1
|
Edwards KR, Schmidt K, Homad LJ, Kher GM, Xu G, Rodrigues KA, Ben-Akiva E, Abbott J, Prlic M, Newell EW, De Rosa SC, Irvine DJ, Pancera M, McGuire AT. Vaccination with nanoparticles displaying gH/gL from Epstein-Barr virus elicits limited cross-protection against rhesus lymphocryptovirus. Cell Rep Med 2024; 5:101587. [PMID: 38781964 PMCID: PMC11228584 DOI: 10.1016/j.xcrm.2024.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Epstein-Barr virus (EBV) is associated with infectious mononucleosis, cancer, and multiple sclerosis. A vaccine that prevents infection and/or EBV-associated morbidity is an unmet need. The viral gH/gL glycoprotein complex is essential for infectivity, making it an attractive vaccine target. Here, we evaluate the immunogenicity of a gH/gL nanoparticle vaccine adjuvanted with the Sigma Adjuvant System (SAS) or a saponin/monophosphoryl lipid A nanoparticle (SMNP) in rhesus macaques. Formulation with SMNP elicits higher titers of neutralizing antibodies and more vaccine-specific CD4+ T cells. All but one animal in the SMNP group were infected after oral challenge with the EBV ortholog rhesus lymphocryptovirus (rhLCV). Their immune plasma had a 10- to 100-fold lower reactivity against rhLCV gH/gL compared to EBV gH/gL. Anti-EBV neutralizing monoclonal antibodies showed reduced binding to rhLCV gH/gL, demonstrating that EBV gH/gL neutralizing epitopes are poorly conserved on rhLCV gH/gL. Prevention of rhLCV infection despite antigenic disparity supports clinical development of gH/gL nanoparticle vaccines against EBV.
Collapse
Affiliation(s)
- Kristina R Edwards
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Karina Schmidt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gargi M Kher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Guoyue Xu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Elana Ben-Akiva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA; Departments of Biological Engineering and Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joe Abbott
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA; Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Epstein-Barr Virus gH/gL and Kaposi's Sarcoma-Associated Herpesvirus gH/gL Bind to Different Sites on EphA2 To Trigger Fusion. J Virol 2020; 94:JVI.01454-20. [PMID: 32847853 DOI: 10.1128/jvi.01454-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Both Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are human gammaherpesviruses and are important in a variety of malignancies. Eph family receptor tyrosine kinase A2 (EphA2) is a cellular receptor for KSHV and EBV. Previous studies identified five conserved residues (ELEFN50-54) in the N-terminal domain of KSHV gH that are critical for Eph binding and KSHV infection. However, the specific domains of EBV gH/gL important for EphA2 binding are not well described. We found that the KSHV gH (ELEFN50-54) motif is important for higher KSHV fusion and that EBV gH/gL does not utilize a similar motif for fusion activity. We previously identified that an EBV gL N-glycosylation mutant (gL-N69L/S71V) was hyperfusogenic in epithelial cells but not in B cells. To determine whether this glycosylation site may be the binding region for EphA2, we compared the EphA2 binding activity of EBV gH/gL and the EBV gH/gL-N69L/S71V mutant. We found that EBV gH/gL-N69L/S71V had higher binding affinity for EphA2, indicating that the EBV gL N-glycosylation site might be responsible for inhibiting the binding of gH/gL to EphA2. Loss of N-glycosylation at this site may remove steric hindrance that reduces EBV gH/gL binding to EphA2. In addition, the mutations located in the large groove of EBV gH/gL (R152A and G49C) also have decreased binding with EphA2. Taken together, our data indicate that the binding site of EphA2 on EBV gH/gL is at least in part proximal to the EBV gL glycosylation site, which in part accounts for differences in EphA2 binding affinity by KSHV.IMPORTANCE Virus entry into target cells is the first step for virus infection. Understanding the overall entry mechanism, including the binding mechanism of specific virus glycoproteins with cellular receptors, can be useful for the design of small molecule inhibitors and vaccine development. Recently, EphA2 was identified as an important entry receptor for both KSHV and EBV. In the present study, we investigated the required binding sites within EphA2 and EBV gH/gL that mediate the interaction of these two proteins allowing entry into epithelial cells and found that it differed in compared to the interaction of KSHV gH/gL with EphA2. Our discoveries may uncover new potential interventional strategies that block EBV and KSHV infection of target epithelial cells.
