1
|
Ortolá B, Daròs JA. Viroids: Non-Coding Circular RNAs Able to Autonomously Replicate and Infect Higher Plants. BIOLOGY 2023; 12:172. [PMID: 36829451 PMCID: PMC9952643 DOI: 10.3390/biology12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246-430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved. Systemic movement through the infected plant, plant-to-plant transmission and host range are also discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has acquired remarkable importance, and also for the initiation of potential biotechnological applications of viroid molecules.
Collapse
Affiliation(s)
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
2
|
Della-Felice F, de Andrade Bartolomeu A, Pilli RA. The phosphate ester group in secondary metabolites. Nat Prod Rep 2022; 39:1066-1107. [PMID: 35420073 DOI: 10.1039/d1np00078k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2000 to mid-2021The phosphate ester is a versatile, widespread functional group involved in a plethora of biological activities. Its presence in secondary metabolites, however, is relatively rare compared to other functionalities and thus is part of a rather unexplored chemical space. Herein, the chemistry of secondary metabolites containing the phosphate ester group is discussed. The text emphasizes their structural diversity, biological and pharmacological profiles, and synthetic approaches employed in the phosphorylation step during total synthesis campaigns, covering the literature from 2000 to mid-2021.
Collapse
Affiliation(s)
- Franco Della-Felice
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil.,Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
| | | | - Ronaldo Aloise Pilli
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil
| |
Collapse
|
3
|
Wang Y. Current view and perspectives in viroid replication. Curr Opin Virol 2021; 47:32-37. [PMID: 33460914 DOI: 10.1016/j.coviro.2020.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Viroids are single-stranded circular noncoding RNAs that infect plants. The noncoding nature indicates that viroids must harness their RNA genomes to redirect host machinery for infection. Therefore, the viroid model provides invaluable opportunities for delineating fundamental principles of RNA structure-function relationships and for dissecting the composition and mechanism of RNA-related cellular machinery. There are two viroid families, Pospiviroidae and Avsunviroidae. Members of both families replicate via the RNA-based rolling-circle mechanism with some variations. Viroid replication is generally divided into three steps: transcription, cleavage, and ligation. Decades of studies have uncovered numerous viroid RNA structures with a regulatory role in replication and multiple enzymes critical for the three replication steps. This review discusses these findings and highlights the latest discoveries. Future studies will continue to elucidate regulatory factors and mechanism of host machinery exploited by viroids and provide new insights into host-viroid interactions in the context of pathogenesis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39759, USA.
| |
Collapse
|
4
|
López-Carrasco A, Gago-Zachert S, Mileti G, Minoia S, Flores R, Delgado S. The transcription initiation sites of eggplant latent viroid strands map within distinct motifs in their in vivo RNA conformations. RNA Biol 2016; 13:83-97. [PMID: 26618399 DOI: 10.1080/15476286.2015.1119365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Eggplant latent viroid (ELVd), like other members of family Avsunviroidae, replicates in plastids through a symmetric rolling-circle mechanism in which elongation of RNA strands is most likely catalyzed by a nuclear-encoded polymerase (NEP) translocated to plastids. Here we have addressed where NEP initiates transcription of viroid strands. Because this step is presumably directed by sequence/structural motifs, we have previously determined the conformation of the monomeric linear (+) and (-) RNAs of ELVd resulting from hammerhead-mediated self-cleavage. In silico predictions with 3 softwares led to similar bifurcated conformations for both ELVd strands. In vitro examination by non-denaturing PAGE showed that they migrate as prominent single bands, with the ELVd (+) RNA displaying a more compact conformation as revealed by its faster electrophoretic mobility. In vitro SHAPE analysis corroborated the ELVd conformations derived from thermodynamics-based predictions in silico. Moreover, sequence analysis of 94 full-length natural ELVd variants disclosed co-variations, and mutations converting canonical into wobble pairs or vice versa, which confirmed in vivo most of the stems predicted in silico and in vitro, and additionally helped to introduce minor structural refinements. Therefore, results from the 3 experimental approaches were essentially consistent among themselves. Application to RNA preparations from ELVd-infected tissue of RNA ligase-mediated rapid amplification of cDNA ends, combined with pretreatments to modify the 5' ends of viroid strands, mapped the transcription initiation sites of ELVd (+) and (-) strands in vivo at different sequence/structural motifs, in contrast with the situation previously observed in 2 other members of the family Avsunviroidae.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- a Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas , Valencia , Spain
| | - Selma Gago-Zachert
- b Department of Molecular Signal Processing , Leibniz Institute of Plant Biochemistry , Halle ( Saale ), Germany
| | - Giuseppe Mileti
- a Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas , Valencia , Spain
| | - Sofia Minoia
- a Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas , Valencia , Spain
| | - Ricardo Flores
- a Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas , Valencia , Spain
| | - Sonia Delgado
- a Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas , Valencia , Spain
| |
Collapse
|
5
|
Abstract
Mature viroids consist of a noncoding, covalently closed circular RNA that is able to autonomously infect respective host plants. Thus, they must utilize proteins of the host for most biological functions such as replication, processing, transport, and pathogenesis. Therefore, viroids can be regarded as minimal parasites of the host machinery. They have to present to the host machinery the appropriate signals based on either their sequence or their structure. Here, we summarize such sequence and structural features critical for the biological functions of viroids.
