1
|
Kumar Singh A, Padwal V, Palav H, Velhal S, Nagar V, Patil P, Patel V. Highly dampened HIV-specific cytolytic effector T cell responses define viremic non-progression. Immunobiology 2022; 227:152234. [PMID: 35671626 DOI: 10.1016/j.imbio.2022.152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022]
Abstract
This study reports on HIV-specific T cell responses in HIV-1 infected Viremic Non-Progressors (VNPs), a rare group of people living with HIV that exhibit asymptomatic infection over several years accompanied by stable CD4+ T cell counts in spite of ongoing viral replication. We attempted to identify key virus-specific functional attributes that could underlie the apparently paradoxical virus-host equilibrium observed in VNPs. Our results revealed modulation of HIV-specific CD4+ and CD8+ effector T cell responses in VNPs towards a dominant non-cytolytic profile with concomitantly diminished degranulation (CD107a+) ability. Further, the HIV specific CD8+ effector T cell response was primarily enriched for MIP-1β producing cells. As expected, concordant with better viral suppression, VCs exhibit a robust cytolytic T cell response. Interestingly, PuPs shared features common to both these responses but did not exhibit a CD4+ central memory IFN-γ producing Gag-specific response that was shared by both non-progressor (VC and VNP) groups, suggesting CD4 helper response is critical for non-progression. Our study also revealed that cytolytic response in VNPs is primarily limited to polyfunctional cells while both monofunctional and polyfunctional cells significantly contribute to cytolytic responses in VCs. To further understand mechanisms underlying the unique HIV-specific effector T cell response described here in VNPs we also evaluated and demonstrated a possible role for altered gut homing in these individuals. Our findings inform immunotherapeutic interventions to achieve functional cures in the context of ART resistance and serious non AIDS events.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Varsha Padwal
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Harsha Palav
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Shilpa Velhal
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Vidya Nagar
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, Maharashtra, India
| | - Priya Patil
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, Maharashtra, India
| | - Vainav Patel
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India.
| |
Collapse
|
2
|
Mitsuki YY, Tuen M, Hioe CE. Differential effects of HIV transmission from monocyte-derived dendritic cells vs. monocytes to IL-17+CD4+ T cells. J Leukoc Biol 2016; 101:339-350. [PMID: 27531931 DOI: 10.1189/jlb.4a0516-216r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/07/2016] [Accepted: 07/26/2016] [Indexed: 12/23/2022] Open
Abstract
HIV infection leads to CD4 helper T cell (Th) loss, but not all Th cells are equally depleted. The contribution of other immune cells in the Th depletion also remains unclear. This study investigates HIV transmission from monocyte-derived dendritic cells (MDDCs) vs. monocytes to Th17 and Th1 cells using an allogeneic coculture model. The addition of HIV to MDDCs increased the expression of the negative regulatory molecule PD-L1 and decreased the expression of the activation markers HLA-DR and CD86, whereas the virus up-regulated HLA-DR and CD86, but not PD-L1, on monocytes. Coculturing of CD4+ T cells with MDDCs pretreated with HIV led to the decline of Th17, but not Th1, responses. In contrast, pretreatment of monocytes with HIV increased Th17 without affecting Th1 responses. The enhanced Th17 responses in the cocultures with HIV-treated monocytes were also accompanied by high numbers of virus-infected CD4+ T cells. The Th17 expansion arose from memory CD4+ T cells with minimal contribution from naïve CD4+ T cells. The Th17-enhancing activity was mediated by the HIV envelope and did not require productive virus infection. Comparison of MDDCs and monocytes further showed that, although HIV-treated MDDCs reduced Th proliferation and increased the activation of the apoptosis mediator caspase-3, HIV-treated monocytes enhanced Th proliferation without increasing the active caspase-3 levels. This study indicates the potential role of distinct myeloid cell populations in shaping Th17 responses during HIV infection.