Collapse
|
3
|
Singh S, Homad LJ, Akins NR, Stoffers CM, Lackhar S, Malhi H, Wan YH, Rawlings DJ, McGuire AT. Neutralizing Antibodies Protect against Oral Transmission of Lymphocryptovirus. CELL REPORTS MEDICINE 2020; 1. [PMID: 32724901 PMCID: PMC7386402 DOI: 10.1016/j.xcrm.2020.100033] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Epstein-Barr virus (EBV) is a cancer-associated pathogen for which there is no vaccine. Successful anti-viral vaccines elicit antibodies that neutralize infectivity; however, it is unknown whether neutralizing antibodies prevent EBV acquisition. Here we assessed whether passively delivered AMMO1, a monoclonal antibody that neutralizes EBV in a cell-type-independent manner, could protect against experimental EBV challenge in two animal infection models. When present prior to a high-dose intravenous EBV challenge, AMMO1 prevented viremia and reduced viral loads to nearly undetectable levels in humanized mice. AMMO1 conferred sterilizing immunity to three of four macaques challenged orally with rhesus lymphocryptovirus, the EBV ortholog that infects rhesus macaques. The infected macaque had lower plasma neutralizing activity than the protected animals. These results indicate that a vaccine capable of eliciting adequate titers of neutralizing antibodies targeting the AMMO1 epitope may protect against EBV acquisition and are therefore highly relevant to the design of an effective EBV vaccine. An anti-EBV mAb, AMMO1, limits viral replication following challenge in humanized mice AMMO1 cross-reacts with and neutralizes rhesus lymphocryptovirus Adequate levels of AMMO1 prevent oral acquisition of rhLCV in macaques Protection afforded by neutralizing antibody provides proof of concept for EBV vaccines
Collapse
Affiliation(s)
- Swati Singh
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA98101, USA.,These authors contributed equally
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,These authors contributed equally
| | - Nicholas R Akins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Claire M Stoffers
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA98101, USA
| | - Stefan Lackhar
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA98101, USA
| | - Harman Malhi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yu-Hsin Wan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA98101, USA.,Departments of Pediatrics and Immunology, University of Washington, Seattle, WA 98101, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Global Health, University of Washington, Seattle, WA 98195, USA.,Lead Contact
| |
Collapse
|
4
|
Dollery SJ. Towards Understanding KSHV Fusion and Entry. Viruses 2019; 11:E1073. [PMID: 31752107 PMCID: PMC6893419 DOI: 10.3390/v11111073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
How viruses enter cells is of critical importance to pathogenesis in the host and for treatment strategies. Over the last several years, the herpesvirus field has made numerous and thoroughly fascinating discoveries about the entry of alpha-, beta-, and gamma-herpesviruses, giving rise to knowledge of entry at the amino acid level and the realization that, in some cases, researchers had overlooked whole sets of molecules essential for entry into critical cell types. Herpesviruses come equipped with multiple envelope glycoproteins which have several roles in many aspects of infection. For herpesvirus entry, it is usual that a collective of glycoproteins is involved in attachment to the cell surface, specific interactions then take place between viral glycoproteins and host cell receptors, and then molecular interactions and triggers occur, ultimately leading to viral envelope fusion with the host cell membrane. The fact that there are multiple cell and virus molecules involved with the build-up to fusion enhances the diversity and specificity of target cell types, the cellular entry pathways the virus commandeers, and the final triggers of fusion. This review will examine discoveries relating to how Kaposi's sarcoma-associated herpesvirus (KSHV) encounters and binds to critical cell types, how cells internalize the virus, and how the fusion may occur between the viral membrane and the host cell membrane. Particular focus is given to viral glycoproteins and what is known about their mechanisms of action.