Collapse
Affiliation(s)
- Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | - Jean-Pierre Perreault
- Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliqueé sur le cancer, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
6
|
Rao ALN, Kalantidis K. Virus-associated small satellite RNAs and viroids display similarities in their replication strategies. Virology 2015; 479-480:627-36. [PMID: 25731957 DOI: 10.1016/j.virol.2015.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/01/2015] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
Abstract
Since the discovery of non-coding, small, highly structured, satellite RNAs (satRNAs) and viroids as subviral pathogens of plants , have been of great interest to molecular biologists as possible living fossils of pre-cellular evolution in an RNA world. Despite extensive studies performed in the last four decades, there is still mystery surrounding the origin and evolutionary relationship between these subviral pathogens. Recent technical advances revealed some commonly shared replication features between these two subviral pathogens. In this review, we discuss our current perception of replication and evolutionary origin of these petite RNA pathogens.
Collapse
Affiliation(s)
- A L N Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, United States.
| | - Kriton Kalantidis
- IMBB-FORTH, Vasilika Vouton, Heraklion, Crete, Greece and Dept. of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
7
|
What has been happening with viroids? Virus Genes 2014; 49:175-84. [DOI: 10.1007/s11262-014-1110-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022]
|
8
|
Flores R, Serra P, Minoia S, Di Serio F, Navarro B. Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs. Front Microbiol 2012; 3:217. [PMID: 22719735 PMCID: PMC3376415 DOI: 10.3389/fmicb.2012.00217] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/28/2012] [Indexed: 11/13/2022] Open
Abstract
As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson–Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non-canonical pairs and that specific loops in the rod-like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunviroidae adopt multibranched conformations occasionally stabilized by kissing-loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunviroidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures – either global or local – determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC) Valencia, Spain
| | | | | | | | | |
Collapse
|
9
|
Ding B. Viroids: self-replicating, mobile, and fast-evolving noncoding regulatory RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:362-75. [PMID: 21956936 DOI: 10.1002/wrna.22] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Viroids are small, circular, and noncoding RNAs that infect plants. They replicate in the nucleus or chloroplast and then traffic from cell to cell and from organ to organ to establish systemic infection. Viroids achieve nearly all of the biological functions by directly interacting with host cellular factors. Viroid replication, together with replication of human hepatitis delta virus, demonstrates the biological novelty and significance of RNA-dependent RNA polymerase activities of DNA-dependent RNA polymerases. Viroid systemic infection uncovers a new biological principle--the role of three-dimensional RNA structural motifs mediating RNA trafficking between specific cells. Viroid diseases are virtually the consequences of host gene regulation by noncoding RNAs. A viroid RNA has the highest in vivo mutation rate among all known nucleic acid replicons. The host range of many viroids is expanding, essentially as a result of continuing and fast evolution of noncoding sequences/structures to gain new biological functions. Here, I discuss recent progress in these areas, emphasizing the broad significance of viroid research to the discovery of fundamental biological principles.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Center for RNA Biology, and Molecular, Cellular and Developmental Biology Program, The Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Identification of proteins from prunus persica that interact with peach latent mosaic viroid. J Virol 2009; 83:12057-67. [PMID: 19759139 DOI: 10.1128/jvi.01151-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peach latent mosaic viroid (PLMVd) is a small, single-stranded, circular RNA pathogen that infects Prunus persica trees. As with all other known viroids, the PLMVd genome does not encode any proteins. Consequently, it must interact with host cellular factors in order to ensure its life cycle. With the objective of identifying cellular proteins that interact with PLMVd, Northwestern hybridizations were performed using partially purified peach leaf extracts. Mass spectrometric analysis of the detected RNA-protein complexes led to the identification of six putative RNA-binding proteins. One of these was found to be elongation factor 1-alpha (eEF1A), and because of its known involvement in the replication and translation of various RNA viruses, further characterizations were performed. Initially, the existence of this interaction received support from an experiment that immunoprecipitated the eEF1A from a crude extract of infected peach leaves, coupled with reverse transcription-PCR detection of the PLMVd. Subsequently, eEF1A interaction with PLMVd strands of both polarities was confirmed in vitro by electrophoresis mobility shift assays, fluorescence spectroscopy, and the prediction of an altered PLMVd RNase mapping profile in the presence of the protein. The potential contribution of eEF1A to the molecular biology of PLMVd, including for viroid replication, is discussed.