Collapse
Affiliation(s)
- Yu-Ya Mitsuki
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Tuen
- Veterans Affairs New York Harbor Healthcare System, Manhattan, New York, USA.,Department of Pathology, New York University Langone Medical Center, New York, New York, USA; and
| | - Catarina E Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; .,James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
3
|
Noncytolytic CD8+ Cell Mediated Antiviral Response Represents a Strong Element in the Immune Response of Simian Immunodeficiency Virus-Infected Long-Term Non-Progressing Rhesus Macaques. PLoS One 2015; 10:e0142086. [PMID: 26551355 PMCID: PMC4638345 DOI: 10.1371/journal.pone.0142086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/16/2015] [Indexed: 11/19/2022] Open
Abstract
The ability of long term non progressors to maintain very low levels of HIV/SIV and a healthy state, involves various host genetic and immunological factors. CD8+ non-cytolytic antiviral response (CNAR) most likely plays an important role in this regard. In order to gain a deeper insight into this unique phenomenon, the ability of CD8+ T cells to suppress viral replication in vitro was investigated in 16 uninfected, longitudinally in 23 SIV-infected long-term non-progressing (LTNPs), and 10 SIV-infected rhesus macaques with progressing disease. An acute infection assay utilizing CD4+ cells from MHC-mismatched monkeys to avoid cytolytic responses was employed. The study has identified CNAR as a long-term stable activity that inversely correlated with plasma viral load. The activity was also detected in CD8+ cells of uninfected macaques, which indicates that CNAR is not necessarily a virus specific response but increases after SIV-infection. Physical contact between CD4+ and CD8+ cells was mainly involved in mediating viral inhibition. Loss of this activity appeared to be due to a loss of CNAR-expressing CD8+ cells as well as a reduction of CNAR-responsive CD4+ cells. In contrast, in vitro viral replication did not differ in CD4+ cells from un-infected macaques, CNAR(+) and CNAR(-) LTNPs. A role for transitional memory cells in supporting CNAR in the macaque model of AIDS was questionable. CNAR appears to represent an important part of the immune response displayed by CD8+ T cells which might be underestimated up to now.
Collapse
|
4
|
Identification of innate immune antiretroviral factors during in vivo and in vitro exposure to HIV-1. Microbes Infect 2015; 18:211-9. [PMID: 26548606 DOI: 10.1016/j.micinf.2015.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/15/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022]
Abstract
Defensins, RNases and cytokines are present at mucosal barriers, main ports of HIV entry, and are potential mediators of the resistant phenotype exhibited by HIV-1-exposed seronegative individuals (HESN) during sexual exposure. We aimed to determine the role of soluble factors in natural resistance to HIV-1 infection. Vaginal/endocervical/oral mucosal samples were taken from 60 HESN, 60 seropositive (SP) and 61 healthy controls (HC). Human neutrophil peptide 1 (hNP-1), human beta defensin (hBD) 2 and 3, RNases, MIP-1β and RANTES mRNA transcripts were quantified by qPCR and in vitro single-round, recombinant-based viral infectivity assay was used to evaluate the anti-HIV-1 activity of hBDs and RNases. HESN expressed significantly higher levels of hNP-1, hBDs mRNA in oral mucosa compared to HC (P < 0.05). In genital mucosa, significantly higher mRNA levels of MIP-1β, RANTES and RNases were found in HESN compared to HC (P < 0.05). HBDs and RNases inhibit HIV-1 replication, particularly R5 at entry, reverse transcription and nuclear import of the viral life cycle. hNP-1, hBDs, MIP-1β, RANTES and RNases, collectively could contribute to HIV-1 resistance during sexual exposure. Moreover, the inhibition of HIV-1 infection in vitro by hBDs and RNases suggests that they may be exploited as potential antiretrovirals.
Collapse
|
5
|
Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals. Proc Natl Acad Sci U S A 2014; 111:13439-44. [PMID: 25197078 DOI: 10.1073/pnas.1400446111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Efficacy trials of adenovirus 5-vectored candidate HIV vaccines [recombinant Ad5 (rAd5)-HIV] were halted for futility due to lack of vaccine efficacy and unexpected excess HIV infections in the vaccine recipients. The potential immunologic basis for these observations is unclear. We comparatively evaluated the HIV susceptibility and phenotypes of human CD4 T cells specific to Ad5 and CMV, two viruses that have been used as HIV vaccine vectors. We show that Ad5-specific CD4 T cells, either induced by natural Ad5 exposure or expanded by rAd5 vaccination, are highly susceptible to HIV in vitro and are preferentially lost in HIV-infected individuals compared with CMV-specific CD4 T cells. Further investigation demonstrated that Ad5-specific CD4 T cells selectively display a proinflammatory Th17-like phenotype and express macrophage inflammatory protein 3α and α4β7 integrin, suggestive of gut mucosa homing potential of these cells. Analysis of HIV p24 and cytokine coexpression using flow cytometry revealed preferential infection of IL-17- and IL-2-producing, Ad5-specific CD4 T cells by HIV in vitro. Our data suggest a potential mechanism explaining the excess HIV infections in vaccine recipients after rAd5-HIV vaccination and highlight the importance of testing the HIV susceptibility of vaccine-generated, vector and insert-specific CD4 T cells in future HIV vaccine studies.