Collapse
|
5
|
Chen J, Zhang X, Schaller S, Jardetzky TS, Longnecker R. Ephrin Receptor A4 is a New Kaposi's Sarcoma-Associated Herpesvirus Virus Entry Receptor. mBio 2019; 10:e02892-18. [PMID: 30782663 PMCID: PMC6381284 DOI: 10.1128/mbio.02892-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with the development of Kaposi's sarcoma (KS). KSHV target cells include endothelial cells, B cells, monocytes, epithelial cells, dendritic cells, macrophages, and fibroblasts. KSHV entry into target cells is a complex multistep process and is initiated by the binding and interaction of viral envelope glycoproteins with the cellular receptors. In the current studies, we have found that EphA4 promotes KSHV glycoprotein H/glycoprotein L (gH/gL)-mediated fusion and infection better than does ephrin A2 (EphA2) in HEK293T cells, indicating that EphA4 is a new KSHV entry receptor. To confirm that epithelial cells express EphA2 and EphA4, we analyzed the expression of EphA2 and EphA4 in epithelial cells, endothelial cells, B cells, monocytes, fibroblasts using RNA sequencing (RNA-seq) data analysis of existing data sets. We found that these cell types broadly express both EphA2 and EphA4, with the exception of monocytes and B cells. To confirm EphA4 is important for KSHV fusion and infection, we generated EphA2 and EphA4 single- and double-knockout cells. We found that both EphA2 and EphA4 play a role in KSHV fusion and infection, since EphA2-EphA4 double-knockout cells had the greatest decrease in fusion activity and infection compared to single-knockout cells. Fusion and infection of KSHV were rescued in the EphA2-EphA4 double-knockout cells upon overexpression of EphA2 and/or EphA4. EphA2 binds to both Epstein-Barr virus (EBV) and KSHV gH/gL; however, EphA4 binds only to KSHV gH/gL. Taken together, our results identify EphA4 as a new entry receptor for KSHV.IMPORTANCE The overall entry mechanism for herpesviruses is not completely known, including those for the human gammaherpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). To fully understand the herpesvirus entry process, functional receptors need to be identified. In the current study, we found that EphA4 can also function for a KSHV entry receptor along with EphA2. Interestingly, we found that EphA4 does not function as an entry receptor for EBV, whereas EphA2 does. The discovery of EphA4 as a KSHV entry receptor has important implications for KSHV pathogenesis in humans, may prove useful in understanding the unique pathogenesis of KSHV infection in humans, and may uncover new potential targets that can be used for the development of novel interventional strategies.
Collapse
Affiliation(s)
- Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xianming Zhang
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Samantha Schaller
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Möhl BS, Chen J, Park SJ, Jardetzky TS, Longnecker R. Epstein-Barr Virus Fusion with Epithelial Cells Triggered by gB Is Restricted by a gL Glycosylation Site. J Virol 2017; 91:e01255-17. [PMID: 28956769 PMCID: PMC5686762 DOI: 10.1128/jvi.01255-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV) entry into epithelial cells is mediated by the conserved core fusion machinery, composed of the fusogen gB and the receptor-binding complex gH/gL. The heterodimeric gH/gL complex binds to the EBV epithelial cell receptor or gp42, which binds to the B-cell receptor, triggering gB-mediated fusion of the virion envelope with cellular membranes. Our previous study found that the gL glycosylation mutant N69L/S71V had an epithelial cell-specific hyperfusogenic phenotype. To study the influence of this gL mutant on the initiation and kinetics of gB-driven epithelial cell fusion, we established a virus-free split-green fluorescent protein cell-cell fusion assay that enables real-time measurements of membrane fusion using live cells. The gL_N69L/S71V mutant had a large increase in epithelial cell fusion activity of up to 300% greater than that of wild-type gL starting at early time points. The hyperfusogenicity of the gL mutant was not a result of alterations in complex formation with gH or alterations in cellular localization. Moreover, the hyperfusogenic phenotype of the gL mutant correlated with the formation of enlarged syncytia. In summary, our present findings highlight an important role of gL in the kinetics of gB-mediated epithelial cell fusion, adding to previous findings indicating a direct interaction between gL and gB in EBV membrane fusion.IMPORTANCE EBV predominantly infects epithelial cells and B lymphocytes, which are the cells of origin for the EBV-associated malignancies Hodgkin and Burkitt lymphoma as well as nasopharyngeal carcinoma. Contrary to the other key players of the core fusion machinery, gL has the most elusive role during EBV-induced membrane fusion. We found that the glycosylation site N69/S71 of gL is involved in restricting epithelial cell fusion activity, strongly correlating with syncytium size. Interestingly, our data showed that the gL glycosylation mutant increases the fusion activity of the hyperfusogenic gB mutants, indicating that this gL mutant and the gB mutants target different steps during fusion. Our studies on how gL and gB work together to modulate epithelial cell fusion kinetics are essential to understand the highly tuned tropism of EBV for epithelial cells and B lymphocytes and may result in novel strategies for therapies preventing viral entry into target host cells. Finally, making our results of particular interest is the absence of gL syncytial mutants in other herpesviruses.