Collapse
|
11
|
Viroid replication: rolling-circles, enzymes and ribozymes. Viruses 2009; 1:317-34. [PMID: 21994552 PMCID: PMC3185496 DOI: 10.3390/v1020317] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/09/2009] [Accepted: 09/09/2009] [Indexed: 12/05/2022] Open
Abstract
Viroids, due to their small size and lack of protein-coding capacity, must rely essentially on their hosts for replication. Intriguingly, viroids have evolved the ability to replicate in two cellular organella, the nucleus (family Pospiviroidae) and the chloroplast (family Avsunviroidae). Viroid replication proceeds through an RNA-based rolling-circle mechanism with three steps that, with some variations, operate in both polarity strands: i) synthesis of longer-than-unit strands catalyzed by either the nuclear RNA polymerase II or a nuclear-encoded chloroplastic RNA polymerase, in both instances redirected to transcribe RNA templates, ii) cleavage to unit-length, which in the family Avsunviroidae is mediated by hammerhead ribozymes embedded in both polarity strands, while in the family Pospiviroidae the oligomeric RNAs provide the proper conformation but not the catalytic activity, and iii) circularization. The host RNA polymerases, most likely assisted by additional host proteins, start transcription from specific sites, thus implying the existence of viroid promoters. Cleavage and ligation in the family Pospiviroidae is probably catalyzed by an RNase III-like enzyme and an RNA ligase able to circularize the resulting 5′ and 3′ termini. Whether a chloroplastic RNA ligase mediates circularization in the family Avsunviroidae, or this reaction is autocatalytic, remains an open issue.
Collapse
|
12
|
Abstract
Viroids are single-stranded, circular, and noncoding RNAs that infect plants. They replicate in the nucleus or chloroplast and then traffic cell-to-cell through plasmodesmata and long distance through the phloem to establish systemic infection. They also cause diseases in certain hosts. All functions are mediated directly by the viroid RNA genome or genome-derived RNAs. I summarize recent advances in the understanding of viroid structures and cellular factors enabling these functions, emphasizing conceptual developments, major knowledge gaps, and future directions. Newly emerging experimental systems and research tools are discussed that are expected to enable significant progress in a number of key areas. I highlight examples of groundbreaking contributions of viroid research to the development of new biological principles and offer perspectives on using viroid models to continue advancing some frontiers of life science.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
13
|
St-Pierre P, Hassen IF, Thompson D, Perreault J. Characterization of the siRNAs associated with peach latent mosaic viroid infection. Virology 2009; 383:178-82. [DOI: 10.1016/j.virol.2008.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/25/2008] [Accepted: 11/08/2008] [Indexed: 10/21/2022]
|
14
|
Abstract
Viroids are small, circular RNA pathogens, which infect several crop plants and can cause diseases of economic importance. They do not code for proteins but they contain a number of RNA structural elements, which interact with factors of the host. The resulting set of sophisticated and specific interactions enables them to use the host machinery for their replication and transport, circumvent its defence reactions and alter its gene expression. Although found in plants, viroids have a distant relative in the animal world: hepatitis delta virus (HDV), a satellite virus of hepatitis B virus, which has a similar rod-like structure and replicates in the nucleus of infected cells. Viroids have also a cellular relative: the retroviroids, found in some plants as independent (non-infectious) RNA replicons with a DNA copy. In this review, we summarize recent progress in understanding viroid biology. We discuss the possible role of recently identified viroid-binding host proteins as well as the recent data on the interaction of viroids with one part of the host's defence machinery, the RNA-mediated gene silencing and how this might be connected to viroid replication and pathogenicity.
Collapse
Affiliation(s)
- Efthimia Mina Tsagris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, PO Box 1385, 71110 Heraklion, Greece.
| | | | | | | |
Collapse
|