Collapse
|
6
|
Preferential HIV infection of CCR6+ Th17 cells is associated with higher levels of virus receptor expression and lack of CCR5 ligands. J Virol 2013; 87:10843-54. [PMID: 23903844 DOI: 10.1128/jvi.01838-13] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Th17 cells are enriched in the gut mucosa and play a critical role in maintenance of the mucosal barrier and host defense against extracellular bacteria and fungal infections. During chronic human immunodeficiency virus (HIV) infection, Th17 cells were more depleted compared to Th1 cells, even when the patients had low or undetectable viremia. To investigate the differential effects of HIV infection on Th17 and Th1 cells, a culture system was used in which CCR6(+) CD4(+) T cells were sorted from healthy human peripheral blood and activated in the presence of interleukin 1β (IL-1β) and IL-23 to drive expansion of Th17 cells while maintaining Th1 cells. HIV infection of these cultures had minimal effects on Th1 cells but caused depletion of Th17 cells. Th17 loss correlated with greater levels of virus-infected cells and cell death. In identifying cellular factors contributing to higher susceptibility of Th17 cells to HIV, we compared Th17-enriched CCR6(+) and Th17-depleted CCR6(-) CD4 T cell cultures and noted that Th17-enriched CCR6(+) cells expressed higher levels of α4β7 and bound HIV envelope in an α4β7-dependent manner. The cells also had greater expression of CD4 and CXCR4, but not CCR5, than CCR6(-) cells. Moreover, unlike Th1 cells, Th17 cells produced little CCR5 ligand, and transfection with one of the CCR5 ligands, MIP-1β (CCL4), increased their resistance against HIV. These results indicate that features unique to Th17 cells, including higher expression of HIV receptors and lack of autocrine CCR5 ligands, are associated with enhanced permissiveness of these cells to HIV.
Collapse
|
7
|
Abstract
The virological synapse (VS) is a tight adhesive junction between an HIV-infected cell and an uninfected target cell, across which virus can be efficiently transferred from cell to cell in the absence of cell-cell fusion. The VS has been postulated to resemble, in its morphology, the well-studied immunological synapse (IS). This review article discusses the structural similarities between IS and VS and the shared T cell receptor (TCR) signaling components that are found in the VS. However, the IS and the VS display distinct kinetics in disassembly and intracellular signaling events, possibly leading to different biological outcomes. Hence, HIV-1 exploits molecular components of IS and TCR signaling machinery to trigger unique changes in cellular morphology, migration, and activation that facilitate its transmission and cell-to-cell spread.
Collapse
|
8
|
Alvarez Y, Tuen M, Nàdas A, Hioe CE. In vitro restoration of Th17 response during HIV infection with an antiretroviral drug and Th17 differentiation cytokines. AIDS Res Hum Retroviruses 2012; 28:823-34. [PMID: 22011036 DOI: 10.1089/aid.2011.0184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Th17 subset is preferentially depleted as compared to the Th1 subset in chronically HIV-infected patients, even after successful antiretroviral therapy. In this study, we have established an in vitro system utilizing primary human CD4 T cell cultures that recapitulates the dramatic loss of Th17 response upon HIV-1 infection that is accompanied with a less profound Th1 decrease. With this experimental system, we showed that blocking viral entry with CCR5 ligands or TAK779 reduced the infection and enhanced Th17 response but not Th1 response. Antiretroviral drug 3TC (lamivudine), given at the time of infection, completely prevented the loss of Th17 and Th1 responses but was ineffective when given after infection was already established. Only when Th17 differentiation cytokines were given along with 3TC to the cultures with established HIV infection was Th17 response fully restored and virus replication kept suppressed. Finally, a significant increase of Th17 response was achieved in peripheral lymphocytes of HIV-infected patients on antiretroviral therapy after treatment with Th17 differentiation cytokines. These data demonstrate the presence of CD4 T cells remaining capable of mounting Th17 response during HIV infection and indicate the potential use of immunotherapeutic modalities to supplement antiretroviral drugs for restoring Th17 response in chronically HIV-infected patients.