Collapse
Affiliation(s)
- Britta S Möhl
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jia Chen
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Seo Jin Park
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
7
|
Möhl BS, Chen J, Sathiyamoorthy K, Jardetzky TS, Longnecker R. Structural and Mechanistic Insights into the Tropism of Epstein-Barr Virus. Mol Cells 2016; 39:286-91. [PMID: 27094060 PMCID: PMC4844934 DOI: 10.14348/molcells.2016.0066] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 01/23/2023] Open
Abstract
Epstein-Barr virus (EBV) is the prototypical γ-herpesvirus and an obligate human pathogen that infects mainly epithelial cells and B cells, which can result in malignancies. EBV infects these target cells by fusing with the viral and cellular lipid bilayer membranes using multiple viral factors and host receptor(s) thus exhibiting a unique complexity in its entry machinery. To enter epithelial cells, EBV requires minimally the conserved core fusion machinery comprised of the glycoproteins gH/gL acting as the receptor-binding complex and gB as the fusogen. EBV can enter B cells using gp42, which binds tightly to gH/gL and interacts with host HLA class II, activating fusion. Previously, we published the individual crystal structures of EBV entry factors, such as gH/gL and gp42, the EBV/host receptor complex, gp42/HLA-DR1, and the fusion protein EBV gB in a postfusion conformation, which allowed us to identify structural determinants and regions critical for receptor-binding and membrane fusion. Recently, we reported different low resolution models of the EBV B cell entry triggering complex (gHgL/gp42/HLA class II) in "open" and "closed" states based on negative-stain single particle electron microscopy, which provide further mechanistic insights. This review summarizes the current knowledge of these key players in EBV entry and how their structures impact receptor-binding and the triggering of gB-mediated fusion.
Collapse
Affiliation(s)
- Britta S. Möhl
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois,
USA
| | - Jia Chen
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois,
USA
| | - Karthik Sathiyamoorthy
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California,
USA
| | - Theodore S. Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California,
USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois,
USA
| |
Collapse
|
8
|
The Epstein-Barr virus (EBV) glycoprotein B cytoplasmic C-terminal tail domain regulates the energy requirement for EBV-induced membrane fusion. J Virol 2014; 88:11686-95. [PMID: 25100836 DOI: 10.1128/jvi.01349-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The entry of enveloped viruses into host cells is preceded by membrane fusion, which in Epstein-Barr virus (EBV) is thought to be mediated by the refolding of glycoprotein B (gB) from a prefusion to a postfusion state. In our current studies, we characterized a gB C-terminal tail domain (CTD) mutant truncated at amino acid 843 (gB843). This truncation mutant is hyperfusogenic as monitored by syncytium formation and in a quantitative fusion assay and is dependent on gH/gL for fusion activity. gB843 can rescue the fusion function of other glycoprotein mutants that have null or decreased fusion activity in epithelial and B cells. In addition, gB843 requires less gp42 and gH/gL for fusion, and can function in fusion at a lower temperature than wild-type gB, indicating a lower energy requirement for fusion activation. Since a key step in fusion is the conversion of gB from a prefusion to an active postfusion state by gH/gL, gB843 may access this activated gB state more readily. Our studies indicate that the gB CTD may participate in the fusion function by maintaining gB in an inactive prefusion form prior to activation by receptor binding. Importance: Diseases resulting from Epstein-Barr virus (EBV) infection in humans range from the fairly benign disease infectious mononucleosis to life-threatening cancer. As an enveloped virus, EBV must fuse with a host cell membrane for entry and infection by using glycoproteins gH/gL, gB, and gp42. Among these glycoproteins, gB is thought to be the protein that executes fusion. To further characterize the function of the EBV gB cytoplasmic C-terminal tail domain (CTD) in fusion, we used a previously constructed CTD truncation mutant and studied its fusion activity in the context of other EBV glycoprotein mutants. From these studies, we find that the gB CTD regulates fusion by altering the energy requirements for the triggering of fusion mediated by gH/gL or gp42. Overall, our studies may lead to a better understanding of EBV fusion and entry, which may result in novel therapies that target the EBV entry step.
