltrate. For monitoring concentration-time profiles and degradation products we developed a novel matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry procedure using an internal peptide standard (hemorphin LVV-H7) for quantification. The linear range covers 2.5 orders of magnitude in the lower micromolar concentration range (lower limit of quantification 0.312 microg/ml, 0.25 microM) characterized by satisfactory reproducibility (CV < or =9%), accuracy (< or =10%), ruggedness, and recovery (98%). We found that chemerin 145-154 is C-terminally truncated in human citrate plasma by the cleavage of the penultimate dipeptidyl residue. N-terminal truncation was not observed. In contrast to citrate plasma, no degradation was detected in ethylenediammetetraacetate (EDTA) plasma. We identified angiotensin-converting-enzyme (ACE) to be responsible for C-terminal truncation, which could be completely inhibited by EDTA and captopril. These results are relevant to clarify the natural processing of chemerin and the potential involvement of ACE in mediating the immune response.
Collapse
Affiliation(s)
- Harald John
- IPF PharmaCeuticals GmbH, Feodor-Lynen-Str. 31, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|