Collapse
Affiliation(s)
- Yelina Alvarez
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Michael Tuen
- Department of Pathology, New York University School of Medicine, New York, New York
- Veterans Affairs New York Harbor Healthcare System, New York, New York
| | - Arthur Nàdas
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Catarina E. Hioe
- Department of Pathology, New York University School of Medicine, New York, New York
- Veterans Affairs New York Harbor Healthcare System, New York, New York
| |
Collapse
|
9
|
Soluble factors from T cells inhibiting X4 strains of HIV are a mixture of β chemokines and RNases. Proc Natl Acad Sci U S A 2012; 109:5411-6. [PMID: 22431590 DOI: 10.1073/pnas.1202240109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T-cell-derived soluble factors that inhibit both X4 and R5 HIV are recognized as important in controlling HIV. Whereas three β chemokines, regulated-on-activation normal T-cell expressed and secreted (RANTES), macrophage inflammatory protein (MIP)-1α, and MIP-1β, account for the suppression of R5 HIV by blockade of HIV entry, the major components responsible for the inhibition of X4 HIV strains have not been identified previously. We identify these factors primarily as a mixture of three β chemokines [macrophage-derived chemokine (MDC), thymus and activation-regulated chemokine (TARC), and I-309] and two RNases (angiogenin and RNase 4) of lesser potency and show that in a clade B population, some correlate with clinical status and are produced by both CD4(+) and CD8(+) T cells (chemokines, angiogenin) or only by CD8(+) T cells (RNase 4). The antiviral mechanisms of these HIV X4-suppressive factors differ from those of the previously described HIV R5-suppressive β chemokines.
Collapse
|
10
|
Capalbo G, Müller-Kuller T, Ottmann OG, Hoelzer D, Scheuring UJ. HIV-1 infection suppresses expression of host cell cycle-associated gene PDS5A. Intervirology 2011; 55:263-75. [PMID: 21865657 DOI: 10.1159/000328323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 03/28/2011] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To unravel the interplay between HIV-1 and its host cell, the effect of HIV-1 infection on cellular gene expression was investigated. METHODS HIV-1(SF33)-infected and uninfected H9 T cells were screened by differential display and RNase protection assay. The finding (PDS5A) was confirmed in HIV-1(Lai)-infected P4-CCR5 HeLa cells, which were also examined after PDS5A siRNA knockdown in regard to HIV-1 replication by quantitative RT-PCR, p24 ELISA and LTR-driven β-galactosidase expression. The PDS5A knockdown effect on cellular gene expressions was studied by microarray analysis. PDS5A tissue expression was determined by Northern blotting. RESULTS Regulator of cohesion maintenance, homolog A (PDS5A) was found to be down-regulated by HIV-1. When PDS5A was suppressed by siRNA, HIV-1 replication was unaffected. PDS5A was found to be highly expressed in skeletal muscle tissue, and to lesser degrees in pancreas, heart, placenta, lung, kidney, liver and brain. Microarray analysis of PDS5A knockdown revealed 91 differential gene products over-representing cell cycle, transport and protein stability regulation, including 4 genes (PP2A, RANTES, PCAF, TCF7L2) previously reported to interact with HIV-1. CONCLUSION The data show a downregulation of proliferation-associated host gene PDS5A and suggest a role of PDS5A in HIV-1-induced cellular pathogenesis but not viral replication.