Collapse
|
9
|
The large groove found in the gH/gL structure is an important functional domain for Epstein-Barr virus fusion. J Virol 2013; 87:3620-7. [PMID: 23325693 DOI: 10.1128/jvi.03245-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) mediates viral entry into cells using four glycoproteins-gB, the gH/gL complex, and gp42-and fusion is cell type specific. gB and gH/gL are required for epithelial cell fusion; B cell fusion also requires gp42. To investigate functional domains within the gH/gL structure, we constructed site-directed EBV gH/gL mutants with alterations of residues located in a large groove that separates domain I (D-I) from domain II (D-II) within the gH/gL structure. We found that substitution of alanine for leucine 207 reduces both epithelial and B cell fusion and is accompanied by reduced gp42 binding. We also observed that substitution of alanine for arginine 152, histidine 154, or threonine 174 reduces fusion with epithelial cells but not with B cells. To test whether flexibility of the region between D-I and D-II of gH/gL could be important for membrane fusion activity and to allow potential interactions across the D-I/D-II groove, we mutated D-I amino acids V47, P48, and G49 to cysteine, allowing novel intersubunit disulfide bonds to form with the free C153 located in D-II. We found that the G49C mutant, predicted to bridge D-I and D-II with C153 of gH/gL, had normal B cell fusion activity but reduced epithelial cell fusion activity, which was partially restored by treatment with dithiothreitol. We conclude that structural rearrangements and/or interactions across the D-I/D-II groove of gH/gL are required for fusion with epithelial cells but not for fusion with B cells.
Collapse
|
10
|
Mapping regions of Epstein-Barr virus (EBV) glycoprotein B (gB) important for fusion function with gH/gL. Virology 2011; 413:26-38. [PMID: 21376360 DOI: 10.1016/j.virol.2010.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/07/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
Abstract
Glycoproteins gB and gH/gL are required for entry of Epstein-Barr virus (EBV) into cells, but the role of each glycoprotein and how they function together to mediate fusion is unclear. Analysis of the functional homology of gB from the closely related primate gammaherpesvirus, rhesus lymphocryptovirus (Rh-LCV), showed that EBV gB could not complement Rh gB due to a species-specific dependence between gB and gL. To map domains of gB required for this interaction, we constructed a panel of EBV/Rh gB chimeric proteins. Analysis showed that insertion of Rh gB from residues 456 to 807 restored fusion function of EBV gB with Rh gH/gL, suggesting this region of gB is important for interaction with gH/gL. Split YFP bimolecular complementation (BiFC) provided evidence of an interaction between EBV gB and gH/gL. Together, our results suggest the importance of a gB-gH/gL interaction in EBV-mediated fusion with B cells requiring the region of EBV gB from 456 to 807.
Collapse
|
11
|
Shaw PL, Kirschner AN, Jardetzky TS, Longnecker R. Characteristics of Epstein-Barr virus envelope protein gp42. Virus Genes 2010; 40:307-19. [PMID: 20162447 PMCID: PMC2854865 DOI: 10.1007/s11262-010-0455-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 01/27/2010] [Indexed: 12/21/2022]
Abstract
Epstein-Barr virus (EBV) glycoprotein 42 (gp42) is a membrane protein essential for fusion and entry of EBV into host B-lymphocytes. Gp42 is a member of the protein-fold family C-type lectin or lectin-like domains (CLECT or CTLD) and specifically is classified as a natural-killer receptor (NKR)-like CLECT. Literature review and phylogenetic comparison show that EBV gp42 shares a common structure with other NKR-like CLECTs and possibly with many viral CTLDs, but does not appear to exhibit some common binding characteristics of many CTLDs, such as features required for calcium binding. The flexible N-terminal region adjacent to the CTLD fold is important for binding to other EBV glycoproteins and for a cleavage site that is necessary for infection of host cells. From structural studies of gp42 unbound and bound to receptor and extensive mutational analysis, a general model of how gp42 triggers membrane fusion utilizing both the flexible N-terminal region and the CTLD domain has emerged.