Collapse
Affiliation(s)
- Gianni Capalbo
- Department of Hematology/Oncology and Infectious Diseases, Johann Wolfgang Goethe University Hospital, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
11
|
Hioe CE, Tuen M, Vasiliver-Shamis G, Alvarez Y, Prins KC, Banerjee S, Nádas A, Cho MW, Dustin ML, Kachlany SC. HIV envelope gp120 activates LFA-1 on CD4 T-lymphocytes and increases cell susceptibility to LFA-1-targeting leukotoxin (LtxA). PLoS One 2011; 6:e23202. [PMID: 21850260 PMCID: PMC3151267 DOI: 10.1371/journal.pone.0023202] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/08/2011] [Indexed: 11/18/2022] Open
Abstract
The cellular adhesion molecule LFA-1 and its ICAM-1 ligand play an important role in promoting HIV-1 infectivity and transmission. These molecules are present on the envelope of HIV-1 virions and are integral components of the HIV virological synapse. However, cellular activation is required to convert LFA-1 to the active conformation that has high affinity binding for ICAM-1. This study evaluates whether such activation can be induced by HIV itself. The data show that HIV-1 gp120 was sufficient to trigger LFA-1 activation in fully quiescent naïve CD4 T cells in a CD4-dependent manner, and these CD4 T cells became more susceptible to killing by LtxA, a bacterial leukotoxin that preferentially targets leukocytes expressing high levels of the active LFA-1. Moreover, virus p24-expressing CD4 T cells in the peripheral blood of HIV-infected subjects were found to have higher levels of surface LFA-1, and LtxA treatment led to significant reduction of the viral DNA burden. These results demonstrate for the first time the ability of HIV to directly induce LFA-1 activation on CD4 T cells. Although LFA-1 activation may enhance HIV infectivity and transmission, it also renders the cells more susceptible to an LFA-1-targeting bacterial toxin, which may be harnessed as a novel therapeutic strategy to deplete virus reservoir in HIV-infected individuals.
Collapse
Affiliation(s)
- Catarina E Hioe
- Department of Pathology, New York University School of Medicine, and Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Saunders KO, Ward-Caviness C, Schutte RJ, Freel SA, Overman RG, Thielman NM, Cunningham CK, Kepler TB, Tomaras GD. Secretion of MIP-1β and MIP-1α by CD8(+) T-lymphocytes correlates with HIV-1 inhibition independent of coreceptor usage. Cell Immunol 2010; 266:154-64. [PMID: 21030011 PMCID: PMC3615706 DOI: 10.1016/j.cellimm.2010.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/29/2010] [Indexed: 01/22/2023]
Abstract
CD8(+) T-lymphocytes can utilize noncytolytic mechanisms to suppress HIV-1 replication through the secretion of soluble factors. The secretion of MIP-1β, MIP-1α, IP-10, MIG, IL-1α, and interferon gamma correlated most strongly with soluble noncytolytic suppression (p<0.0001). Since the noncytolytic response is impaired by histone hyperacetylation, we examined the ability of histone hyperacetylation to alter the expression of immune-related genes. MIP-1α and IP-10 were also among the genes that were down-regulated by histone hyperacetylation. We define a multifactorial cytokine profile of CD8(+) T-lymphocytes capable of mediating noncytolytic suppression of CXCR4-tropic HIV-1 replication.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Cavin Ward-Caviness
- Department of Bioinformatics and Biostatistics, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Robert J. Schutte
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Stephanie A. Freel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - R. Glenn Overman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Nathan M. Thielman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Coleen K. Cunningham
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Thomas B. Kepler
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Bioinformatics and Biostatistics, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Bioinformatics and Biostatistics, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA, 27710
| |
Collapse
|
13
|
Surman SL, Brown SA, Jones BG, Woodland DL, Hurwitz JL. Clearance of HIV type 1 envelope recombinant sendai virus depends on CD4+ T cells and interferon-gamma but not B cells, CD8+ T cells, or perforin. AIDS Res Hum Retroviruses 2010; 26:783-93. [PMID: 20623995 DOI: 10.1089/aid.2009.0266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
T cell-mediated viral clearance is classically attributed to the CD8(+) T cell subset, but CD4(+) T cells can sometimes assume this role. One such instance was illustrated by the immunization of C57BL/6 mice with HIV-1 envelope, followed by challenge with a recombinant Sendai virus (rSeV-env) carrying a gene for secreted HIV-1 envelope protein. Vaccinated mice that lacked both B cells (microMT) and CD8(+) T cells controlled virus, but control was lost when CD4(+) T cells were depleted. To explain this activity, we questioned whether CD4(+) T cells might utilize perforin for killing of MHC class II-positive targets. We also asked if the process might depend on IFN-gamma, which can upregulate MHC expression and enhance T cell recruitment to sites of virus challenge. To address these possibilities, we vaccinated perforin-KO mice with HIV-1 envelope and challenged them with rSeV-env. We found that perforin was not required for (1) CD4(+) T cell homing to the site of virus challenge, (2) expression of Th1 and Th2 cytokines (including IFN-gamma), or (3) virus clearance. To determine if IFN-gamma was required for protection, we repeated experiments in IFN-gamma-KO animals. In this case, significant protection was lost, although the CD4(+) T cells trafficked readily to the site of infection. In fact, local CD4(+) T cell numbers in vaccinated IFN-gamma- KO mice exceeded those in wild type animals. In both cases, cells were alphass TCR(+), NK-1.1(-), and CD44(+), typifying an activated CD4(+) T cell subset. Taken together, our results showed that HIV-1 envelope recombinant virus clearance was dependent on CD4(+) T cells and IFN-gamma, but occurred in the absence of B cells, CD8(+) T cells, or perforin.