Collapse
Affiliation(s)
- Pamela L. Shaw
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Galter Health Sciences Library, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Austin N. Kirschner
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208
| | - Theodore S. Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford California 94305
| | - Richard Longnecker
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
12
|
Functional analysis of glycoprotein L (gL) from rhesus lymphocryptovirus in Epstein-Barr virus-mediated cell fusion indicates a direct role of gL in gB-induced membrane fusion. J Virol 2009; 83:7678-89. [PMID: 19457993 DOI: 10.1128/jvi.00457-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Glycoprotein L (gL), which complexes with gH, is a conserved herpesvirus protein that is essential for Epstein-Barr virus (EBV) entry into host cells. The gH/gL complex has a conserved role in entry among herpesviruses, yet the mechanism is not clear. To gain a better understanding of the role of gL in EBV-mediated fusion, chimeric proteins were made using rhesus lymphocryptovirus (Rh-LCV) gL (Rh gL), which shares a high sequence homology with EBV gL but does not complement EBV gL in mediating fusion with B cells. A reduction in fusion activity was observed with chimeric gL proteins that contained the amino terminus of Rh gL, although they retained their ability to process and transport gH/gL to the cell surface. Amino acids not conserved within this region in EBV gL when compared to Rh gL were further analyzed, with the results mapping residues 54 and 94 as being functionally important for EBV-mediated fusion. All chimeras and mutants displayed levels of cell surface expression similar to that of wild-type gL and interacted with gH and gp42. Our data also suggest that the role of gL involves the activation or recruitment of gB with the gH/gL complex, as we found that reduced fusion of Rh gL, EBV/Rh-LCV chimeras, and gL point mutants could be restored by replacing EBV gB with Rh gB. These observations demonstrate a distinction between the role of gL in the processing and trafficking of gH to the cell surface and a posttrafficking role in cell-cell fusion.
Collapse
|
13
|
Kaposi's sarcoma-associated herpesvirus gH/gL: glycoprotein export and interaction with cellular receptors. J Virol 2008; 83:396-407. [PMID: 18945775 DOI: 10.1128/jvi.01170-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The attachment, entry, and fusion of Kaposi's sarcoma-associated herpesvirus (KSHV) with target cells are mediated by complex machinery containing, among others, viral glycoprotein H (gH) and its alleged chaperone, gL. We observed that KSHV gH, in contrast to its homologues in several other herpesviruses, is transported to the cytoplasm membrane independently from gL, but not vice versa. Mutational analysis revealed that the N terminus of gH is sufficient for gL interaction. However, the entire extracellular part of gH is required for efficient gL secretion. The soluble ectodomain of gH was sufficient to interact with the surfaces of potential target cells in a heparin-dependent manner, and binding was further enhanced by coexpression of gL. Surface plasmon resonance revealed a remarkably high affinity of gH for glycosaminoglycans. Heparan sulfate (HS) proteoglycans of the syndecan family act as cellular receptors for the gH/gL complex. They promoted KSHV infection, and expression of gH/gL on target cells inhibited subsequent KSHV infection. Whereas gH alone was able to bind to HS, we observed that only the gH/gL complex adhered to heparan sulfate-negative cells at lamellipodium-like structures.
Collapse
|
14
|
Kirschner AN, Lowrey AS, Longnecker R, Jardetzky TS. Binding-site interactions between Epstein-Barr virus fusion proteins gp42 and gH/gL reveal a peptide that inhibits both epithelial and B-cell membrane fusion. J Virol 2007; 81:9216-29. [PMID: 17581996 PMCID: PMC1951443 DOI: 10.1128/jvi.00575-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses require membrane-associated glycoproteins gB, gH, and gL for entry into host cells. Epstein-Barr virus (EBV) gp42 is a unique protein also required for viral entry into B cells. Key interactions between EBV gp42 and the EBV gH/gL complex were investigated to further elucidate their roles in membrane fusion. Deletion and point mutants within the N-terminal region of gp42 revealed residues important for gH/gL binding and membrane fusion. Many five-residue deletion mutants in the N-terminal region of gp42 that exhibit reduced membrane fusion activity retain binding with gH/gL but map out two functional stretches between residues 36 and 96. Synthetic peptides derived from the gp42 N-terminal region were studied in in vitro binding experiments with purified gH/gL and in cell-cell fusion assays. A peptide spanning gp42 residues 36 to 81 (peptide 36-81) binds gH/gL with nanomolar affinity, comparable to full-length gp42. Peptide 36-81 efficiently inhibits epithelial cell membrane fusion and competes with soluble gp42 to inhibit B-cell fusion. Additionally, this peptide at low nanomolar concentrations inhibits epithelial cell infection by intact virus. Shorter gp42 peptides spanning the two functional regions identified by deletion mutagenesis had little or no binding to soluble gH/gL and were also unable to inhibit epithelial cell fusion, nor could they complement gp42 deletion mutants in B-cell fusion. These studies identify key residues of gp42 that are essential for gH/gL binding and membrane fusion activation, providing a nanomolar inhibitor of EBV-mediated membrane fusion.
Collapse
Affiliation(s)
- Austin N Kirschner
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|