Collapse
Affiliation(s)
- Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott A. Brown
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Bart G. Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Pediatrics, University of Tennessee, Memphis, Tennessee
| |
Collapse
|
14
|
Strong ability of Nef-specific CD4+ cytotoxic T cells to suppress human immunodeficiency virus type 1 (HIV-1) replication in HIV-1-infected CD4+ T cells and macrophages. J Virol 2009; 83:7668-77. [PMID: 19457989 DOI: 10.1128/jvi.00513-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A restricted number of studies have shown that human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic CD4+ T cells are present in HIV-1-infected individuals. However, the roles of this type of CD4+ T cell in the immune responses against an HIV-1 infection remain unclear. In this study, we identified novel Nef epitope-specific HLA-DRB1*0803-restricted cytotoxic CD4+ T cells. The CD4+ T-cell clones specific for Nef187-203 showed strong gamma interferon production after having been stimulated with autologous B-lymphoblastoid cells infected with recombinant vaccinia virus expressing Nef or pulsed with heat-inactivated virus particles, indicating the presentation of the epitope antigen through both exogenous and endogenous major histocompatibility complex class II processing pathways. Nef187-203-specific CD4+ T-cell clones exhibited strong cytotoxic activity against both HIV-1-infected macrophages and CD4+ T cells from an HLA-DRB1*0803+ donor. In addition, these Nef-specific cytotoxic CD4+ T-cell clones exhibited strong ability to suppress HIV-1 replication in both macrophages and CD4+ T cells in vitro. Nef187-203-specific cytotoxic CD4+ T cells were detected in cultures of peptide-stimulated peripheral blood mononuclear cells (PBMCs) and in ex vivo PBMCs from 40% and 20% of DRB1*0803+ donors, respectively. These results suggest that HIV-1-specific CD4+ T cells may directly control HIV-1 infection in vivo by suppressing virus replication in HIV-1 natural host cells.
Collapse
|
15
|
Kaur G, Mehra N. Genetic determinants of HIV-1 infection and progression to AIDS: susceptibility to HIV infection. TISSUE ANTIGENS 2009; 73:289-301. [PMID: 19317737 PMCID: PMC7169862 DOI: 10.1111/j.1399-0039.2009.01220.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 01/11/2009] [Indexed: 01/14/2023]
Abstract
Interindividual variability in susceptibility to HIV-1 infection, its transmission, disease progression, and response to antiviral therapy has been attributed to host determinants and variability in multiple genes. Although most people exposed to the virus go on to develop full-blown disease at variable intervals, a proportion of them, labeled as long-term nonprogressors or exposed uninfected, possess 'natural resistance' to infection. A better understanding of genetic and immunologic basis of such a natural resistance to infection would bear important implications in designing therapeutic vaccine designs. The genetic variants that could influence susceptibility to HIV-1 and limit AIDS vary in different populations and among individuals. Meta-analyses of large cohort studies have identified numerous 'AIDS restriction genes' that regulate HIV cell entry (particularly chemokine coreceptors and their ligands), acquired and innate immunity (major histocompatibility complex, killer cell immunoglobulin-like receptor, and cytokines), and others [tripartite interaction motif 5 alpha (TRIM5alpha) and apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G] that influence outcome of HIV infection. Studies carried out in the Indian population with regard to genetic polymorphisms in chemokine receptors have shown that (i) the protective CCR5 Delta32 variant is rare, (ii) CCR5HHE carrying *59402A is associated with increased likelihood of infection and development of AIDS, and (iii) the Indian population generally has low CCL3L1 copy numbers (approximately 2.3). These data have implications in developing screening tests that could identify people at higher or lower risk of infection and rate of disease progression, predict vaccine responsiveness in clinical trials and understand the pathogenic mechanisms.
Collapse
Affiliation(s)
- G Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India.
| | | |
Collapse
|